Group CoM Analysis 3

library(tidyverse)
library(tidyr)
library(dplyr)
library(readr)
library(purrr)
library(ggplot2)
library(e1071)
library(emmeans)
library(lme4)
library(lmerTest)
library(patchwork)
library(brms)
library(bayesplot)
library(car)
library(effects)
library(glue)
library(scales)
library(data.table)
library(effects)
# Disable emmeans computation limits for large models
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

The used data here is mixed: the training blocks are cleaned of all trials that had a accuracy <0.8 and also the trials with xsens errors are deleted. The Test-Blocks (4 & 5) involve all trials except the ones with xsens errors.

#Root mean square
#Root mean square (RMS) of acceleration is an often-used value in gait analysis research to quantify the magnitude of body segment accelerations(Menz et al., 2003; Mizuike et al., 2009; Sekine et al., 2013; Senden et al., 2012). RMS can be easily computed with the raw accelerometer data and is seen as an uncomplicated approach to analyse the magnitude of accelerations in each axis(Mizuike et al., 2009; Sekine et al., 2013)). Although this study does not directly analyses gait performance, the movements performed in the ds-dsp task resemble walking movements and therefore it is seen as a suitable approach for the following analysis. In the present study, RMS of the center of mass acceleration is used to evaluate the movement characteristics across task phases and sequence lengths, providing insights into movement control and paired with its standard deviation movement variability.
# -------- Step-Level Step Counts --------
step_counts <- tibble(
  Block = c(1, 2, 3, 4, 5),
  Steps = c(6, 12, 18, 18, 18)
)

# -------- Assign Steps Helper Function --------
assign_steps_by_block <- function(df, steps_df = step_counts) {
  df %>%
    inner_join(steps_df, by = "Block") %>%
    group_by(subject, Block, trial) %>%
    mutate(Step = cut_number(row_number(), n = unique(Steps), labels = FALSE)) %>%
    ungroup()
}

# -------- Tag Trial Phases Function (26 or 25 as end marker) --------
tag_trial_phases <- function(df) {
  df %>%
    group_by(subject, Block, trial) %>%
    mutate(
      start_ms = ms[which(Marker.Text == 27)[1]],
      end_ms = {
        end_candidates <- which(Marker.Text %in% c(26, 25))
        if (length(end_candidates) > 0) ms[end_candidates[1]] else NA_real_
      },
      phase = case_when(
        !is.na(start_ms) & !is.na(end_ms) & ms >= start_ms & ms <= end_ms ~ "Execution",
        !is.na(start_ms) & ms >= (start_ms - 1500) & ms < start_ms ~ "Preparation",
        TRUE ~ NA_character_
      )
    ) %>%
    ungroup() %>%
    filter(!is.na(phase))
}
# Load Data
mixed_files <- list.files("/Users/can/Documents/Uni/Thesis/Data/Xsens/cleaned_csv/merged/Cleaned", pattern = "_mixed\\.csv$", full.names = TRUE)
all_data_mixed <- map_dfr(mixed_files, read_csv)

# Tag trial phases once
tagged_data <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
tagged_data2 <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
# Compute RMS Function
compute_rms <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    group_by(subject, Block, phase) %>%
    arrange(trial) %>%
    mutate(TrialInBlock = row_number()) %>%
    ungroup()
}
# Compute RMS per trial and phase (used throughout)
rms_data <- compute_rms(tagged_data) %>%
  mutate(DataType = "Mixed")


group_rms_summary <- rms_data %>%
  group_by(Block, TrialInBlock, phase) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE),
    se_rms_x = sd(rms_x, na.rm = TRUE) / sqrt(n()),
    mean_rms_y = mean(rms_y, na.rm = TRUE),
    se_rms_y = sd(rms_y, na.rm = TRUE) / sqrt(n()),
    mean_rms_z = mean(rms_z, na.rm = TRUE),
    se_rms_z = sd(rms_z, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )

1 Acceleration in Blocks and phases

#1.1.1 RMS Acceleration Box Plots - Execution

# ----- Execution Phase RMS Boxplots -----
exec_data <- rms_data %>% filter(phase == "Execution")

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  gg <- ggplot(exec_data, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
    geom_boxplot(alpha = 0.7, outlier.shape = NA) +
    geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
    geom_vline(xintercept = 3.5, linetype = "dashed", color = "black") +
    ylim(0, 2.5) +
    labs(
      title = paste("Execution Phase: CoM Acceleration RMS -", toupper(axis), "Axis"),
      x = "Block",
      y = "RMS Acceleration"
    ) +
    theme_minimal() +
    theme(text = element_text(size = 12), legend.position = "none")
  print(gg)
}
Warning: Removed 3 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 3 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 16 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 16 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 175 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 175 rows containing missing values or values outside the scale range
(`geom_point()`).

#1.1.2 RMS Acceleration Box Plots - Preparation

# ----- Preparation Phase RMS Boxplots -----

# Extract 1500ms Preparation Window
prep_window_ms <- 1500

extract_preparation_phase <- function(df) {
  df %>%
    group_split(subject, Block, trial) %>%
    map_dfr(function(trial_df) {
      exec_start_row <- which(trial_df$Marker.Text == 27)[1]
      if (!is.na(exec_start_row) && exec_start_row > 1) {
        exec_start_ms <- trial_df$ms[exec_start_row]
        trial_df %>%
          filter(ms >= (exec_start_ms - prep_window_ms) & ms < exec_start_ms) %>%
          mutate(phase = "Preparation")
      } else {
        NULL
      }
    })
}

prep_data <- extract_preparation_phase(tagged_data)

# Compute preparation phase RMS
prep_rms <- prep_data %>%
  group_by(subject, Block, trial, phase) %>%
  summarise(
    rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
    rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
    rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
    .groups = "drop"
  )

# Plot preparation boxplots
for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  fill_color <- switch(axis,
                       "x" = "skyblue",
                       "y" = "salmon",
                       "z" = "seagreen")
  
  gg <- ggplot(prep_rms, aes(x = factor(Block), y = .data[[axis_col]])) +
    geom_boxplot(fill = fill_color, alpha = 0.7, outlier.shape = NA) +
    geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
    geom_vline(xintercept = 3.5, linetype = "dashed", color = "black") +
    ylim(0, 0.5) +
    labs(
      title = paste("Preparation Phase: CoM RMS -", toupper(axis), "Axis"),
      x = "Block",
      y = "RMS Acceleration"
    ) +
    theme_minimal()
  print(gg)
}
Warning: Removed 159 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 159 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 159 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Removed 159 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 217 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 217 rows containing missing values or values outside the scale range
(`geom_point()`).

