Assignment #2

Author

Christian Rivera

2. Carefully explain the differences between the KNN classifier and KNN regression methods.

9. This question involves the use of multiple linear regression on the Auto data set. (a) Produce a scatterplot matrix which includes all of the variables in the data set.

library(ISLR2)
Warning: package 'ISLR2' was built under R version 4.4.2
data(Auto)
pairs(Auto[, 1:8])

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.

cor(Auto[, 1:8])
                    mpg  cylinders displacement horsepower     weight
mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
             acceleration       year     origin
mpg             0.4233285  0.5805410  0.5652088
cylinders      -0.5046834 -0.3456474 -0.5689316
displacement   -0.5438005 -0.3698552 -0.6145351
horsepower     -0.6891955 -0.4163615 -0.4551715
weight         -0.4168392 -0.3091199 -0.5850054
acceleration    1.0000000  0.2903161  0.2127458
year            0.2903161  1.0000000  0.1815277
origin          0.2127458  0.1815277  1.0000000

(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:

fit2 <- lm(mpg ~ . - name, data = Auto)
summary(fit2)

Call:
lm(formula = mpg ~ . - name, data = Auto)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.5903 -2.1565 -0.1169  1.8690 13.0604 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
cylinders     -0.493376   0.323282  -1.526  0.12780    
displacement   0.019896   0.007515   2.647  0.00844 ** 
horsepower    -0.016951   0.013787  -1.230  0.21963    
weight        -0.006474   0.000652  -9.929  < 2e-16 ***
acceleration   0.080576   0.098845   0.815  0.41548    
year           0.750773   0.050973  14.729  < 2e-16 ***
origin         1.426141   0.278136   5.127 4.67e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.328 on 384 degrees of freedom
Multiple R-squared:  0.8215,    Adjusted R-squared:  0.8182 
F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

i. Is there a relationship between the predictors and the response?

ii. Which predictors appear to have a statistically significant relationship to the response?

iii. What does the coefficient for the year variable suggest?

(d) Use the plot() function to produce diagnostic plots of the linear regression ft. Comment on any problems you see with the ft. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

par(mfrow = c(2, 2))
plot(fit2)

(e) Use the * and : symbols to ft linear regression models with interaction effects. Do any interactions appear to be statistically significant?

fit3 <- lm(mpg ~ cylinders * displacement + displacement * weight, data = Auto[, 1:8])
summary(fit3)

Call:
lm(formula = mpg ~ cylinders * displacement + displacement * 
    weight, data = Auto[, 1:8])

Residuals:
     Min       1Q   Median       3Q      Max 
-13.2934  -2.5184  -0.3476   1.8399  17.7723 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)             5.262e+01  2.237e+00  23.519  < 2e-16 ***
cylinders               7.606e-01  7.669e-01   0.992    0.322    
displacement           -7.351e-02  1.669e-02  -4.403 1.38e-05 ***
weight                 -9.888e-03  1.329e-03  -7.438 6.69e-13 ***
cylinders:displacement -2.986e-03  3.426e-03  -0.872    0.384    
displacement:weight     2.128e-05  5.002e-06   4.254 2.64e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.103 on 386 degrees of freedom
Multiple R-squared:  0.7272,    Adjusted R-squared:  0.7237 
F-statistic: 205.8 on 5 and 386 DF,  p-value: < 2.2e-16

(f) Try a few different transformations of the variables, such as log(X),√X, X2. Comment on your findings.

par(mfrow = c(2, 2))
plot(log(Auto$horsepower), Auto$mpg)
plot(sqrt(Auto$horsepower), Auto$mpg)
plot((Auto$horsepower)^2, Auto$mpg)

10. This question should be answered using the Carseats data set. (a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

library(ISLR2)
attach(Carseats)
fit <- lm(Sales ~ Price + Urban + US, data = Carseats)
summary(fit)

Call:
lm(formula = Sales ~ Price + Urban + US, data = Carseats)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.9206 -1.6220 -0.0564  1.5786  7.0581 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
Price       -0.054459   0.005242 -10.389  < 2e-16 ***
UrbanYes    -0.021916   0.271650  -0.081    0.936    
USYes        1.200573   0.259042   4.635 4.86e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.472 on 396 degrees of freedom
Multiple R-squared:  0.2393,    Adjusted R-squared:  0.2335 
F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!

