#Loading library
library(lessR)
##
## lessR 4.4.3 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read data file, many formats available, e.g., Excel
## d is default data frame, data= in analysis routines optional
##
## Many examples of reading, writing, and manipulating data,
## graphics, testing means and proportions, regression, factor analysis,
## customization, forecasting, and aggregation from pivot tables
## Enter: browseVignettes("lessR")
##
## View lessR updates, now including time series forecasting
## Enter: news(package="lessR")
##
## Interactive data analysis
## Enter: interact()
##
## Attaching package: 'lessR'
## The following object is masked from 'package:base':
##
## sort_by
library(table1)
##
## Attaching package: 'table1'
## The following object is masked from 'package:lessR':
##
## label
## The following objects are masked from 'package:base':
##
## units, units<-
library(ggplot2)
#Reading data into R
#file.choose()
link="D:\\CuDiHoc\\TaiLieuHoc\\ThucHanh\\Data\\birthwt.csv"
bw=read.csv(link)
head(bw)
## id low age lwt race smoke ptl ht ui ftv bwt
## 1 85 0 19 182 2 0 0 0 1 0 2523
## 2 86 0 33 155 3 0 0 0 0 3 2551
## 3 87 0 20 105 1 1 0 0 0 1 2557
## 4 88 0 21 108 1 1 0 0 1 2 2594
## 5 89 0 18 107 1 1 0 0 1 0 2600
## 6 91 0 21 124 3 0 0 0 0 0 2622
tail(bw,10)
## id low age lwt race smoke ptl ht ui ftv bwt
## 180 71 1 17 120 2 0 0 0 0 2 2438
## 181 75 1 26 154 3 0 1 1 0 1 2442
## 182 76 1 20 105 3 0 0 0 0 3 2450
## 183 77 1 26 190 1 1 0 0 0 0 2466
## 184 78 1 14 101 3 1 1 0 0 0 2466
## 185 79 1 28 95 1 1 0 0 0 2 2466
## 186 81 1 14 100 3 0 0 0 0 2 2495
## 187 82 1 23 94 3 1 0 0 0 0 2495
## 188 83 1 17 142 2 0 0 1 0 0 2495
## 189 84 1 21 130 1 1 0 1 0 3 2495
#Coding data
bw$mwt=bw$lwt*0.453592
bw$ethnicity [bw$race==1] = "White"
bw$ethnicity [bw$race==2] = "Black"
bw$ethnicity [bw$race==3] = "Others"
bw$ethnicity=factor(bw$ethnicity,levels = c("White","Others","Black"))
bw$low.bw=ifelse(bw$low==1,"Low BW","Normal")
head(bw)
## id low age lwt race smoke ptl ht ui ftv bwt mwt ethnicity low.bw
## 1 85 0 19 182 2 0 0 0 1 0 2523 82.55374 Black Normal
## 2 86 0 33 155 3 0 0 0 0 3 2551 70.30676 Others Normal
## 3 87 0 20 105 1 1 0 0 0 1 2557 47.62716 White Normal
## 4 88 0 21 108 1 1 0 0 1 2 2594 48.98794 White Normal
## 5 89 0 18 107 1 1 0 0 1 0 2600 48.53434 White Normal
## 6 91 0 21 124 3 0 0 0 0 0 2622 56.24541 Others Normal
tail(bw,10)
## id low age lwt race smoke ptl ht ui ftv bwt mwt ethnicity low.bw
## 180 71 1 17 120 2 0 0 0 0 2 2438 54.43104 Black Low BW
## 181 75 1 26 154 3 0 1 1 0 1 2442 69.85317 Others Low BW
## 182 76 1 20 105 3 0 0 0 0 3 2450 47.62716 Others Low BW
## 183 77 1 26 190 1 1 0 0 0 0 2466 86.18248 White Low BW
## 184 78 1 14 101 3 1 1 0 0 0 2466 45.81279 Others Low BW
## 185 79 1 28 95 1 1 0 0 0 2 2466 43.09124 White Low BW
## 186 81 1 14 100 3 0 0 0 0 2 2495 45.35920 Others Low BW
## 187 82 1 23 94 3 1 0 0 0 0 2495 42.63765 Others Low BW
## 188 83 1 17 142 2 0 0 1 0 0 2495 64.41006 Black Low BW
## 189 84 1 21 130 1 1 0 1 0 3 2495 58.96696 White Low BW
#Descriptive analysis
bw1=bw[,c("id","low","bwt")]
#bw1=bw[, c(1,2,11)] vị trí biến
#bw1=bw[, c(1,2,8:11)] vị trí biến
dim(bw1)
## [1] 189 3
bw2=subset(bw, low==1)
dim(bw2)
## [1] 59 14
bw3=subset(bw,low==1 & smoke==1)
dim(bw3)
## [1] 30 14
table1(~age+mwt+bwt, data=bw)