#1.2.1 LMM to assess whether block and phase significantly influence rms (per axis)

# --- Function: Run Random Intercept LMMs and Extract ANOVA P-Values ---
extract_rms_interceptonly_pvalues <- function(data, label) {
  # Assume data is already tagged
  rms_data <- compute_rms(data) %>%
    mutate(Block = factor(Block), subject = factor(subject))

  axes <- c("x", "y", "z")

  results <- map_dfr(axes, function(axis) {
    formula <- as.formula(paste0("rms_", axis, " ~ Block * phase + (1 | subject) + (1 | TrialInBlock)"))
    model <- lmer(formula, data = rms_data, REML = FALSE)
    anova_tbl <- anova(model)

    tibble(
      Dataset = label,
      Axis = toupper(axis),
      `Block p-value` = anova_tbl["Block", "Pr(>F)"],
      `Phase p-value` = anova_tbl["phase", "Pr(>F)"],
      `Interaction p-value` = anova_tbl["Block:phase", "Pr(>F)"]
    )
  })

  return(results)
}

# --- Run Model on Mixed Data (Tagged Once) ---
interceptonly_pvals <- extract_rms_interceptonly_pvalues(tagged_data, "Mixed")
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
# --- Display Results ---
print(interceptonly_pvals)
# A tibble: 3 × 5
  Dataset Axis  `Block p-value` `Phase p-value` `Interaction p-value`
  <chr>   <chr>           <dbl>           <dbl>                 <dbl>
1 Mixed   X            2.09e-33               0              8.06e-76
2 Mixed   Y            5.37e-32               0              6.63e-61
3 Mixed   Z            2.30e-25               0              1.28e-43
#results:
#block p-value <0.05 :This suggests learning or adaptation effects across blocks
#phase p-value 0 because it is either execution or preparation 
#interaction <0.05 :this suggest the effect of block is different depending on phase

#clean vs unclean dataset: unclean p-values< clean p-values: probably because of more variability
# --- Extended Function: Run Random Intercept LMMs and Extract All Outputs ---
extract_rms_intercept_model_diagnostics <- function(data, label) {
  rms_data <- compute_rms(data) %>%
    mutate(Block = factor(Block), subject = factor(subject))

  axes <- c("x", "y", "z")

  results <- list()

  for (axis in axes) {
    formula <- as.formula(paste0("rms_", axis, " ~ Block * phase + (1 | subject) + (1 | TrialInBlock)"))
    model <- lmer(formula, data = rms_data, REML = FALSE)

    # Store everything
    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      anova = anova(model),
      emmeans = emmeans(model, ~ Block * phase),
      fixed_effects = fixef(model),
      random_effects = ranef(model),
      scaled_residuals = resid(model, scaled = TRUE),
      model = model  # include model object in case you want to inspect further
    )
  }

  return(results)
}

# --- Run and Store Full Diagnostics ---
intercept_diagnostics <- extract_rms_intercept_model_diagnostics(tagged_data, "Mixed")
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
cat("\n=== Axis X ===\n")

=== Axis X ===
print(intercept_diagnostics$Mixed_X$anova)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF  DenDF  F value    Pr(>F)    
Block        10.49    2.62     4 6521.7   40.303 < 2.2e-16 ***
phase       573.66  573.66     1 6521.0 8815.596 < 2.2e-16 ***
Block:phase  23.82    5.95     4 6521.0   91.511 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(intercept_diagnostics$Mixed_X$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.8548 0.0338 22.8  0.78477    0.925
 2     Execution   0.7951 0.0341 23.4  0.72470    0.866
 3     Execution   0.6665 0.0345 24.7  0.59539    0.738
 4     Execution   0.7384 0.0335 21.9  0.66885    0.808
 5     Execution   0.5848 0.0335 21.9  0.51530    0.654
 1     Preparation 0.0653 0.0338 22.6 -0.00462    0.135
 2     Preparation 0.1178 0.0340 23.4  0.04746    0.188
 3     Preparation 0.1670 0.0345 24.6  0.09596    0.238
 4     Preparation 0.1246 0.0335 21.9  0.05505    0.194
 5     Preparation 0.1266 0.0335 21.8  0.05716    0.196

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(intercept_diagnostics$Mixed_X$fixed_effects)
            (Intercept)                  Block2                  Block3 
             0.85480165             -0.05969952             -0.18831819 
                 Block4                  Block5        phasePreparation 
            -0.11640071             -0.26998999             -0.78950868 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.11223106              0.29001003              0.17566536 
Block5:phasePreparation 
             0.33133074 
print(intercept_diagnostics$Mixed_X$random_effects)
$TrialInBlock
   (Intercept)
1            0
2            0
3            0
4            0
5            0
6            0
7            0
8            0
9            0
10           0
11           0
12           0
13           0
14           0
15           0
16           0
17           0
18           0
19           0
20           0
21           0
22           0
23           0
24           0
25           0
26           0
27           0
28           0
29           0
30           0
31           0
32           0
33           0
34           0
35           0
36           0
37           0
38           0
39           0
40           0
41           0
42           0
43           0
44           0
45           0
46           0
47           0

$subject
    (Intercept)
2   0.084959638
3   0.009364058
4  -0.080528746
5  -0.168694714
7  -0.048952044
8   0.054209259
10  0.363123135
11  0.234222092
13 -0.064380022
14  0.068621634
15 -0.055710537
16 -0.013565294
17 -0.107231929
18 -0.022325251
19 -0.152035277
20 -0.114690560
22 -0.094722921
23  0.108337479

with conditional variances for "TrialInBlock" "subject" 
print(head(intercept_diagnostics$Mixed_X$scaled_residuals))
         1          2          3          4          5          6 
-0.6855627 -0.7206152  0.9381860 -0.8704046 -0.4171842 -0.7726668 
cat("\n=== Axis Y ===\n")

