## `summarise()` has grouped output by 'condition'. You can override using the
## `.groups` argument.
## # A tibble: 3 × 2
##   condition         n
##   <chr>         <int>
## 1 Heterogeneous    40
## 2 Homogeneous      40
## 3 Singular         40
##  [1] X.1              pid              dot              dob             
##  [5] gender           primary_lang     is_bilingual     location        
##  [9] experimenter     has_video        condition        stim_set        
## [13] task             trial            trial_type       response        
## [17] n_mistakes       verbal_q_exp     exclude          notes           
## [21] age_months       age_years        age_years_cont   age_zscored     
## [25] named            unnamed          named_location   X               
## [29] correct_resp     entailment_score total_tom_score  tom_zscored     
## <0 rows> (or 0-length row.names)
## `summarise()` has grouped output by 'condition'. You can override using the
## `.groups` argument.
## # A tibble: 6 × 4
## # Groups:   condition [3]
##   condition     trial_type  mean_correct sd_correct
##   <chr>         <chr>              <dbl>      <dbl>
## 1 Heterogeneous control            0.931      0.254
## 2 Heterogeneous implicature        0.669      0.472
## 3 Homogeneous   control            0.919      0.274
## 4 Homogeneous   implicature        0.535      0.500
## 5 Singular      control            0.95       0.219
## 6 Singular      implicature        0.544      0.500

## `summarise()` has grouped output by 'pid', 'trial_type'. You can override using
## the `.groups` argument.

## `summarise()` has grouped output by 'pid', 'age_years', 'trial_type'. You can
## override using the `.groups` argument.

## `summarise()` has grouped output by 'pid', 'trial_type', 'condition'. You can
## override using the `.groups` argument.

## `summarise()` has grouped output by 'pid', 'age_years', 'trial_type'. You can
## override using the `.groups` argument.

## `summarise()` has grouped output by 'pid', 'condition', 'trial_type'. You can
## override using the `.groups` argument.

## `summarise()` has grouped output by 'pid', 'age_years_cont', 'trial_type'. You
## can override using the `.groups` argument.
## `geom_smooth()` using formula = 'y ~ x'

## `summarise()` has grouped output by 'pid', 'total_tom_score', 'trial_type'. You
## can override using the `.groups` argument.
## `geom_smooth()` using formula = 'y ~ x'

## `summarise()` has grouped output by 'pid', 'entailment_score', 'trial_type'.
## You can override using the `.groups` argument.
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## [1] 0.3299796

T-tests

## 
##  One Sample t-test
## 
## data:  df.trial %>% filter(condition == "Singular" & trial_type == "implicature") %>% group_by(pid) %>% summarise(mean_implicature = mean(correct_resp, na.rm = T)) %>% pull(mean_implicature)
## t = 0.86552, df = 39, p-value = 0.392
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.4415073 0.6459927
## sample estimates:
## mean of x 
##   0.54375
## 
##  One Sample t-test
## 
## data:  df.trial %>% filter(condition == "Homogeneous" & trial_type == "implicature") %>% group_by(pid) %>% summarise(mean_implicature = mean(correct_resp, na.rm = T)) %>% pull(mean_implicature)
## t = 0.71853, df = 39, p-value = 0.4767
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.4357172 0.6351161
## sample estimates:
## mean of x 
## 0.5354167
## 
##  One Sample t-test
## 
## data:  df.trial %>% filter(condition == "Heterogeneous" & trial_type == "implicature") %>% group_by(pid) %>% summarise(mean_implicature = mean(correct_resp, na.rm = T)) %>% pull(mean_implicature)
## t = 3.3125, df = 39, p-value = 0.002001
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.5657088 0.7717912
## sample estimates:
## mean of x 
##   0.66875

Regressions

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ 1 + (1 | pid) + (1 | trial)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1036.7   1051.3   -515.4   1030.7      956 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8235  0.3019  0.4430  0.5441  1.3905 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.4888   0.6991  
##  trial  (Intercept) 0.1889   0.4346  
## Number of obs: 959, groups:  pid, 120; trial, 8
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.3043     0.1887   6.913 4.75e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    858.0    887.2   -423.0    846.0      953 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0298  0.1079  0.2294  0.4829  2.7189 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.9306   0.9647  
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             2.92324    0.29015  10.075   <2e-16 ***
## conditionHomogeneous   -0.06984    0.30896  -0.226   0.8212    
## conditionHeterogeneous  0.49626    0.31754   1.563   0.1181    
## trial_typeimplicature  -2.64926    0.23245 -11.397   <2e-16 ***
## age_zscored             0.27898    0.13054   2.137   0.0326 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt trl_ty
## condtnHmgns -0.539                       
## cndtnHtrgns -0.471  0.490                
## trl_typmplc -0.653  0.010  -0.059        
## age_zscored  0.018  0.101   0.072  -0.077
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                Chisq Df Pr(>Chisq)    
