# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(ggrepel)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("UAL", "LUV", "AAL", "DAL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAL" "DAL" "LUV" "UAL"
# weights
weights <- c(0.2, 0.3, 0.3, 0.2)
weights
## [1] 0.2 0.3 0.3 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AAL 0.2
## 2 DAL 0.3
## 3 LUV 0.3
## 4 UAL 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 150 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0920
## 2 2013-02-28 0.0288
## 3 2013-03-28 0.169
## 4 2013-04-30 0.0171
## 5 2013-05-31 0.0337
## 6 2013-06-28 -0.0370
## 7 2013-07-31 0.113
## 8 2013-08-30 -0.120
## 9 2013-09-30 0.139
## 10 2013-10-31 0.133
## # ℹ 140 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to monthly returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.29
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns,)) +
geom_point(color = "blue") +
geom_smooth(method = "lm", se = FALSE,
linewidth = 1.5, color =
tidyquant::palette_light()[12]) +
labs(x = "market returns",
y = "portfolio returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The beta coefficient for this portfolio is 1.29, meaning that it is sensitive to market volatility. If the market return fluctuates by 1%, the portfolio would reflect that plus an extra 0.29% on both ends. There is not a very strong linear relationship due to how the stocks do not follow the regression line as closely. This implies that other outside factors can influence the returns of the portfolio