=== Axis Y ===
print(intercept_diagnostics$Mixed_Y$anova)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF  DenDF  F value    Pr(>F)    
Block        14.13    3.53     4 6521.7   38.620 < 2.2e-16 ***
phase       640.85  640.85     1 6521.0 7007.730 < 2.2e-16 ***
Block:phase  26.84    6.71     4 6521.0   73.362 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(intercept_diagnostics$Mixed_Y$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution    0.902 0.0385 23.1   0.8225    0.982
 2     Execution    0.844 0.0388 23.9   0.7636    0.924
 3     Execution    0.696 0.0393 25.3   0.6154    0.777
 4     Execution    0.769 0.0381 22.2   0.6902    0.848
 5     Execution    0.608 0.0381 22.1   0.5293    0.687
 1     Preparation  0.064 0.0384 22.9  -0.0155    0.144
 2     Preparation  0.129 0.0388 23.8   0.0493    0.209
 3     Preparation  0.173 0.0393 25.1   0.0924    0.254
 4     Preparation  0.121 0.0381 22.1   0.0422    0.200
 5     Preparation  0.121 0.0381 22.1   0.0417    0.200

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(intercept_diagnostics$Mixed_Y$fixed_effects)
            (Intercept)                  Block2                  Block3 
             0.90214276             -0.05842377             -0.20575453 
                 Block4                  Block5        phasePreparation 
            -0.13285794             -0.29386277             -0.83811781 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.12373927              0.31502104              0.19003310 
Block5:phasePreparation 
             0.35047549 
print(intercept_diagnostics$Mixed_Y$random_effects)
$TrialInBlock
   (Intercept)
1            0
2            0
3            0
4            0
5            0
6            0
7            0
8            0
9            0
10           0
11           0
12           0
13           0
14           0
15           0
16           0
17           0
18           0
19           0
20           0
21           0
22           0
23           0
24           0
25           0
26           0
27           0
28           0
29           0
30           0
31           0
32           0
33           0
34           0
35           0
36           0
37           0
38           0
39           0
40           0
41           0
42           0
43           0
44           0
45           0
46           0
47           0

$subject
   (Intercept)
2   0.07607719
3   0.06014675
4  -0.12497919
5  -0.19130128
7  -0.05470047
8   0.12826081
10  0.38400762
11  0.24920485
13 -0.04855387
14  0.03922394
15 -0.07320697
16 -0.01721857
17 -0.09868179
18 -0.03594357
19 -0.18125383
20 -0.13068631
22 -0.13748388
23  0.15708857

with conditional variances for "TrialInBlock" "subject" 
print(head(intercept_diagnostics$Mixed_Y$scaled_residuals))
         1          2          3          4          5          6 
-0.5318674 -0.5359392  0.3359262 -0.3116383 -0.4810701 -0.5891674 
cat("\n=== Axis Z ===\n")

=== Axis Z ===
print(intercept_diagnostics$Mixed_Z$anova)
Type III Analysis of Variance Table with Satterthwaite's method
             Sum Sq Mean Sq NumDF  DenDF  F value    Pr(>F)    
Block         29.25    7.31     4 6521.7   30.709 < 2.2e-16 ***
phase       1874.32 1874.32     1 6521.0 7871.441 < 2.2e-16 ***
Block:phase   50.03   12.51     4 6521.0   52.528 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(intercept_diagnostics$Mixed_Z$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   1.4005 0.0637 22.9   1.2686    1.532
 2     Execution   1.3897 0.0642 23.6   1.2572    1.522
 3     Execution   1.1908 0.0650 24.9   1.0569    1.325
 4     Execution   1.2873 0.0631 22.0   1.1564    1.418
 5     Execution   1.0224 0.0631 22.0   0.8916    1.153
 1     Preparation 0.0654 0.0636 22.7  -0.0662    0.197
 2     Preparation 0.1707 0.0641 23.5   0.0382    0.303
 3     Preparation 0.2442 0.0649 24.8   0.1104    0.378
 4     Preparation 0.1603 0.0631 21.9   0.0295    0.291
 5     Preparation 0.1581 0.0630 21.9   0.0274    0.289

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(intercept_diagnostics$Mixed_Z$fixed_effects)
            (Intercept)                  Block2                  Block3 
             1.40045721             -0.01071856             -0.20969227 
                 Block4                  Block5        phasePreparation 
            -0.11316313             -0.37806730             -1.33509017 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.11606228              0.38849177              0.20809330 
Block5:phasePreparation 
             0.47083282 
print(intercept_diagnostics$Mixed_Z$random_effects)
$TrialInBlock
     (Intercept)
1  -4.672739e-18
2  -3.785541e-18
3  -2.639675e-18
4  -3.196648e-18
5  -2.018497e-18
6  -1.254622e-18
7  -1.531263e-18
8  -1.534912e-18
9  -9.670340e-19
10 -8.655370e-19
11 -1.800131e-18
12 -1.742469e-18
13 -1.414453e-18
14  7.297968e-19
15 -1.288192e-18
16  1.223828e-19
17 -8.045113e-20
18  1.364653e-18
19  8.512410e-19
20  7.695664e-19
21  7.388552e-19
22  6.277646e-19
23  2.888206e-18
24  1.126255e-18
25  8.512645e-19
26  1.405709e-18
27  4.969577e-19
28  4.371513e-19
29  1.793159e-18
30  7.012849e-19
31  2.616306e-18
32  1.360328e-18
33  5.462224e-19
34  2.275377e-18
35  1.018464e-18
36 -3.964937e-19
37  6.194290e-19
38  1.006329e-19
39  3.669487e-19
40 -1.097710e-18
41  2.495015e-19
42  7.556181e-19
43  4.742588e-20
44  1.341924e-18
45  1.992059e-18
46  2.020313e-18
47  7.156944e-20