## (Intercept) 101.5028  1    < 2e-16 ***
## condition     3.7366  2    0.15439    
## trial_type  129.8957  1    < 2e-16 ***
## age_zscored   4.5670  1    0.03259 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * trial_type + age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    859.1    898.0   -421.5    843.1      951 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4396  0.1123  0.2250  0.4668  2.7396 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.9369   0.9679  
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                    3.2947     0.4168   7.905
## conditionHomogeneous                          -0.4263     0.5367  -0.794
## conditionHeterogeneous                        -0.2648     0.5471  -0.484
## trial_typeimplicature                         -3.1124     0.4229  -7.360
## age_zscored                                    0.2799     0.1310   2.137
## conditionHomogeneous:trial_typeimplicature     0.4443     0.5488   0.810
## conditionHeterogeneous:trial_typeimplicature   0.9575     0.5598   1.710
##                                              Pr(>|z|)    
## (Intercept)                                  2.68e-15 ***
## conditionHomogeneous                           0.4270    
## conditionHeterogeneous                         0.6284    
## trial_typeimplicature                        1.84e-13 ***
## age_zscored                                    0.0326 *  
## conditionHomogeneous:trial_typeimplicature     0.4182    
## conditionHeterogeneous:trial_typeimplicature   0.0872 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt trl_ty ag_zsc cndtnHm:_
## condtnHmgns -0.739                                        
## cndtnHtrgns -0.721  0.567                                 
## trl_typmplc -0.845  0.621   0.607                         
## age_zscored  0.009  0.071   0.036  -0.039                 
## cndtnHmgn:_  0.618 -0.813  -0.473  -0.740 -0.015          
## cndtnHtrg:_  0.616 -0.472  -0.813  -0.735  0.008  0.561
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                        Chisq Df Pr(>Chisq)    
## (Intercept)          62.4890  1  2.679e-15 ***
## condition             0.6327  2    0.72880    
## trial_type           54.1634  1  1.845e-13 ***
## age_zscored           4.5676  1    0.03258 *  
## condition:trial_type  2.9584  2    0.22782    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI")
## Models:
## fit.task: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
## fit.task_age: correct_resp ~ condition * trial_type + age_zscored + (1 | pid)
##              npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task        6 858.05 887.24 -423.02   846.05                     
## fit.task_age    8 859.08 898.01 -421.54   843.08 2.9697  2     0.2265
## $emmeans
##  condition     trial_type  emmean    SE  df asymp.LCL asymp.UCL
##  Singular      control      3.295 0.417 Inf     2.478     4.112
##  Homogeneous   control      2.868 0.362 Inf     2.159     3.578
##  Heterogeneous control      3.030 0.380 Inf     2.285     3.775
##  Singular      implicature  0.182 0.234 Inf    -0.275     0.640
##  Homogeneous   implicature  0.200 0.235 Inf    -0.260     0.661
##  Heterogeneous implicature  0.875 0.247 Inf     0.391     1.359
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                            estimate    SE  df z.ratio
##  Singular control - Homogeneous control                0.4263 0.537 Inf   0.794
##  Singular control - Heterogeneous control              0.2648 0.547 Inf   0.484
##  Singular control - Singular implicature               3.1124 0.423 Inf   7.360
##  Singular control - Homogeneous implicature            3.0945 0.477 Inf   6.489
##  Singular control - Heterogeneous implicature          2.4197 0.476 Inf   5.083
##  Homogeneous control - Heterogeneous control          -0.1615 0.504 Inf  -0.320
##  Homogeneous control - Singular implicature            2.6861 0.430 Inf   6.248
##  Homogeneous control - Homogeneous implicature         2.6681 0.369 Inf   7.222
##  Homogeneous control - Heterogeneous implicature       1.9934 0.428 Inf   4.661
##  Heterogeneous control - Singular implicature          2.8476 0.444 Inf   6.411
##  Heterogeneous control - Homogeneous implicature       2.8297 0.444 Inf   6.372
##  Heterogeneous control - Heterogeneous implicature     2.1549 0.380 Inf   5.675
##  Singular implicature - Homogeneous implicature       -0.0179 0.332 Inf  -0.054
##  Singular implicature - Heterogeneous implicature     -0.6927 0.339 Inf  -2.043
##  Homogeneous implicature - Heterogeneous implicature  -0.6747 0.339 Inf  -1.988
##  p.value
##   0.9686
##   0.9967
##   <.0001
##   <.0001
##   <.0001
##   0.9996
##   <.0001
##   <.0001
##   <.0001
##   <.0001
##   <.0001
##   <.0001
##   1.0000
##   0.3177
##   0.3489
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 6 estimates
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * trial_type * age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    867.9    931.1   -420.9    841.9      946 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5700  0.1062  0.2302  0.4745  2.7245 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.9258   0.9622  
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                                                          Estimate Std. Error