(c) Write out the model in equation form, being careful to handle the qualitative variables properly.

(d) For which of the predictors can you reject the null hypothesis H0 : βj = 0?

(e) On the basis of your response to the previous question, ft a smaller model that only uses the predictors for which there is evidence of association with the outcome.

fit_sm <- lm(Sales ~ Price + US, data = Carseats)
summary(fit_sm)

Call:
lm(formula = Sales ~ Price + US, data = Carseats)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.9269 -1.6286 -0.0574  1.5766  7.0515 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
Price       -0.05448    0.00523 -10.416  < 2e-16 ***
USYes        1.19964    0.25846   4.641 4.71e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.469 on 397 degrees of freedom
Multiple R-squared:  0.2393,    Adjusted R-squared:  0.2354 
F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?

(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).

confint(fit_sm)
                  2.5 %      97.5 %
(Intercept) 11.79032020 14.27126531
Price       -0.06475984 -0.04419543
USYes        0.69151957  1.70776632

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

par(mfrow = c(2, 2))
plot(fit_sm)

summary(influence.measures(fit_sm))
Potentially influential observations of
     lm(formula = Sales ~ Price + US, data = Carseats) :

    dfb.1_ dfb.Pric dfb.USYs dffit   cov.r   cook.d hat    
26   0.24  -0.18    -0.17     0.28_*  0.97_*  0.03   0.01  
29  -0.10   0.10    -0.10    -0.18    0.97_*  0.01   0.01  
43  -0.11   0.10     0.03    -0.11    1.05_*  0.00   0.04_*
50  -0.10   0.17    -0.17     0.26_*  0.98    0.02   0.01  
51  -0.05   0.05    -0.11    -0.18    0.95_*  0.01   0.00  
58  -0.05  -0.02     0.16    -0.20    0.97_*  0.01   0.01  
69  -0.09   0.10     0.09     0.19    0.96_*  0.01   0.01  
126 -0.07   0.06     0.03    -0.07    1.03_*  0.00   0.03_*
160  0.00   0.00     0.00     0.01    1.02_*  0.00   0.02  
166  0.21  -0.23    -0.04    -0.24    1.02    0.02   0.03_*
172  0.06  -0.07     0.02     0.08    1.03_*  0.00   0.02  
175  0.14  -0.19     0.09    -0.21    1.03_*  0.02   0.03_*
210 -0.14   0.15    -0.10    -0.22    0.97_*  0.02   0.01  
270 -0.03   0.05    -0.03     0.06    1.03_*  0.00   0.02  
298 -0.06   0.06    -0.09    -0.15    0.97_*  0.01   0.00  
314 -0.05   0.04     0.02    -0.05    1.03_*  0.00   0.02_*
353 -0.02   0.03     0.09     0.15    0.97_*  0.01   0.00  
357  0.02  -0.02     0.02    -0.03    1.03_*  0.00   0.02  
368  0.26  -0.23    -0.11     0.27_*  1.01    0.02   0.02_*
377  0.14  -0.15     0.12     0.24    0.95_*  0.02   0.01  
384  0.00   0.00     0.00     0.00    1.02_*  0.00   0.02  
387 -0.03   0.04    -0.03     0.05    1.02_*  0.00   0.02  
396 -0.05   0.05     0.08     0.14    0.98_*  0.01   0.00  

12. This problem involves simple linear regression without an intercept. (a) Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?

The slopes are the same only when the total of X squared equals the total of Y squared.

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

set.seed(1)
x <- 1:100
y <- 2 * x + rnorm(100, sd = 0.1)

fit_y <- lm(y ~ x + 0)
fit_x <- lm(x ~ y + 0)

summary(fit_y)$coefficients[1]
[1] 2.000151
summary(fit_x)$coefficients[1]
[1] 0.4999619

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.

x <- 1:100
y <- 100:1  # reversed x

sum(x^2)    # 338350
[1] 338350
sum(y^2)    # 338350
[1] 338350
fit_y <- lm(y ~ x + 0)
fit_x <- lm(x ~ y + 0)

summary(fit_y)$coefficients[1]
[1] 0.5074627
summary(fit_x)$coefficients[1]
[1] 0.5074627