$subject
   (Intercept)
2  -0.06278903
3   0.11146166
4  -0.16036249
5  -0.33042021
7   0.03383043
8   0.25270668
10  0.57795953
11  0.40688787
13 -0.01408191
14 -0.01304987
15 -0.09268749
16  0.10293051
17 -0.25400560
18  0.05092086
19 -0.30976159
20 -0.22418418
22 -0.32333051
23  0.24797532

with conditional variances for "TrialInBlock" "subject" 
print(head(intercept_diagnostics$Mixed_Z$scaled_residuals))
           1            2            3            4            5            6 
-0.009895962 -0.166656384  0.182396834 -0.682980337 -0.517337694 -0.905689179 

#1.2.2 Random slope model to assess whether block and phase significantly influence rms (per axis)

# --- Function to Run Random Slope LMMs and Extract ANOVA P-Values ---
extract_rms_randomslope_pvalues <- function(tagged_df, label) {
  # Compute RMS and prepare data
  rms_data <- compute_rms(tagged_df) %>%
    mutate(Block = factor(Block), subject = factor(subject))

  # Axes to iterate over
  axes <- c("x", "y", "z")

  # Fit models and extract p-values in loop
  map_dfr(axes, function(axis) {
    formula <- as.formula(paste0("rms_", axis, " ~ Block * phase + (1 + Block | subject) + (1 | TrialInBlock)"))
    model <- lmer(formula, data = rms_data, REML = FALSE)
    aov_tbl <- anova(model)

    tibble(
      Dataset = label,
      Axis = toupper(axis),
      `Block p-value` = aov_tbl["Block", "Pr(>F)"],
      `Phase p-value` = aov_tbl["phase", "Pr(>F)"],
      `Interaction p-value` = aov_tbl["Block:phase", "Pr(>F)"]
    )
  })
}


# Run Random Slope LMMs for tagged and cleaned "Mixed" dataset
randomslope_pvals_mixed <- extract_rms_randomslope_pvalues(tagged_data, "Mixed")
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
# View results
print(randomslope_pvals_mixed)
# A tibble: 3 × 5
  Dataset Axis  `Block p-value` `Phase p-value` `Interaction p-value`
  <chr>   <chr>           <dbl>           <dbl>                 <dbl>
1 Mixed   X              0.0291               0              1.72e-81
2 Mixed   Y              0.0497               0              1.54e-66
3 Mixed   Z              0.0799               0              5.21e-47
#compared to the first model this also includes a random slope for Block within subjects

#results:
#block p-value        >0.05 (z - axis)   :This suggests no learning or adaptation effects across blocks after accounting for between subject
#block p-value        <0.05 (x & y axis) :This suggests learning or adaptation effects across blocks after accounting for between subject variation
#phase p-value            0                     :because it is either execution or preparation 
#interaction          <0.05                     :this suggest the effect of block is different depending on phase

#clean vs unclean dataset: unclean p-values< clean p-values: probably because of more variability
# --- Extended: Run Random Slope LMMs + Extract Diagnostics per Axis ---
extract_rms_randomslope_model_diagnostics <- function(tagged_df, label) {
  # Compute RMS and prepare data
  rms_data <- compute_rms(tagged_df) %>%
    mutate(Block = factor(Block), subject = factor(subject))

  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    formula <- as.formula(paste0("rms_", axis, " ~ Block * phase + (1 + Block | subject) + (1 | TrialInBlock)"))
    model <- lmer(formula, data = rms_data, REML = FALSE)

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      anova = anova(model),
      emmeans = emmeans(model, ~ Block * phase),
      fixed_effects = fixef(model),
      random_effects = ranef(model),
      scaled_residuals = resid(model, scaled = TRUE),
      model = model
    )
  }

  return(results)
}

# --- Run Full Diagnostic Extraction ---
randomslope_diagnostics <- extract_rms_randomslope_model_diagnostics(tagged_data, "Mixed")
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -2.8e+02
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
# --- Example: Output for Axis X ---
cat("\n=== RANDOM SLOPE MODEL: Axis X ===\n")

=== RANDOM SLOPE MODEL: Axis X ===
print(randomslope_diagnostics$Mixed_X$anova)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF  DenDF   F value Pr(>F)    
Block         0.84    0.21     4   18.2    3.4446 0.0291 *  
phase       573.74  573.74     1 6449.7 9439.2430 <2e-16 ***
Block:phase  23.95    5.99     4 6449.6   98.4879 <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(randomslope_diagnostics$Mixed_X$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.8581 0.0462 20.1   0.7617    0.954
 2     Execution   0.7961 0.0458 20.2   0.7006    0.892
 3     Execution   0.6647 0.0337 21.7   0.5948    0.735
 4     Execution   0.7388 0.0372 20.3   0.6612    0.816
 5     Execution   0.5846 0.0233 22.2   0.5363    0.633
 1     Preparation 0.0679 0.0462 20.0  -0.0284    0.164
 2     Preparation 0.1189 0.0458 20.2   0.0235    0.214
 3     Preparation 0.1654 0.0336 21.6   0.0956    0.235
 4     Preparation 0.1246 0.0372 20.2   0.0471    0.202
 5     Preparation 0.1268 0.0233 22.1   0.0785    0.175

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(randomslope_diagnostics$Mixed_X$fixed_effects)
            (Intercept)                  Block2                  Block3 
             0.85807572             -0.06199209             -0.19338294 
                 Block4                  Block5        phasePreparation 
            -0.11932482             -0.27343346             -0.79017599 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.11300841              0.29089739              0.17599842 
Block5:phasePreparation 
             0.33233393 
print(randomslope_diagnostics$Mixed_X$random_effects)
$TrialInBlock
   (Intercept)
1            0
2            0
3            0
4            0
5            0
6            0
7            0
8            0
9            0
10           0
11           0
12           0
13           0
14           0
15           0
16           0
17           0
18           0
19           0
20           0
21           0
22           0
23           0
24           0
25           0
26           0
27           0
28           0
29           0
30           0
31           0
32           0
33           0
34           0
35           0
36           0
37           0
38           0
39           0
40           0
41           0
42           0
43           0
44           0
45           0
46           0
47           0