## (Intercept)                                               3.30207    0.41802
## conditionHomogeneous                                     -0.39910    0.55336
## conditionHeterogeneous                                   -0.29867    0.54654
## trial_typeimplicature                                    -3.10010    0.42384
## age_zscored                                               0.27878    0.46324
## conditionHomogeneous:trial_typeimplicature                0.40407    0.56619
## conditionHeterogeneous:trial_typeimplicature              0.98157    0.56083
## conditionHomogeneous:age_zscored                          0.12716    0.58238
## conditionHeterogeneous:age_zscored                       -0.21473    0.60815
## trial_typeimplicature:age_zscored                        -0.13455    0.47024
## conditionHomogeneous:trial_typeimplicature:age_zscored    0.05497    0.59388
## conditionHeterogeneous:trial_typeimplicature:age_zscored  0.47878    0.62415
##                                                          z value Pr(>|z|)    
## (Intercept)                                                7.899 2.80e-15 ***
## conditionHomogeneous                                      -0.721   0.4708    
## conditionHeterogeneous                                    -0.546   0.5847    
## trial_typeimplicature                                     -7.314 2.59e-13 ***
## age_zscored                                                0.602   0.5473    
## conditionHomogeneous:trial_typeimplicature                 0.714   0.4754    
## conditionHeterogeneous:trial_typeimplicature               1.750   0.0801 .  
## conditionHomogeneous:age_zscored                           0.218   0.8272    
## conditionHeterogeneous:age_zscored                        -0.353   0.7240    
## trial_typeimplicature:age_zscored                         -0.286   0.7748    
## conditionHomogeneous:trial_typeimplicature:age_zscored     0.093   0.9263    
## conditionHeterogeneous:trial_typeimplicature:age_zscored   0.767   0.4430    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                (Intr) cndtnHm cndtnHt trl_ty ag_zsc cndtnHmgns:t_
## condtnHmgns    -0.721                                            
## cndtnHtrgns    -0.722  0.550                                     
## trl_typmplc    -0.846  0.609   0.610                             
## age_zscored     0.061 -0.042  -0.042  -0.073                     
## cndtnHmgns:t_   0.603 -0.825  -0.460  -0.722  0.052              
## cndtnHtrgns:t_  0.616 -0.459  -0.813  -0.736  0.053  0.545       
## cndtnHmgns:g_  -0.051  0.181   0.033   0.060 -0.796 -0.175       
## cndtnHtrgns:g_ -0.042  0.032   0.047   0.052 -0.761 -0.039       
## trl_typmp:_    -0.072  0.052   0.052   0.053 -0.874 -0.038       
## cndtnHm:_:_     0.064 -0.175  -0.041  -0.048  0.693  0.170       
## cndtnHt:_:_     0.057 -0.039  -0.049  -0.042  0.659  0.029       
##                cndtnHtrgns:t_ cndtnHmgns:g_ cndtnHtrgns:g_ trl_:_ cndtnHm:_:_
## condtnHmgns                                                                  
## cndtnHtrgns                                                                  
## trl_typmplc                                                                  
## age_zscored                                                                  
## cndtnHmgns:t_                                                                
## cndtnHtrgns:t_                                                               
## cndtnHmgns:g_  -0.042                                                        
## cndtnHtrgns:g_ -0.050          0.605                                         
## trl_typmp:_    -0.039          0.695         0.665                           
## cndtnHm:_:_     0.032         -0.847        -0.527         -0.792            
## cndtnHt:_:_     0.052         -0.524        -0.835         -0.754  0.597     
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0327269 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                                    Chisq Df Pr(>Chisq)    
## (Intercept)                      62.3997  1  2.804e-15 ***
## condition                         0.5524  2     0.7587    
## trial_type                       53.5003  1  2.586e-13 ***
## age_zscored                       0.3622  1     0.5473    
## condition:trial_type              3.1458  2     0.2074    
## condition:age_zscored             0.4194  2     0.8108    
## trial_type:age_zscored            0.0819  1     0.7748    
## condition:trial_type:age_zscored  0.7964  2     0.6715    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI")
## Models:
## fit.task: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
## fit.task_age_int: correct_resp ~ condition * trial_type * age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            6 858.05 887.24 -423.02   846.05                     
## fit.task_age_int   13 867.87 931.13 -420.94   841.87 4.1738  7     0.7596
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * trial_type + tom_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    860.5    899.5   -422.3    844.5      951 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6489  0.1085  0.2348  0.4595  2.7127 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.9707   0.9852  
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                    3.3059     0.4182   7.905
## conditionHomogeneous                          -0.5642     0.5378  -1.049
## conditionHeterogeneous                        -0.1525     0.5555  -0.275
## trial_typeimplicature                         -3.1146     0.4233  -7.359
## tom_zscored                                    0.2469     0.1397   1.767
## conditionHomogeneous:trial_typeimplicature     0.4514     0.5486   0.823
## conditionHeterogeneous:trial_typeimplicature   0.9558     0.5602   1.706
##                                              Pr(>|z|)    
## (Intercept)                                  2.68e-15 ***
## conditionHomogeneous                           0.2942    
## conditionHeterogeneous                         0.7836    
## trial_typeimplicature                        1.86e-13 ***
## tom_zscored                                    0.0772 .  
## conditionHomogeneous:trial_typeimplicature     0.4106    
## conditionHeterogeneous:trial_typeimplicature   0.0880 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt trl_ty tm_zsc cndtnHm:_
## condtnHmgns -0.741                                        
## cndtnHtrgns -0.711  0.549                                 
## trl_typmplc -0.844  0.625   0.594                         
## tom_zscored  0.007 -0.062   0.155  -0.035                 
## cndtnHmgn:_  0.617 -0.810  -0.468  -0.741 -0.008          
## cndtnHtrg:_  0.614 -0.472  -0.800  -0.735  0.006  0.561
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                        Chisq Df Pr(>Chisq)    
