# --- Data Skor Proyek Final Berdasarkan Metode Pengajaran ---
skor <- c(75, 80, 72, 78, 70, # Metode A
82, 88, 85, 90, 80, 86, # Metode B
88, 92, 95, 85, 90, 87, 93, # Metode C
78, 82, 80, 75, 85, 77) # Metode D
metode <- factor(c(rep("A", 5),
rep("B", 6),
rep("C", 7),
rep("D", 6)))
# --- Buat Data Frame Gabungan ---
data_adk <- data.frame(Metode = metode, Skor = skor)
# --- Lakukan Uji ANOVA ---
hasil_anova <- aov(Skor ~ Metode, data = data_adk)
# --- Tampilkan Ringkasan Hasil Uji ANOVA ---
cat("--- Hasil Uji ANOVA ---\n")
## --- Hasil Uji ANOVA ---
summary(hasil_anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Metode 3 764.6 254.88 18.31 5.9e-06 ***
## Residuals 20 278.3 13.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# --- OPTIONAL: Uji Lanjutan Jika Hasil Signifikan (Post-hoc Test) ---
cat("\n--- Uji Lanjutan (Tukey HSD) Jika Diperlukan ---\n")
##
## --- Uji Lanjutan (Tukey HSD) Jika Diperlukan ---
hasil_tukey <- TukeyHSD(hasil_anova)
print(hasil_tukey)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Skor ~ Metode, data = data_adk)
##
## $Metode
## diff lwr upr p adj
## B-A 10.166667 3.8440578 16.4892756 0.0011546
## C-A 15.000000 8.8861159 21.1138841 0.0000064
## D-A 4.500000 -1.8226089 10.8226089 0.2240393
## C-B 4.833333 -0.9757504 10.6424170 0.1248350
## D-B -5.666667 -11.6950377 0.3617044 0.0700958
## D-C -10.500000 -16.3090837 -4.6909163 0.0003242
# --- OPTIONAL: Visualisasi Boxplot Perbandingan Skor ---
boxplot(Skor ~ Metode,
data = data_adk,
main = "Perbandingan Skor Proyek Final per Metode",
xlab = "Metode Pengajaran",
ylab = "Skor Proyek Final",
col = c("skyblue", "lightgreen", "lightcoral", "gold"))
