df=read.csv('/Users/vothainguyetcam/Downloads/Bone data.csv')
head(df)
##   id    sex age weight height prior.fx fnbmd smoking fx
## 1  1   Male  73     98    175        0  1.08       1  0
## 2  2 Female  68     72    166        0  0.97       0  0
## 3  3   Male  68     87    184        0  1.01       0  0
## 4  4 Female  62     72    173        0  0.84       1  0
## 5  5   Male  61     72    173        0  0.81       1  0
## 6  6 Female  76     57    156        0  0.74       0  0

t-test

library(lessR)
## 
## lessR 4.4.3                         feedback: gerbing@pdx.edu 
## --------------------------------------------------------------
## > d <- Read("")  Read data file, many formats available, e.g., Excel
##   d is default data frame, data= in analysis routines optional
## 
## Many examples of reading, writing, and manipulating data, 
## graphics, testing means and proportions, regression, factor analysis,
## customization, forecasting, and aggregation from pivot tables
##   Enter: browseVignettes("lessR")
## 
## View lessR updates, now including time series forecasting
##   Enter: news(package="lessR")
## 
## Interactive data analysis
##   Enter: interact()
## 
## Attaching package: 'lessR'
## The following object is masked from 'package:base':
## 
##     sort_by
ttest(fnbmd~sex, data=df)
## 
## Compare fnbmd across sex with levels Male and Female 
## Grouping Variable:  sex
## Response Variable:  fnbmd
## 
## 
## ------ Describe ------
## 
## fnbmd for sex Male:  n.miss = 23,  n = 822,  mean = 0.910,  sd = 0.153
## fnbmd for sex Female:  n.miss = 17,  n = 1300,  mean = 0.778,  sd = 0.132
## 
## Mean Difference of fnbmd:  0.132
## 
## Weighted Average Standard Deviation:   0.141 
## 
## 
## ------ Assumptions ------
## 
## Note: These hypothesis tests can perform poorly, and the 
##       t-test is typically robust to violations of assumptions. 
##       Use as heuristic guides instead of interpreting literally. 
## 
## Null hypothesis, for each group, is a normal distribution of fnbmd.
## Group Male: Sample mean assumed normal because n > 30, so no test needed.
## Group Female: Sample mean assumed normal because n > 30, so no test needed.
## 
## Null hypothesis is equal variances of fnbmd, homogeneous.
## Variance Ratio test:  F = 0.023/0.018 = 1.336,  df = 821;1299,  p-value = 0.000
## Levene's test, Brown-Forsythe:  t = 3.449,  df = 2120,  p-value = 0.001
## 
## 
## ------ Infer ------
## 
## --- Assume equal population variances of fnbmd for each sex 
## 
## t-cutoff for 95% range of variation: tcut =  1.961 
## Standard Error of Mean Difference: SE =  0.006 
## 
## Hypothesis Test of 0 Mean Diff:  t-value = 21.080,  df = 2120,  p-value = 0.000
## 
## Margin of Error for 95% Confidence Level:  0.012
## 95% Confidence Interval for Mean Difference:  0.120 to 0.144
## 
## 
## --- Do not assume equal population variances of fnbmd for each sex 
## 
## t-cutoff: tcut =  1.961 
## Standard Error of Mean Difference: SE =  0.006 
## 
## Hypothesis Test of 0 Mean Diff:  t = 20.407,  df = 1560.981, p-value = 0.000
## 
## Margin of Error for 95% Confidence Level:  0.013
## 95% Confidence Interval for Mean Difference:  0.119 to 0.145
## 
## 
## ------ Effect Size ------
## 
## --- Assume equal population variances of fnbmd for each sex 
## 
## Standardized Mean Difference of fnbmd, Cohen's d:  0.939
## 
## 
## ------ Practical Importance ------
## 
## Minimum Mean Difference of practical importance: mmd
## Minimum Standardized Mean Difference of practical importance: msmd
## Neither value specified, so no analysis
## 
## 
## ------ Graphics Smoothing Parameter ------
## 
## Density bandwidth for sex Male: 0.044
## Density bandwidth for sex Female: 0.034