## (Intercept)          62.4866  1  2.683e-15 ***
## condition             1.2303  2     0.5406    
## trial_type           54.1490  1  1.858e-13 ***
## tom_zscored           3.1229  1     0.0772 .  
## condition:trial_type  2.9374  2     0.2302    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI")
## Models:
## fit.task: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
## fit.task_tom: correct_resp ~ condition * trial_type + tom_zscored + (1 | pid)
##              npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task        6 858.05 887.24 -423.02   846.05                     
## fit.task_tom    8 860.52 899.45 -422.26   844.52 1.5236  2     0.4668
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * trial_type * tom_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    865.6    928.9   -419.8    839.6      946 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2035  0.1175  0.2344  0.4704  2.9148 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.9596   0.9796  
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                                                          Estimate Std. Error
## (Intercept)                                               3.31671    0.42035
## conditionHomogeneous                                     -0.44099    0.56622
## conditionHeterogeneous                                   -0.26829    0.58347
## trial_typeimplicature                                    -3.10891    0.42544
## tom_zscored                                              -0.05911    0.44612
## conditionHomogeneous:trial_typeimplicature                0.21352    0.58061
## conditionHeterogeneous:trial_typeimplicature              1.16595    0.59966
## conditionHomogeneous:tom_zscored                         -0.09257    0.59079
## conditionHeterogeneous:tom_zscored                        0.13351    0.59569
## trial_typeimplicature:tom_zscored                         0.12176    0.45383
## conditionHomogeneous:trial_typeimplicature:tom_zscored    0.55026    0.60468
## conditionHeterogeneous:trial_typeimplicature:tom_zscored  0.25232    0.60984
##                                                          z value Pr(>|z|)    
## (Intercept)                                                7.890 3.01e-15 ***
## conditionHomogeneous                                      -0.779   0.4361    
## conditionHeterogeneous                                    -0.460   0.6457    
## trial_typeimplicature                                     -7.308 2.72e-13 ***
## tom_zscored                                               -0.132   0.8946    
## conditionHomogeneous:trial_typeimplicature                 0.368   0.7131    
## conditionHeterogeneous:trial_typeimplicature               1.944   0.0519 .  
## conditionHomogeneous:tom_zscored                          -0.157   0.8755    
## conditionHeterogeneous:tom_zscored                         0.224   0.8227    
## trial_typeimplicature:tom_zscored                          0.268   0.7885    
## conditionHomogeneous:trial_typeimplicature:tom_zscored     0.910   0.3628    
## conditionHeterogeneous:trial_typeimplicature:tom_zscored   0.414   0.6791    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) cndtnHm cndtnHt trl_ty tm_zsc cndtnHmgns:tr_
## condtnHmgns     -0.706                                             
## cndtnHtrgns     -0.677  0.510                                      
## trl_typmplc     -0.845  0.596   0.570                              
## tom_zscored     -0.136  0.098   0.095   0.121                      
## cndtnHmgns:tr_   0.584 -0.817  -0.425  -0.702 -0.086               
## cndtnHtrgns:tr_  0.579 -0.423  -0.800  -0.691 -0.084  0.500        
## cndtnHmgns:tm_   0.103 -0.279  -0.072  -0.091 -0.755  0.236        
## cndtnHtrgns:tm_  0.111 -0.073   0.152  -0.098 -0.750  0.064        
## trl_typmp:_      0.121 -0.087  -0.084  -0.138 -0.848  0.098        
## cndtnHm:_:_     -0.085  0.237   0.064   0.098  0.636 -0.283        
## cndtnHt:_:_     -0.089  0.065  -0.108   0.102  0.631 -0.073        
##                 cndtnHtrgns:tr_ cndtnHmgns:tm_ cndtnHtrgns:tm_ trl_:_
## condtnHmgns                                                          
## cndtnHtrgns                                                          
## trl_typmplc                                                          
## tom_zscored                                                          
## cndtnHmgns:tr_                                                       
## cndtnHtrgns:tr_                                                      
## cndtnHmgns:tm_   0.064                                               
## cndtnHtrgns:tm_ -0.105           0.566                               
## trl_typmp:_      0.096           0.641          0.636                
## cndtnHm:_:_     -0.071          -0.819         -0.476          -0.750
## cndtnHt:_:_      0.161          -0.477         -0.814          -0.744
##                 cndtnHm:_:_
## condtnHmgns                
## cndtnHtrgns                
## trl_typmplc                
## tom_zscored                
## cndtnHmgns:tr_             
## cndtnHtrgns:tr_            
## cndtnHmgns:tm_             
## cndtnHtrgns:tm_            
## trl_typmp:_                
## cndtnHm:_:_                
## cndtnHt:_:_      0.558     
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0869174 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                                    Chisq Df Pr(>Chisq)    
## (Intercept)                      62.2568  1  3.015e-15 ***
## condition                         0.6119  2     0.7364    
## trial_type                       53.4000  1  2.721e-13 ***
## tom_zscored                       0.0176  1     0.8946    
## condition:trial_type              4.2683  2     0.1183    
## condition:tom_zscored             0.1685  2     0.9192    
## trial_type:tom_zscored            0.0720  1     0.7885    
## condition:trial_type:tom_zscored  0.8410  2     0.6567    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI")
## Models:
## fit.task: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
## fit.task_age_int: correct_resp ~ condition * trial_type * age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            6 858.05 887.24 -423.02   846.05                     
## fit.task_age_int   13 867.87 931.13 -420.94   841.87 4.1738  7     0.7596
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * trial_type + tom_zscored + age_zscored +  