$subject
    (Intercept)      Block2       Block3      Block4       Block5
2  -0.002130586  0.14017493  0.148701112  0.08993780  0.060847144
3   0.210340137 -0.19493023 -0.262292535 -0.27672991 -0.248451306
4  -0.085446616 -0.05020446 -0.016821648 -0.01101010  0.060940174
5  -0.114092690 -0.06979523 -0.052808530 -0.09701340 -0.035909232
7  -0.082545142  0.03209474  0.069011823  0.06584268  0.008289092
8   0.024054267  0.03420203  0.004816552  0.05241983  0.044426694
10  0.320462541  0.17465061  0.053780616  0.09681161 -0.085178938
11  0.419658078 -0.04906292 -0.228674348 -0.17200762 -0.340715848
13 -0.104908274 -0.01293570  0.032276596  0.08150349  0.073389640
14  0.121877414 -0.04187897 -0.085279110 -0.08689654 -0.062858733
15 -0.119542720  0.01146563  0.051490105  0.01877142  0.183808910
16 -0.102998188  0.06985160  0.128249919  0.16846852  0.071799365
17 -0.191048839  0.04562005  0.120572790  0.08978650  0.150921427
18 -0.098169526  0.06185725  0.127720268  0.13486697  0.066073017
19 -0.198929688  0.01751672  0.078972777  0.05765067  0.087451508
20 -0.125914157 -0.01192369  0.014789375 -0.02058285  0.060390331
22 -0.155593412  0.02648825  0.076921180  0.05137631  0.128263021
23  0.284927402 -0.18319063 -0.261426942 -0.24319536 -0.223486265

with conditional variances for "TrialInBlock" "subject" 
print(head(randomslope_diagnostics$Mixed_X$scaled_residuals))
         1          2          3          4          5          6 
-0.7209621 -0.6398466  0.1449765 -0.5947548 -0.1244542 -0.6062213 
cat("\n=== RANDOM SLOPE MODEL: Axis Y ===\n")

=== RANDOM SLOPE MODEL: Axis Y ===
print(randomslope_diagnostics$Mixed_Y$anova)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF  DenDF   F value  Pr(>F)    
Block         0.99    0.25     4   17.9    2.9365 0.04966 *  
phase       641.04  641.04     1 6451.0 7581.0440 < 2e-16 ***
Block:phase  27.13    6.78     4 6451.0   80.2193 < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(randomslope_diagnostics$Mixed_Y$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.9082 0.0583 19.9   0.7866    1.030
 2     Execution   0.8494 0.0544 20.2   0.7359    0.963
 3     Execution   0.6935 0.0349 22.0   0.6211    0.766
 4     Execution   0.7690 0.0421 20.2   0.6813    0.857
 5     Execution   0.6079 0.0242 23.3   0.5579    0.658
 1     Preparation 0.0681 0.0582 19.8  -0.0534    0.190
 2     Preparation 0.1356 0.0544 20.2   0.0221    0.249
 3     Preparation 0.1709 0.0349 21.8   0.0985    0.243
 4     Preparation 0.1209 0.0421 20.1   0.0332    0.209
 5     Preparation 0.1207 0.0242 23.1   0.0707    0.171

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(randomslope_diagnostics$Mixed_Y$fixed_effects)
            (Intercept)                  Block2                  Block3 
             0.90817438             -0.05879782             -0.21466453 
                 Block4                  Block5        phasePreparation 
            -0.13912680             -0.30022914             -0.84004818 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.12622211              0.31739871              0.19188449 
Block5:phasePreparation 
             0.35280793 
print(randomslope_diagnostics$Mixed_Y$random_effects)
$TrialInBlock
   (Intercept)
1            0
2            0
3            0
4            0
5            0
6            0
7            0
8            0
9            0
10           0
11           0
12           0
13           0
14           0
15           0
16           0
17           0
18           0
19           0
20           0
21           0
22           0
23           0
24           0
25           0
26           0
27           0
28           0
29           0
30           0
31           0
32           0
33           0
34           0
35           0
36           0
37           0
38           0
39           0
40           0
41           0
42           0
43           0
44           0
45           0
46           0
47           0

$subject
   (Intercept)       Block2      Block3      Block4      Block5
2  -0.08078052  0.181935400  0.21041561  0.18173095  0.17466746
3   0.04556358  0.030170428  0.03304694  0.02365688 -0.01363942
4  -0.18623694 -0.016290519  0.08655674  0.04621311  0.15558167
5  -0.22381098 -0.006486568  0.06116852  0.01923111  0.08840549
7  -0.10910846  0.025773837  0.06166384  0.03566723  0.11834885
8   0.14429595  0.083351323 -0.04796118  0.01425454 -0.09529695
10  0.44806386  0.019942566 -0.08193563 -0.01763671 -0.22373269
11  0.49539636  0.049356876 -0.36602737 -0.19090847 -0.52891486
13  0.08060563 -0.171227191 -0.19367681 -0.17094475 -0.11370305
14  0.13504171 -0.098395040 -0.14268455 -0.12321746 -0.13346534
15 -0.12719732 -0.045048083  0.07748791  0.03302485  0.16035012
16 -0.12430409  0.075884559  0.14903445  0.12545229  0.16456399
17 -0.24725183  0.127249131  0.20977745  0.16258130  0.22582123
18 -0.08917553  0.020109577  0.12522703  0.07813967  0.06961063
19 -0.21076853  0.022316268  0.04029086  0.01720718  0.06758009
20 -0.15632996  0.044182478  0.04304839  0.02083403  0.03819070
22 -0.20436428  0.004752615  0.08691285  0.04679237  0.15696899
23  0.41036134 -0.347577658 -0.35234508 -0.30207813 -0.31133692

with conditional variances for "TrialInBlock" "subject" 
print(head(randomslope_diagnostics$Mixed_Y$scaled_residuals))
         1          2          3          4          5          6 
-0.6375648 -0.6188274  0.3853927 -0.3544758 -0.5304047 -0.5144974 
cat("\n=== RANDOM SLOPE MODEL: Axis Z ===\n")