Overall (N=189) |
|
---|---|
age | |
Mean (SD) | 23.2 (5.30) |
Median [Min, Max] | 23.0 [14.0, 45.0] |
mwt | |
Mean (SD) | 58.9 (13.9) |
Median [Min, Max] | 54.9 [36.3, 113] |
bwt | |
Mean (SD) | 2940 (729) |
Median [Min, Max] | 2980 [709, 4990] |
bw$smoking=ifelse(bw$smoke==1,"Smoking","Non smoking")
table1(~age+mwt+bwt+ethnicity+smoking|low, data=bw)
0 (N=130) |
1 (N=59) |
Overall (N=189) |
|
---|---|---|---|
age | |||
Mean (SD) | 23.7 (5.58) | 22.3 (4.51) | 23.2 (5.30) |
Median [Min, Max] | 23.0 [14.0, 45.0] | 22.0 [14.0, 34.0] | 23.0 [14.0, 45.0] |
mwt | |||
Mean (SD) | 60.5 (14.4) | 55.4 (12.0) | 58.9 (13.9) |
Median [Min, Max] | 56.0 [38.6, 113] | 54.4 [36.3, 90.7] | 54.9 [36.3, 113] |
bwt | |||
Mean (SD) | 3330 (478) | 2100 (391) | 2940 (729) |
Median [Min, Max] | 3270 [2520, 4990] | 2210 [709, 2500] | 2980 [709, 4990] |
ethnicity | |||
White | 73 (56.2%) | 23 (39.0%) | 96 (50.8%) |
Others | 42 (32.3%) | 25 (42.4%) | 67 (35.4%) |
Black | 15 (11.5%) | 11 (18.6%) | 26 (13.8%) |
smoking | |||
Non smoking | 86 (66.2%) | 29 (49.2%) | 115 (60.8%) |
Smoking | 44 (33.8%) | 30 (50.8%) | 74 (39.2%) |
#phan tich bang bieu do
Histogram(bwt,xlab="Cân nặng của trẻ sơ sinh (g)", ylab="Số bà mẹ", data=bw)
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Histogram(bwt, density=TRUE) # smoothed curve + histogram
## Plot(bwt) # Violin/Box/Scatterplot (VBS) plot
##
## --- bwt ---
##
## n miss mean sd min mdn max
## 189 0 2944.59 729.21 709.00 2977.00 4990.00
##
##
##
## --- Outliers --- from the box plot: 1
##
## Small Large
## ----- -----
## 709.0
##
##
## Bin Width: 500
## Number of Bins: 9
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## -----------------------------------------------------
## 500 > 1000 750 1 0.01 1 0.01
## 1000 > 1500 1250 4 0.02 5 0.03
## 1500 > 2000 1750 14 0.07 19 0.10
## 2000 > 2500 2250 40 0.21 59 0.31
## 2500 > 3000 2750 38 0.20 97 0.51
## 3000 > 3500 3250 45 0.24 142 0.75
## 3500 > 4000 3750 38 0.20 180 0.95
## 4000 > 4500 4250 7 0.04 187 0.99
## 4500 > 5000 4750 2 0.01 189 1.00
##
BarChart(ethnicity, ylab="Số bà mẹ", data=bw)
## >>> Suggestions
## BarChart(ethnicity, horiz=TRUE) # horizontal bar chart
## BarChart(ethnicity, fill="reds") # red bars of varying lightness
## PieChart(ethnicity) # doughnut (ring) chart
## Plot(ethnicity) # bubble plot
## Plot(ethnicity, stat="count") # lollipop plot
##
## --- ethnicity ---
##
## Missing Values: 0
##
## White Others Black Total
## Frequencies: 96 67 26 189
## Proportions: 0.508 0.354 0.138 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 39.270, df = 2, p-value = 0.000
Plot(mwt, bwt, xlab="Cân nặng của mẹ", ylab="Cân nặng của con", fit="lm", data=bw)
##
##
## >>> Suggestions or enter: style(suggest=FALSE)
## Plot(mwt, bwt, enhance=TRUE) # many options
## Plot(mwt, bwt, color="red") # exterior edge color of points
## Plot(mwt, bwt, MD_cut=6) # Mahalanobis distance from center > 6 is an outlier
##
##
## >>> Pearson's product-moment correlation
##
## Number of paired values with neither missing, n = 189
## Sample Correlation of mwt and bwt: r = 0.186
##
## Hypothesis Test of 0 Correlation: t = 2.585, df = 187, p-value = 0.011
## 95% Confidence Interval for Correlation: 0.044 to 0.320
##
##
## Line: b0 = 2369.624 b1 = 9.765 Linear Model MSE = 516,155.173 Rsq = 0.034
##