##     entailment_score + (1 | pid)
##    Data: df.trial %>% filter(task == "HI")
## 
##      AIC      BIC   logLik deviance df.resid 
##    857.8    906.4   -418.9    837.8      949 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5705  0.1103  0.2261  0.4417  2.7222 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.8817   0.939   
## Number of obs: 959, groups:  pid, 120
## 
## Fixed effects:
##                                              Estimate Std. Error z value
## (Intercept)                                   2.60700    0.51009   5.111
## conditionHomogeneous                         -0.39774    0.53623  -0.742
## conditionHeterogeneous                       -0.16060    0.54899  -0.293
## trial_typeimplicature                        -3.09578    0.42076  -7.358
## tom_zscored                                   0.09223    0.14931   0.618
## age_zscored                                   0.18924    0.13934   1.358
## entailment_score                              0.26468    0.12791   2.069
## conditionHomogeneous:trial_typeimplicature    0.40890    0.54801   0.746
## conditionHeterogeneous:trial_typeimplicature  0.93906    0.55820   1.682
##                                              Pr(>|z|)    
## (Intercept)                                  3.21e-07 ***
## conditionHomogeneous                           0.4582    
## conditionHeterogeneous                         0.7699    
## trial_typeimplicature                        1.87e-13 ***
## tom_zscored                                    0.5368    
## age_zscored                                    0.1744    
## entailment_score                               0.0385 *  
## conditionHomogeneous:trial_typeimplicature     0.4556    
## conditionHeterogeneous:trial_typeimplicature   0.0925 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt trl_ty tm_zsc ag_zsc entlm_ cndtnHm:_
## condtnHmgns -0.630                                                      
## cndtnHtrgns -0.578  0.541                                               
## trl_typmplc -0.661  0.617   0.596                                       
## tom_zscored  0.124 -0.104   0.144  -0.016                               
## age_zscored  0.076  0.093  -0.023  -0.025 -0.326                        
## entlmnt_scr -0.589  0.063   0.007  -0.038 -0.203 -0.118                 
## cndtnHmgn:_  0.514 -0.812  -0.467  -0.737  0.004 -0.013 -0.023          
## cndtnHtrg:_  0.495 -0.467  -0.806  -0.733  0.002  0.009  0.006  0.557   
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0279848 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                        Chisq Df Pr(>Chisq)    
## (Intercept)          26.1211  1  3.207e-07 ***
## condition             0.5670  2    0.75314    
## trial_type           54.1354  1  1.871e-13 ***
## tom_zscored           0.3815  1    0.53678    
## age_zscored           1.8446  1    0.17442    
## entailment_score      4.2817  1    0.03853 *  
## condition:trial_type  2.8832  2    0.23655    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI")
## Models:
## fit.task: correct_resp ~ condition + trial_type + age_zscored + (1 | pid)
## fit.task_tom_age_entailment: correct_resp ~ condition * trial_type + tom_zscored + age_zscored + entailment_score + (1 | pid)
##                             npar    AIC    BIC  logLik deviance  Chisq Df
## fit.task                       6 858.05 887.24 -423.02   846.05          
## fit.task_tom_age_entailment   10 857.76 906.42 -418.88   837.76 8.2868  4
##                             Pr(>Chisq)  
## fit.task                                
## fit.task_tom_age_entailment    0.08162 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Regression with only the implicature trials?

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ 1 + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##    628.8    637.1   -312.4    624.8      477 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4701 -0.8286  0.4904  0.6803  1.2068 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.283    1.133   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   0.4301     0.1492   2.883  0.00394 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition + age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##    625.9    646.7   -307.9    615.9      474 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7340 -0.7728  0.4564  0.6903  1.3958 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.119    1.058   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             0.18072    0.24496   0.738   0.4607  
## conditionHomogeneous    0.03933    0.34763   0.113   0.9099  
## conditionHeterogeneous  0.71771    0.35521   2.021   0.0433 *
## age_zscored             0.29074    0.14508   2.004   0.0451 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt
## condtnHmgns -0.707                
## cndtnHtrgns -0.687  0.493         
## age_zscored -0.061  0.099   0.078
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##              Chisq Df Pr(>Chisq)  
## (Intercept) 0.5443  1    0.46067  
## condition   5.1150  2    0.07750 .
## age_zscored 4.0159  1    0.04507 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.base: correct_resp ~ 1 + (1 | pid)
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## fit.base    2 628.79 637.14 -312.40   624.79                       
## fit.task    5 625.85 646.71 -307.93   615.85 8.9417  3    0.03008 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    629.3    658.5   -307.6    615.3      472 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7847 -0.7946  0.4579  0.6849  1.4044 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.12     1.059   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        0.195902   0.001790  109.42   <2e-16 ***
## conditionHomogeneous               0.029218   0.001789   16.33   <2e-16 ***
## conditionHeterogeneous             0.716224   0.001790  400.10   <2e-16 ***
## age_zscored                        0.150845   0.001790   84.27   <2e-16 ***
## conditionHomogeneous:age_zscored   0.178576   0.001789   99.80   <2e-16 ***
## conditionHeterogeneous:age_zscored 0.269976   0.001790  150.84   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt ag_zsc cndtnHm:_
## condtnHmgns 0.000                                  
## cndtnHtrgns 0.001  0.000                           
## age_zscored 0.001  0.000   0.001                   
## cndtnHmgn:_ 0.000  0.000   0.000   0.000           
## cndtnHtrg:_ 0.001  0.000   0.001   0.000  0.000    
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0395887 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                          Chisq Df Pr(>Chisq)    
## (Intercept)            11973.9  1  < 2.2e-16 ***
## condition             160345.6  2  < 2.2e-16 ***
## age_zscored             7101.7  1  < 2.2e-16 ***
## condition:age_zscored  32711.0  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_age_int: correct_resp ~ condition * age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                     
## fit.task_age_int    7 629.29 658.49 -307.65   615.29 0.5619  2     0.7551
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition + tom_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    625.0    645.9   -307.5    615.0      474 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9931 -0.8248  0.4579  0.6867  1.4830 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.127    1.062   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             0.181282   0.001680  107.91   <2e-16 ***
