# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("LULU", "NKE", "UA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "LULU" "NKE" "UA"
# weights
weights <- c(0.35, 0.45, 0.2)
weights
## [1] 0.35 0.45 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 LULU 0.35
## 2 NKE 0.45
## 3 UA 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0140
## 2 2013-02-28 -0.00489
## 3 2013-03-28 0.0107
## 4 2013-04-30 0.104
## 5 2013-05-31 -0.00480
## 6 2013-06-28 -0.0458
## 7 2013-07-31 0.0157
## 8 2013-08-30 0.00711
## 9 2013-09-30 0.0765
## 10 2013-10-31 -0.000965
## # ℹ 50 more rows
## 5 Compute Sharpe Ratio
``` r
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.0587
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)}
# Define Window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <-portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns)%>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.142
## 2 2015-01-30 0.186
## 3 2015-02-27 0.218
## 4 2015-03-31 0.202
## 5 2015-04-30 0.121
## 6 2015-05-29 0.118
## 7 2015-06-30 0.209
## 8 2015-07-31 0.209
## 9 2015-08-31 0.195
## 10 2015-09-30 0.0992
## # ℹ 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
#Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x =as.Date("2016-06-01"), y = 0.5,
label = "This portfolio has done quite well since 2017.", color = "red", size = 4)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is? My portfolio was not doing well from 2015- the middle of 2016. It slowly started climbing back up until 2017 when it saw a huge increase in the rolling sharpe ratio and continued this into 2018. America votes in November every four years for a president, so I think with campaigns and everything that this would effect stocks and is the cause of the structural break in November 2016.My portfolio also saw this structural break in November.