=== RANDOM SLOPE MODEL: Axis Z ===
print(randomslope_diagnostics$Mixed_Z$anova)
Type III Analysis of Variance Table with Satterthwaite's method
             Sum Sq Mean Sq NumDF  DenDF   F value  Pr(>F)    
Block          2.22    0.55     4   18.1    2.4874 0.07987 .  
phase       1874.02 1874.02     1 6450.9 8416.9276 < 2e-16 ***
Block:phase   50.41   12.60     4 6450.9   56.6080 < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(randomslope_diagnostics$Mixed_Z$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   1.4106 0.0868 20.0  1.22941    1.592
 2     Execution   1.3960 0.0880 20.2  1.21265    1.579
 3     Execution   1.1816 0.0663 21.6  1.04381    1.319
 4     Execution   1.2868 0.0665 20.4  1.14826    1.425
 5     Execution   1.0219 0.0506 21.4  0.91673    1.127
 1     Preparation 0.0737 0.0867 19.9 -0.10723    0.255
 2     Preparation 0.1777 0.0879 20.1 -0.00565    0.361
 3     Preparation 0.2358 0.0663 21.5  0.09815    0.373
 4     Preparation 0.1597 0.0665 20.4  0.02121    0.298
 5     Preparation 0.1582 0.0506 21.4  0.05313    0.263

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(randomslope_diagnostics$Mixed_Z$fixed_effects)
            (Intercept)                  Block2                  Block3 
             1.41055951             -0.01451272             -0.22900373 
                 Block4                  Block5        phasePreparation 
            -0.12374563             -0.38869059             -1.33681079 
Block2:phasePreparation Block3:phasePreparation Block4:phasePreparation 
             0.11844394              0.39103417              0.20968663 
Block5:phasePreparation 
             0.47312389 
print(randomslope_diagnostics$Mixed_Z$random_effects)
$TrialInBlock
   (Intercept)
1            0
2            0
3            0
4            0
5            0
6            0
7            0
8            0
9            0
10           0
11           0
12           0
13           0
14           0
15           0
16           0
17           0
18           0
19           0
20           0
21           0
22           0
23           0
24           0
25           0
26           0
27           0
28           0
29           0
30           0
31           0
32           0
33           0
34           0
35           0
36           0
37           0
38           0
39           0
40           0
41           0
42           0
43           0
44           0
45           0
46           0
47           0

$subject
    (Intercept)       Block2      Block3      Block4      Block5
2  -0.304860092  0.232026688  0.34789249  0.26744037  0.32438026
3   0.335394305 -0.215269615 -0.27735356 -0.26123632 -0.33676956
4  -0.163414581 -0.112151047 -0.04214627 -0.03622428  0.12262390
5  -0.318903056 -0.028105370  0.00237320 -0.01340532 -0.01312176
7  -0.008331758  0.024204490  0.10292948  0.09537122 -0.01174119
8   0.236457901  0.161103937 -0.03235719  0.04204253 -0.04791900
10  0.480200692  0.202724692  0.16116345  0.10935513  0.03266552
11  0.843843879  0.008190312 -0.60477913 -0.43901462 -0.82331915
13  0.116667046 -0.237355164 -0.27024477 -0.21975774  0.01838803
14 -0.027545810 -0.007698254  0.07932719  0.04880952 -0.03417139
15 -0.139398643 -0.100411511 -0.04265057 -0.05971883  0.31589393
16 -0.080901993  0.246104730  0.25249949  0.22399302  0.18511139
17 -0.445123398  0.102517498  0.29627519  0.23720892  0.30187712
18 -0.076939097  0.093506386  0.33161479  0.24947682  0.04223143
19 -0.310712178 -0.034224562 -0.01156170 -0.01691626  0.03859358
20 -0.253668742 -0.009628290  0.02563412  0.01478410  0.08087746
22 -0.391165577 -0.021001007  0.05325682  0.03750079  0.18759053
23  0.508401103 -0.304533911 -0.37187302 -0.27970905 -0.38319112

with conditional variances for "TrialInBlock" "subject" 
print(head(randomslope_diagnostics$Mixed_Z$scaled_residuals))
          1           2           3           4           5           6 
-0.06271144 -0.34689028 -0.30371480 -0.62623216 -0.45466235 -0.69638425 

#1.2.3 Model: CoM RMS Acceleration changes over time

# --- Optimized: Extract p-values from RMS learning LMMs (TrialInBlock * Block * Phase) ---
extract_learning_pvalues <- function(df, label) {
  rms_df <- compute_rms(df) %>%
    mutate(
      Block = factor(Block),
      subject = factor(subject),
      phase = factor(phase)
    )

  fit_model_and_anova <- function(axis) {
    model <- lmer(as.formula(paste0("rms_", axis, " ~ TrialInBlock * Block * phase + (1 + TrialInBlock | subject)")),
                  data = rms_df)
    anova(model)
  }

  an_x <- fit_model_and_anova("x")
  an_y <- fit_model_and_anova("y")
  an_z <- fit_model_and_anova("z")

  tibble(
    Dataset = label,
    Axis = c("X", "Y", "Z"),
    `TrialInBlock p-value` = c(an_x["TrialInBlock", "Pr(>F)"], an_y["TrialInBlock", "Pr(>F)"], an_z["TrialInBlock", "Pr(>F)"]),
    `Block p-value`         = c(an_x["Block", "Pr(>F)"], an_y["Block", "Pr(>F)"], an_z["Block", "Pr(>F)"]),
    `Phase p-value`         = c(an_x["phase", "Pr(>F)"], an_y["phase", "Pr(>F)"], an_z["phase", "Pr(>F)"]),
    `TrialInBlock:Block p`  = c(an_x["TrialInBlock:Block", "Pr(>F)"], an_y["TrialInBlock:Block", "Pr(>F)"], an_z["TrialInBlock:Block", "Pr(>F)"]),
    `TrialInBlock:Phase p`  = c(an_x["TrialInBlock:phase", "Pr(>F)"], an_y["TrialInBlock:phase", "Pr(>F)"], an_z["TrialInBlock:phase", "Pr(>F)"]),
    `Block:Phase p`         = c(an_x["Block:phase", "Pr(>F)"], an_y["Block:phase", "Pr(>F)"], an_z["Block:phase", "Pr(>F)"]),
    `3-way p-value`         = c(an_x["TrialInBlock:Block:phase", "Pr(>F)"],
                                an_y["TrialInBlock:Block:phase", "Pr(>F)"],
                                an_z["TrialInBlock:Block:phase", "Pr(>F)"])
  )
}