## conditionHomogeneous   -0.120923   0.001679  -72.02   <2e-16 ***
## conditionHeterogeneous  0.893034   0.001680  531.64   <2e-16 ***
## tom_zscored             0.347046   0.001679  206.65   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt
## condtnHmgns 0.000                 
## cndtnHtrgns 0.000  0.000          
## tom_zscored 0.000  0.000   0.000  
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0421127 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##              Chisq Df Pr(>Chisq)    
## (Intercept)  11644  1  < 2.2e-16 ***
## condition   287834  2  < 2.2e-16 ***
## tom_zscored  42704  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task_tom: correct_resp ~ condition + tom_zscored + (1 | pid)
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
##              npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)
## fit.task_tom    5 625.05 645.91 -307.52   615.05                    
## fit.task        5 625.85 646.71 -307.93   615.85     0  0
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * tom_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    627.3    656.5   -306.7    613.3      472 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1319 -0.8194  0.4603  0.7052  1.6297 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.079    1.039   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         0.205398   0.001793  114.54   <2e-16 ***
## conditionHomogeneous               -0.213411   0.001792 -119.07   <2e-16 ***
## conditionHeterogeneous              0.917053   0.001793  511.44   <2e-16 ***
## tom_zscored                         0.070763   0.001793   39.47   <2e-16 ***
## conditionHomogeneous:tom_zscored    0.460567   0.001792  256.94   <2e-16 ***
## conditionHeterogeneous:tom_zscored  0.386427   0.001792  215.60   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt tm_zsc cndtnHm:_
## condtnHmgns 0.000                                  
## cndtnHtrgns 0.000  0.000                           
## tom_zscored 0.000  0.000   0.000                   
## cndtnHmgn:_ 0.000  0.000   0.000   0.000           
## cndtnHtrg:_ 0.000  0.000   0.000   0.000  0.000    
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0395075 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                          Chisq Df Pr(>Chisq)    
## (Intercept)            13119.5  1  < 2.2e-16 ***
## condition             275763.1  2  < 2.2e-16 ***
## tom_zscored             1558.1  1  < 2.2e-16 ***
## condition:tom_zscored 112479.0  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_tom_int: correct_resp ~ condition * tom_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                     
## fit.task_tom_int    7 627.30 656.50 -306.65   613.30 2.5529  2      0.279
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition + entailment_score + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    624.1    645.0   -307.1    614.1      474 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7338 -0.8446  0.4170  0.6992  1.5329 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.092    1.045   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)            -0.64232    0.43077  -1.491   0.1359  
## conditionHomogeneous    0.01624    0.34473   0.047   0.9624  
## conditionHeterogeneous  0.72914    0.35366   2.062   0.0392 *
## entailment_score        0.33847    0.14105   2.400   0.0164 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt
## condtnHmgns -0.443                
## cndtnHtrgns -0.458  0.491         
## entlmnt_scr -0.826  0.055   0.089
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                   Chisq Df Pr(>Chisq)  
## (Intercept)      2.2234  1    0.13593  
## condition        5.4815  2    0.06452 .
## entailment_score 5.7584  1    0.01641 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task_ent: correct_resp ~ condition + entailment_score + (1 | pid)
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
##              npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)
## fit.task_ent    5 624.10 644.96 -307.05   614.10                    
## fit.task        5 625.85 646.71 -307.93   615.85     0  0
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * entailment_score + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    627.9    657.1   -306.9    613.9      472 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7077 -0.8544  0.4253  0.6989  1.5922 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.082    1.04    
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)                             -0.67284    0.80146  -0.840    0.401
## conditionHomogeneous                    -0.11512    0.98921  -0.116    0.907
## conditionHeterogeneous                   0.94736    0.99585   0.951    0.341
## entailment_score                         0.35045    0.30234   1.159    0.246
## conditionHomogeneous:entailment_score    0.05523    0.37321   0.148    0.882
## conditionHeterogeneous:entailment_score -0.09291    0.37834  -0.246    0.806
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt entlm_ cndtnHm:_
## condtnHmgns -0.809                                 
## cndtnHtrgns -0.805  0.651                          
## entlmnt_scr -0.953  0.771   0.767                  
## cndtnHmgn:_  0.770 -0.937  -0.620  -0.808          
## cndtnHtrg:_  0.760 -0.616  -0.935  -0.797  0.646
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                             Chisq Df Pr(>Chisq)
## (Intercept)                0.7048  1     0.4012
## condition                  1.8461  2     0.3973
## entailment_score           1.3436  1     0.2464
## condition:entailment_score 0.2214  2     0.8952
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_ent_int: correct_resp ~ condition * entailment_score + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                     
## fit.task_ent_int    7 627.88 657.08 -306.94   613.88 1.9707  2     0.3733
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition + tom_zscored + age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    625.4    650.4   -306.7    613.4      473 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9692 -0.7936  0.4354  0.6891  1.5068 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.092    1.045   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             0.165823   0.001705   97.27   <2e-16 ***
## conditionHomogeneous   -0.052149   0.001704  -30.61   <2e-16 ***
## conditionHeterogeneous  0.868052   0.001760  493.12   <2e-16 ***
## tom_zscored             0.264781   0.001704  155.38   <2e-16 ***
## age_zscored             0.200958   0.001760  114.17   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt tm_zsc
## condtnHmgns  0.000                       
## cndtnHtrgns  0.000  0.000                
## tom_zscored  0.000  0.000   0.000        
## age_zscored  0.000  0.000  -0.250   0.000
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0426678 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                Chisq Df Pr(>Chisq)    
