Import your data

data <- readxl::read_excel("GDP_vs_PlasticWaste_Analysis.xlsx")

Chapter 14

Tools

Detect matches

united_countries <- data %>%
  filter(str_detect(Country, "United"))
print(united_countries)
## # A tibble: 3 × 6
##   Country   `GDP per Capita (USD)` Plastic Waste per Ca…¹ Total Plastic Waste …²
##   <chr>                      <dbl>                  <dbl>                  <dbl>
## 1 United A…                  57233                  0.199                 600741
## 2 United K…                  36367                  0.215                4925590
## 3 United S…                  49374                  0.335               37825550
## # ℹ abbreviated names: ¹​`Plastic Waste per Capita (kg)`,
## #   ²​`Total Plastic Waste Generation (tonnes)`
## # ℹ 2 more variables: `Mismanaged Plastic Waste (tonnes)` <dbl>,
## #   `Managed Plastic Waste (tonnes) (recycled, incinerated, sealed landfills)` <dbl>
high_gdp_countries <- data %>%
  filter(`GDP per Capita (USD)` > 40000)
print(high_gdp_countries)
## # A tibble: 21 × 6
##    Country  `GDP per Capita (USD)` Plastic Waste per Ca…¹ Total Plastic Waste …²
##    <chr>                     <dbl>                  <dbl>                  <dbl>
##  1 Austral…                  41464                  0.112                 900658
##  2 Bahrain                   40571                  0.132                  59785
##  3 Belgium                   41086                  0.08                  318151
##  4 Bermuda                   56395                  0.252                   5990
##  5 Brunei                    80553                  0.026                   3688
##  6 Canada                    40699                  0.093                1154309
##  7 Cayman …                  49903                  0.252                   5106
##  8 Denmark                   43998                  0.047                  95171
##  9 Germany                   40429                  0.485               14476561
## 10 Hong Ko…                  48108                  0.398                1020406
## # ℹ 11 more rows
## # ℹ abbreviated names: ¹​`Plastic Waste per Capita (kg)`,
## #   ²​`Total Plastic Waste Generation (tonnes)`
## # ℹ 2 more variables: `Mismanaged Plastic Waste (tonnes)` <dbl>,
## #   `Managed Plastic Waste (tonnes) (recycled, incinerated, sealed landfills)` <dbl>

Extract matches

gdp_numeric <- str_extract(data$`GDP per Capita (USD)`, "\\d+")
print(gdp_numeric)
##   [1] "9927"   "12871"  "5898"   "19213"  "18712"  "35974"  "41464"  "29222" 
##   [9] "40571"  "2443"   "16418"  "41086"  "7877"   "1819"   "56395"  "9720"  
##  [17] "14538"  "80553"  "15283"  "2523"   "2930"   "40699"  "5828"   "49903" 
##  [25] "19442"  "9526"   "10901"  "1413"   "5186"   "13000"  "2690"   "20172" 
##  [33] "33941"  "660"    "43998"  "2705"   "10198"  "11133"  "9352"   "9857"  
##  [41] "6301"   "33723"  "1416"   "22741"  "7352"   "39848"  "36856"  "15356" 
##  [49] "1644"   "6734"   "40429"  "3059"   "28726"  "11178"  "6714"   "1574"  
##  [57] "1400"   "5848"   "1502"   "3971"   "48108"  "38978"  "4405"   "8433"  
##  [65] "17943"  "12718"  "29743"  "36201"  "7996"   "35750"  "9473"   "2476"  
##  [73] "1732"   "75204"  "18252"  "16452"  "700"    "29630"  "21071"  "98184" 
##  [81] "1386"   "21107"  "12006"  "28365"  "3479"   "3317"   "15938"  "15716" 
##  [89] "3298"   "14035"  "6443"   "918"    "3721"   "8461"   "6592"   "45525" 
##  [97] "32119"  "4029"   "62350"  "45336"  "4284"   "11847"  "4173"   "15629" 
## [105] "3192"   "9957"   "5597"   "21771"  "27238"  "33924"  "125141" "17553" 
## [113] "23108"  "21412"  "12124"  "9916"   "5400"   "2642"   "45421"  "2184"  
## [121] "20365"  "1200"   "72116"  "36327"  "28678"  "1871"   "11888"  "30352" 
## [129] "32507"  "8530"   "3366"   "14212"  "42943"  "2091"   "13487"  "1208"  
## [137] "4984"   "31261"  "10436"  "17959"  "2986"   "7824"   "57233"  "36367" 
## [145] "49374"  "17082"  "2948"   "16545"  "4408"   "4479"
vowel_countries <- data %>%
  filter(str_detect(Country, "^[AEIOUaeiou]"))
print(vowel_countries)
## # A tibble: 26 × 6
##    Country  `GDP per Capita (USD)` Plastic Waste per Ca…¹ Total Plastic Waste …²
##    <chr>                     <dbl>                  <dbl>                  <dbl>
##  1 Albania                    9927                  0.069                  73364
##  2 Algeria                   12871                  0.144                1898343
##  3 Angola                     5898                  0.062                 528843
##  4 Antigua…                  19213                  0.66                 2753550
##  5 Argenti…                  18712                  0.183                2753550
##  6 Aruba                     35974                  0.252                   9352
##  7 Austral…                  41464                  0.112                 900658
##  8 Ecuador                    9352                  0.147                 801321
##  9 Egypt                      9857                  0.178                5464471
## 10 El Salv…                   6301                  0.147                 330763
## # ℹ 16 more rows
## # ℹ abbreviated names: ¹​`Plastic Waste per Capita (kg)`,
## #   ²​`Total Plastic Waste Generation (tonnes)`
## # ℹ 2 more variables: `Mismanaged Plastic Waste (tonnes)` <dbl>,
## #   `Managed Plastic Waste (tonnes) (recycled, incinerated, sealed landfills)` <dbl>