# Use pre-tagged data (tagged_data) instead of tagging again
learning_pvals_mixed <- extract_learning_pvalues(tagged_data, "Mixed")
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Warning: Model failed to converge with 1 negative eigenvalue: -3.1e+00
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.886971 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.345604 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
# Show result
print(learning_pvals_mixed)
# A tibble: 3 × 9
  Dataset Axis  `TrialInBlock p-value` `Block p-value` `Phase p-value`
  <chr>   <chr>                  <dbl>           <dbl>           <dbl>
1 Mixed   X                     0.537         2.48e-25               0
2 Mixed   Y                     0.504         2.30e-15               0
3 Mixed   Z                     0.0791        1.87e-14               0
# ℹ 4 more variables: `TrialInBlock:Block p` <dbl>,
#   `TrialInBlock:Phase p` <dbl>, `Block:Phase p` <dbl>, `3-way p-value` <dbl>
#results:
#trial in block p-value         >0.05   : Participants do not change rms within block
#block p-value                  <0.05   : RMS differs significantly between blocks
#phase p-value                          : 0 because it is either execution or preparation 
#Trial in block x Block         <0.05   : significant changes across blocks                    (except y )
#Trial in block x phase         <0.05   : as before different phases differ
#Block x phase                  <0.05   : changes in blocks differ across phases
#trial in block x block x phase <0.05   : trial in block changes across both blocks and phases

#clean vs unclean dataset: unclean p-values< clean p-values: probably because of more variability
# --- Global Options to Suppress Emmeans Warnings ---
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# --- Extended: Extract Full Diagnostics from Learning LMM (TrialInBlock * Block * Phase) ---
extract_learning_model_diagnostics <- function(df, label) {
  rms_df <- compute_rms(df) %>%
    mutate(
      Block = factor(Block),
      subject = factor(subject),
      phase = factor(phase)
    )

  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    formula <- as.formula(paste0("rms_", axis, " ~ TrialInBlock * Block * phase + (1 + TrialInBlock | subject)"))
    model <- lmer(formula, data = rms_df)

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      anova = anova(model),
      emmeans = emmeans(model, ~ Block * phase),
      fixed_effects = fixef(model),
      random_effects = ranef(model),
      scaled_residuals = resid(model, scaled = TRUE),
      model = model
    )
  }

  return(results)
}

# --- Run Diagnostics on Mixed Data ---
learning_diagnostics <- extract_learning_model_diagnostics(tagged_data, "Mixed")
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Warning: Model failed to converge with 1 negative eigenvalue: -3.1e+00
NOTE: Results may be misleading due to involvement in interactions
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.886971 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
NOTE: Results may be misleading due to involvement in interactions
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 0.345604 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
NOTE: Results may be misleading due to involvement in interactions
# --- Display Example for Axis X ---
cat("\n=== LEARNING MODEL: Axis X ===\n")

=== LEARNING MODEL: Axis X ===
print(learning_diagnostics$Mixed_X$anova)
Type III Analysis of Variance Table with Satterthwaite's method
                          Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               0.024   0.024     1   14.9    0.4001    0.5366    
Block                      7.478   1.869     4 6510.9   30.6708 < 2.2e-16 ***
phase                    247.417 247.417     1 6502.0 4059.3063 < 2.2e-16 ***
TrialInBlock:Block         1.579   0.395     4 6486.8    6.4766 3.379e-05 ***
TrialInBlock:phase        17.990  17.990     1 6502.5  295.1528 < 2.2e-16 ***
Block:phase                6.830   1.707     4 6502.1   28.0133 < 2.2e-16 ***
TrialInBlock:Block:phase   7.787   1.947     4 6503.0   31.9385 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(learning_diagnostics$Mixed_X$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.8534 0.0604 17.9   0.7264    0.980
 2     Execution   0.7689 0.0606 18.1   0.6416    0.896
 3     Execution   0.6016 0.0612 18.9   0.4734    0.730
 4     Execution   0.7505 0.0602 17.7   0.6238    0.877
 5     Execution   0.5829 0.0602 17.7   0.4562    0.710
 1     Preparation 0.0652 0.0603 17.8  -0.0616    0.192
 2     Preparation 0.1409 0.0606 18.1   0.0137    0.268
 3     Preparation 0.2242 0.0611 18.8   0.0962    0.352
 4     Preparation 0.1080 0.0602 17.7  -0.0187    0.235
 5     Preparation 0.1090 0.0602 17.7  -0.0177    0.236

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(learning_diagnostics$Mixed_X$fixed_effects)
                         (Intercept)                         TrialInBlock 
                         0.869554190                         -0.000815170 
                              Block2                               Block3 
                         0.056231080                         -0.046320814 
                              Block4                               Block5 
                        -0.030141574                         -0.298745743 
                    phasePreparation                  TrialInBlock:Block2 
                        -0.802993291                         -0.007086100 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                        -0.010345664                         -0.003661642 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                         0.001422747                          0.000747590 
             Block2:phasePreparation              Block3:phasePreparation 
                        -0.131199560                         -0.005336387 
             Block4:phasePreparation              Block5:phasePreparation 
                        -0.033760839                          0.241061209 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                         0.014672477                          0.020955325 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                         0.009034563                          0.003688619 
print(learning_diagnostics$Mixed_X$random_effects)
$subject
   (Intercept)  TrialInBlock
2   0.07302469  5.308416e-04
3   0.01624823 -3.243428e-04
4  -0.08363521  1.630923e-04
5  -0.18109175  6.672144e-04
7  -0.04714231 -9.913308e-05
8   0.03653227  8.672690e-04
10  0.47350198 -5.353684e-03
11  0.24204458 -4.588085e-04
13 -0.06004387 -1.949274e-04
14  0.10671382 -1.819133e-03
15 -0.08623060  1.476287e-03
16 -0.02883266  7.445906e-04
17 -0.11511557  4.420390e-04
18 -0.03941152  8.196021e-04
19 -0.16774728  6.936795e-04
20 -0.13467107  9.835804e-04
22 -0.12154706  1.325688e-03
23  0.11740332 -4.638557e-04

with conditional variances for "subject" 
print(head(learning_diagnostics$Mixed_X$scaled_residuals))
          1           2           3           4           5           6 
-0.18990813 -0.24184350  0.93796009 -1.31694436  0.01463411 -0.77067947 
# --- Display Example for Axis Y ---
cat("\n=== LEARNING MODEL: Axis Y ===\n")