## (Intercept)   9461.7  1  < 2.2e-16 ***
## condition   244101.8  2  < 2.2e-16 ***
## tom_zscored  24142.3  1  < 2.2e-16 ***
## age_zscored  13035.3  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_tom_age: correct_resp ~ condition + tom_zscored + age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                    
## fit.task_tom_age    6 625.38 650.41 -306.69   613.38 2.477  1     0.1155
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: correct_resp ~ condition * tom_zscored + age_zscored + (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    627.2    660.6   -305.6    611.2      471 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1271 -0.8005  0.4363  0.7011  1.6432 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.036    1.018   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                         0.19117    0.24164   0.791   0.4289  
## conditionHomogeneous               -0.14722    0.35825  -0.411   0.6811  
## conditionHeterogeneous              0.89498    0.38633   2.317   0.0205 *
## tom_zscored                        -0.04964    0.26819  -0.185   0.8532  
## age_zscored                         0.22367    0.15451   1.448   0.1477  
## conditionHomogeneous:tom_zscored    0.50943    0.37173   1.370   0.1706  
## conditionHeterogeneous:tom_zscored  0.43207    0.38368   1.126   0.2601  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt tm_zsc ag_zsc cndtnHm:_
## condtnHmgns -0.677                                        
## cndtnHtrgns -0.618  0.420                                 
## tom_zscored -0.087  0.027   0.066                         
## age_zscored -0.034  0.126  -0.007  -0.311                 
## cndtnHmgn:_  0.069 -0.227  -0.037  -0.682  0.101          
## cndtnHtrg:_  0.067 -0.034   0.264  -0.661  0.099  0.469
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                        Chisq Df Pr(>Chisq)  
## (Intercept)           0.6259  1    0.42888  
## condition             7.6895  2    0.02139 *
## tom_zscored           0.0343  1    0.85316  
## age_zscored           2.0956  1    0.14772  
## condition:tom_zscored 2.1780  2    0.33655  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_tom_age: correct_resp ~ condition * tom_zscored + age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                     
## fit.task_tom_age    8 627.19 660.57 -305.60   611.19 4.6605  3     0.1984
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct_resp ~ condition + tom_zscored + age_zscored + entailment_score +  
##     (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    624.3    653.5   -305.2    610.3      472 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9734 -0.8181  0.4248  0.6984  1.6002 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 1.023    1.011   
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)            -0.46741    0.43238  -1.081   0.2797  
## conditionHomogeneous   -0.01143    0.34621  -0.033   0.9737  
## conditionHeterogeneous  0.85454    0.36136   2.365   0.0180 *
## tom_zscored             0.20066    0.16722   1.200   0.2301  
## age_zscored             0.16278    0.15323   1.062   0.2881  
## entailment_score        0.25356    0.14460   1.754   0.0795 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtnHm cndtnHt tm_zsc ag_zsc
## condtnHmgns -0.437                              
## cndtnHtrgns -0.390  0.425                       
## tom_zscored  0.141 -0.173   0.257               
## age_zscored  0.078  0.139  -0.026  -0.324       
## entlmnt_scr -0.832  0.067   0.021  -0.193 -0.124
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                   Chisq Df Pr(>Chisq)  
## (Intercept)      1.1686  1    0.27969  
## condition        6.9060  2    0.03165 *
## tom_zscored      1.4400  1    0.23015  
## age_zscored      1.1285  1    0.28810  
## entailment_score 3.0749  1    0.07951 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_tom_age_entailment: correct_resp ~ condition + tom_zscored + age_zscored + entailment_score + (1 | pid)
##                             npar    AIC    BIC  logLik deviance  Chisq Df
## fit.task                       5 625.85 646.71 -307.93   615.85          
## fit.task_tom_age_entailment    7 624.32 653.52 -305.16   610.32 5.5373  2
##                             Pr(>Chisq)  
## fit.task                                
## fit.task_tom_age_entailment    0.06275 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct_resp ~ condition * entailment_score * tom_zscored * age_zscored +  
##     (1 | pid)
##    Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## 
##      AIC      BIC   logLik deviance df.resid 
##    638.9    743.2   -294.5    588.9      454 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2620 -0.8494  0.3817  0.7066  2.0328 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  pid    (Intercept) 0.7196   0.8483  
## Number of obs: 479, groups:  pid, 120
## 
## Fixed effects:
##                                                                 Estimate
## (Intercept)                                                     -0.89131
## conditionHomogeneous                                             1.94905
## conditionHeterogeneous                                          -0.30240
## entailment_score                                                 0.40200
## tom_zscored                                                      1.65135
## age_zscored                                                     -0.67076
## conditionHomogeneous:entailment_score                           -0.69410
## conditionHeterogeneous:entailment_score                          0.53878
## conditionHomogeneous:tom_zscored                                 1.13596
## conditionHeterogeneous:tom_zscored                              -1.21254
## entailment_score:tom_zscored                                    -0.62465
## conditionHomogeneous:age_zscored                                 1.99065
## conditionHeterogeneous:age_zscored                              -3.08049
## entailment_score:age_zscored                                     0.27917
## tom_zscored:age_zscored                                          0.49304
## conditionHomogeneous:entailment_score:tom_zscored               -0.14741
## conditionHeterogeneous:entailment_score:tom_zscored              0.65463
## conditionHomogeneous:entailment_score:age_zscored               -0.59908
## conditionHeterogeneous:entailment_score:age_zscored              0.99888
## conditionHomogeneous:tom_zscored:age_zscored                     1.62317
## conditionHeterogeneous:tom_zscored:age_zscored                  -5.23165
## entailment_score:tom_zscored:age_zscored                        -0.07199
## conditionHomogeneous:entailment_score:tom_zscored:age_zscored   -0.79226
## conditionHeterogeneous:entailment_score:tom_zscored:age_zscored  1.42614
##                                                                 Std. Error
## (Intercept)                                                        1.04770
## conditionHomogeneous                                               1.92764
## conditionHeterogeneous                                             1.65080
## entailment_score                                                   0.38923
## tom_zscored                                                        1.59823
## age_zscored                                                        1.23063
## conditionHomogeneous:entailment_score                              