Replacing matches

data$Country <- str_replace_all(data$Country, " ", "_")
print(data$Country)
##   [1] "Albania"                          "Algeria"                         
##   [3] "Angola"                           "Antigua_and_Barbuda"             
##   [5] "Argentina"                        "Aruba"                           
##   [7] "Australia"                        "Bahamas"                         
##   [9] "Bahrain"                          "Bangladesh"                      
##  [11] "Barbados"                         "Belgium"                         
##  [13] "Belize"                           "Benin"                           
##  [15] "Bermuda"                          "Bosnia_and_Herzegovina"          
##  [17] "Brazil"                           "Brunei"                          
##  [19] "Bulgaria"                         "Cambodia"                        
##  [21] "Cameroon"                         "Canada"                          
##  [23] "Cape_Verde"                       "Cayman_Islands"                  
##  [25] "Chile"                            "China"                           
##  [27] "Colombia"                         "Comoros"                         
##  [29] "Congo"                            "Costa_Rica"                      
##  [31] "Cote_d'Ivoire"                    "Croatia"                         
##  [33] "Cyprus"                           "Democratic_Republic_of_Congo"    
##  [35] "Denmark"                          "Djibouti"                        
##  [37] "Dominica"                         "Dominican_Republic"              
##  [39] "Ecuador"                          "Egypt"                           
##  [41] "El_Salvador"                      "Equatorial_Guinea"               
##  [43] "Eritrea"                          "Estonia"                         
##  [45] "Fiji"                             "Finland"                         
##  [47] "France"                           "Gabon"                           
##  [49] "Gambia"                           "Georgia"                         
##  [51] "Germany"                          "Ghana"                           
##  [53] "Greece"                           "Grenada"                         
##  [55] "Guatemala"                        "Guinea"                          
##  [57] "Guinea-Bissau"                    "Guyana"                          
##  [59] "Haiti"                            "Honduras"                        
##  [61] "Hong_Kong"                        "Iceland"                         
##  [63] "India"                            "Indonesia"                       
##  [65] "Iran"                             "Iraq"                            
##  [67] "Israel"                           "Italy"                           
##  [69] "Jamaica"                          "Japan"                           
##  [71] "Jordan"                           "Kenya"                           
##  [73] "Kiribati"                         "Kuwait"                          
##  [75] "Latvia"                           "Lebanon"                         
##  [77] "Liberia"                          "Libya"                           
##  [79] "Lithuania"                        "Macao"                           
##  [81] "Madagascar"                       "Malaysia"                        
##  [83] "Maldives"                         "Malta"                           
##  [85] "Marshall_Islands"                 "Mauritania"                      
##  [87] "Mauritius"                        "Mexico"                          
##  [89] "Micronesia_(country)"             "Montenegro"                      
##  [91] "Morocco"                          "Mozambique"                      
##  [93] "Myanmar"                          "Namibia"                         
##  [95] "Nauru"                            "Netherlands"                     
##  [97] "New_Zealand"                      "Nicaragua"                       
##  [99] "Norway"                           "Oman"                            
## [101] "Pakistan"                         "Palau"                           
## [103] "Palestine"                        "Panama"                          
## [105] "Papua_New_Guinea"                 "Peru"                            
## [107] "Philippines"                      "Poland"                          
## [109] "Portugal"                         "Puerto_Rico"                     
## [111] "Qatar"                            "Romania"                         
## [113] "Russia"                           "Saint_Kitts_and_Nevis"           
## [115] "Saint_Lucia"                      "Saint_Vincent_and_the_Grenadines"
## [117] "Samoa"                            "Sao_Tome_and_Principe"           
## [119] "Saudi_Arabia"                     "Senegal"                         
## [121] "Seychelles"                       "Sierra_Leone"                    
## [123] "Singapore"                        "Sint_Maarten_(Dutch_part)"       
## [125] "Slovenia"                         "Solomon_Islands"                 
## [127] "South_Africa"                     "South_Korea"                     
## [129] "Spain"                            "Sri_Lanka"                       
## [131] "Sudan"                            "Suriname"                        
## [133] "Sweden"                           "Tanzania"                        
## [135] "Thailand"                         "Togo"                            
## [137] "Tonga"                            "Trinidad_and_Tobago"             
## [139] "Tunisia"                          "Turkey"                          
## [141] "Tuvalu"                           "Ukraine"                         
## [143] "United_Arab_Emirates"             "United_Kingdom"                  
## [145] "United_States"                    "Uruguay"                         
## [147] "Vanuatu"                          "Venezuela"                       
## [149] "Vietnam"                          "Yemen"
data$`Plastic Waste per Capita (kg)` <- str_replace_all(data$`Plastic Waste per Capita (kg)`, "\\.", ",")
print(data$`Plastic Waste per Capita (kg)`)
##   [1] "0,069" "0,144" "0,062" "0,66"  "0,183" "0,252" "0,112" "0,39"  "0,132"
##  [10] "0,034" "0,57"  "0,08"  "0,172" "0,043" "0,252" "0,144" "0,165" "0,026"
##  [19] "0,154" "0,066" "0,046" "0,093" "0,065" "0,252" "0,119" "0,121" "0,144"
##  [28] "0,201" "0,069" "0,258" "0,103" "0,252" "0,248" "0,045" "0,047" "0,103"
##  [37] "0,149" "0,144" "0,147" "0,178" "0,147" "0,144" "0,045" "0,176" "0,189"
##  [46] "0,234" "0,192" "0,054" "0,048" "0,068" "0,485" "0,04"  "0,2"   "0,325"
##  [55] "0,28"  "0,03"  "0,054" "0,586" "0,09"  "0,189" "0,398" "0,281" "0,01" 
##  [64] "0,057" "0,144" "0,103" "0,297" "0,134" "0,034" "0,171" "0,144" "0,027"
##  [73] "0,103" "0,686" "0,124" "0,094" "0,084" "0,144" "0,132" "0,368" "0,016"
##  [82] "0,198" "0,322" "0,214" "0,192" "0,045" "0,23"  "0,087" "0,103" "0,144"
##  [91] "0,073" "0,015" "0,075" "0,144" "0,144" "0,424" "0,331" "0,143" "0,28" 
## [100] "0,084" "0,103" "0,144" "0,063" "0,145" "0,103" "0,144" "0,075" "0,097"
## [109] "0,265" "0,252" "0,16"  "0,042" "0,112" "0,654" "0,522" "0,221" "0,103"
## [118] "0,103" "0,156" "0,103" "0,358" "0,041" "0,194" "0,252" "0,145" "0,103"
## [127] "0,24"  "0,112" "0,277" "0,357" "0,103" "0,163" "0,048" "0,023" "0,144"
## [136] "0,057" "0,223" "0,29"  "0,144" "0,212" "0,144" "0,103" "0,199" "0,215"
## [145] "0,335" "0,252" "0,295" "0,252" "0,103" "0,103"