0.67684
## conditionHeterogeneous:entailment_score                            0.60089
## conditionHomogeneous:tom_zscored                                   2.40636
## conditionHeterogeneous:tom_zscored                                 2.03114
## entailment_score:tom_zscored                                       0.56549
## conditionHomogeneous:age_zscored                                   1.70691
## conditionHeterogeneous:age_zscored                                 2.86045
## entailment_score:age_zscored                                       0.43720
## tom_zscored:age_zscored                                            1.34967
## conditionHomogeneous:entailment_score:tom_zscored                  0.84100
## conditionHeterogeneous:entailment_score:tom_zscored                0.71506
## conditionHomogeneous:entailment_score:age_zscored                  0.60000
## conditionHeterogeneous:entailment_score:age_zscored                0.98225
## conditionHomogeneous:tom_zscored:age_zscored                       1.90562
## conditionHeterogeneous:tom_zscored:age_zscored                     2.68623
## entailment_score:tom_zscored:age_zscored                           0.48568
## conditionHomogeneous:entailment_score:tom_zscored:age_zscored      0.66998
## conditionHeterogeneous:entailment_score:tom_zscored:age_zscored    0.91894
##                                                                 z value
## (Intercept)                                                      -0.851
## conditionHomogeneous                                              1.011
## conditionHeterogeneous                                           -0.183
## entailment_score                                                  1.033
## tom_zscored                                                       1.033
## age_zscored                                                      -0.545
## conditionHomogeneous:entailment_score                            -1.026
## conditionHeterogeneous:entailment_score                           0.897
## conditionHomogeneous:tom_zscored                                  0.472
## conditionHeterogeneous:tom_zscored                               -0.597
## entailment_score:tom_zscored                                     -1.105
## conditionHomogeneous:age_zscored                                  1.166
## conditionHeterogeneous:age_zscored                               -1.077
## entailment_score:age_zscored                                      0.639
## tom_zscored:age_zscored                                           0.365
## conditionHomogeneous:entailment_score:tom_zscored                -0.175
## conditionHeterogeneous:entailment_score:tom_zscored               0.915
## conditionHomogeneous:entailment_score:age_zscored                -0.998
## conditionHeterogeneous:entailment_score:age_zscored               1.017
## conditionHomogeneous:tom_zscored:age_zscored                      0.852
## conditionHeterogeneous:tom_zscored:age_zscored                   -1.948
## entailment_score:tom_zscored:age_zscored                         -0.148
## conditionHomogeneous:entailment_score:tom_zscored:age_zscored    -1.183
## conditionHeterogeneous:entailment_score:tom_zscored:age_zscored   1.552
##                                                                 Pr(>|z|)  
## (Intercept)                                                       0.3949  
## conditionHomogeneous                                              0.3120  
## conditionHeterogeneous                                            0.8547  
## entailment_score                                                  0.3017  
## tom_zscored                                                       0.3015  
## age_zscored                                                       0.5857  
## conditionHomogeneous:entailment_score                             0.3051  
## conditionHeterogeneous:entailment_score                           0.3699  
## conditionHomogeneous:tom_zscored                                  0.6369  
## conditionHeterogeneous:tom_zscored                                0.5505  
## entailment_score:tom_zscored                                      0.2693  
## conditionHomogeneous:age_zscored                                  0.2435  
## conditionHeterogeneous:age_zscored                                0.2815  
## entailment_score:age_zscored                                      0.5231  
## tom_zscored:age_zscored                                           0.7149  
## conditionHomogeneous:entailment_score:tom_zscored                 0.8609  
## conditionHeterogeneous:entailment_score:tom_zscored               0.3599  
## conditionHomogeneous:entailment_score:age_zscored                 0.3181  
## conditionHeterogeneous:entailment_score:age_zscored               0.3092  
## conditionHomogeneous:tom_zscored:age_zscored                      0.3943  
## conditionHeterogeneous:tom_zscored:age_zscored                    0.0515 .
## entailment_score:tom_zscored:age_zscored                          0.8822  
## conditionHomogeneous:entailment_score:tom_zscored:age_zscored     0.2370  
## conditionHeterogeneous:entailment_score:tom_zscored:age_zscored   0.1207  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.112194 (tol = 0.002, component 1)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: correct_resp
##                                                     Chisq Df Pr(>Chisq)  
## (Intercept)                                        0.7237  1    0.39492  
## condition                                          1.3425  2    0.51107  
## entailment_score                                   1.0667  1    0.30169  
## tom_zscored                                        1.0676  1    0.30149  
## age_zscored                                        0.2971  1    0.58571  
## condition:entailment_score                         2.9362  2    0.23036  
## condition:tom_zscored                              1.1992  2    0.54903  
## entailment_score:tom_zscored                       1.2202  1    0.26932  
## condition:age_zscored                              3.6391  2    0.16210  
## entailment_score:age_zscored                       0.4077  1    0.52312  
## tom_zscored:age_zscored                            0.1334  1    0.71489  
## condition:entailment_score:tom_zscored             1.4463  2    0.48522  
## condition:entailment_score:age_zscored             2.9974  2    0.22342  
## condition:tom_zscored:age_zscored                  6.5026  2    0.03872 *
## entailment_score:tom_zscored:age_zscored           0.0220  1    0.88217  
## condition:entailment_score:tom_zscored:age_zscored 6.0878  2    0.04765 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: df.trial %>% filter(task == "HI" & trial_type == "implicature")
## Models:
## fit.task: correct_resp ~ condition + age_zscored + (1 | pid)
## fit.task_tom_age: correct_resp ~ condition * tom_zscored + age_zscored + (1 | pid)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## fit.task            5 625.85 646.71 -307.93   615.85                     
## fit.task_tom_age    8 627.19 660.57 -305.60   611.19 4.6605  3     0.1984