=== LEARNING MODEL: Axis Y ===
print(learning_diagnostics$Mixed_Y$anova)
Type III Analysis of Variance Table with Satterthwaite's method
                          Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               0.041   0.041     1   13.1    0.4724    0.5038    
Block                      6.540   1.635     4 6496.5   18.7812 2.300e-15 ***
phase                    277.980 277.980     1 6486.7 3193.3384 < 2.2e-16 ***
TrialInBlock:Block         0.674   0.168     4 6450.8    1.9345    0.1018    
TrialInBlock:phase        20.516  20.516     1 6487.4  235.6777 < 2.2e-16 ***
Block:phase                5.954   1.488     4 6486.9   17.0991 5.858e-14 ***
TrialInBlock:Block:phase   8.840   2.210     4 6488.0   25.3869 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(learning_diagnostics$Mixed_Y$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.9023 0.0466 19.2  0.80476    1.000
 2     Execution   0.8161 0.0470 19.8  0.71804    0.914
 3     Execution   0.6231 0.0482 21.9  0.52317    0.723
 4     Execution   0.7800 0.0463 18.7  0.68293    0.877
 5     Execution   0.6116 0.0463 18.7  0.51455    0.709
 1     Preparation 0.0639 0.0465 19.0 -0.03346    0.161
 2     Preparation 0.1544 0.0469 19.7  0.05643    0.252
 3     Preparation 0.2321 0.0480 21.5  0.13244    0.332
 4     Preparation 0.1034 0.0463 18.7  0.00637    0.200
 5     Preparation 0.1030 0.0463 18.7  0.00598    0.200

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(learning_diagnostics$Mixed_Y$fixed_effects)
                         (Intercept)                         TrialInBlock 
                        0.8965891748                         0.0002860064 
                              Block2                               Block3 
                        0.0834540742                        -0.0231160443 
                              Block4                               Block5 
                       -0.0366819627                        -0.2625843564 
                    phasePreparation                  TrialInBlock:Block2 
                       -0.8353361241                        -0.0085408622 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                       -0.0128963730                        -0.0043103349 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                       -0.0014139899                        -0.0001539001 
             Block2:phasePreparation              Block3:phasePreparation 
                       -0.1539901171                        -0.0211594939 
             Block4:phasePreparation              Block5:phasePreparation 
                       -0.0335017769                         0.2046221909 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                        0.0166549728                         0.0235975593 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                        0.0098371767                         0.0063052323 
print(learning_diagnostics$Mixed_Y$random_effects)
$subject
   (Intercept)  TrialInBlock
2   0.06495950  4.992502e-04
3   0.06287877 -1.311103e-04
4  -0.15039502  1.250827e-03
5  -0.21147593  1.057579e-03
7  -0.05367103 -3.655988e-05
8   0.12560239  1.045282e-04
10  0.48398030 -4.861964e-03
11  0.25602323 -4.358573e-04
13 -0.03175058 -7.612633e-04
14  0.05977602 -9.739708e-04
15 -0.09637827  1.127104e-03
16 -0.03957080  1.076302e-03
17 -0.11636312  8.997991e-04
18 -0.05116744  7.111814e-04
19 -0.19782374  7.779060e-04
20 -0.14111958  5.308198e-04
22 -0.16429801  1.335118e-03
23  0.20079332 -2.169688e-03

with conditional variances for "subject" 
print(head(learning_diagnostics$Mixed_Y$scaled_residuals))
          1           2           3           4           5           6 
-0.08727244 -0.13262099  0.34444084 -0.62174085 -0.08001239 -0.69605215 
# --- Display Example for Axis Z ---
cat("\n=== LEARNING MODEL: Axis Z ===\n")

=== LEARNING MODEL: Axis Z ===
print(learning_diagnostics$Mixed_Z$anova)
Type III Analysis of Variance Table with Satterthwaite's method
                         Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               0.77    0.77     1   21.2    3.4021   0.07910 .  
Block                     15.99    4.00     4 6494.4   17.6929 1.869e-14 ***
phase                    780.96  780.96     1 6485.6 3456.6273 < 2.2e-16 ***
TrialInBlock:Block         2.44    0.61     4 6473.9    2.7037   0.02881 *  
TrialInBlock:phase        50.18   50.18     1 6486.1  222.1007 < 2.2e-16 ***
Block:phase               16.82    4.21     4 6485.7   18.6161 3.162e-15 ***
TrialInBlock:Block:phase  25.85    6.46     4 6486.6   28.6040 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(learning_diagnostics$Mixed_Z$emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   1.4038 0.0644 20.1  1.26954    1.538
 2     Execution   1.3592 0.0651 21.0  1.22387    1.495
 3     Execution   1.0714 0.0673 23.9  0.93260    1.210
 4     Execution   1.3077 0.0638 19.4  1.17430    1.441
 5     Execution   1.0219 0.0638 19.4  0.88852    1.155
 1     Preparation 0.0652 0.0642 19.8 -0.06868    0.199
 2     Preparation 0.2134 0.0650 20.9  0.07819    0.349
 3     Preparation 0.3485 0.0669 23.5  0.21023    0.487
 4     Preparation 0.1298 0.0638 19.4 -0.00360    0.263
 5     Preparation 0.1270 0.0638 19.4 -0.00635    0.260

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(learning_diagnostics$Mixed_Z$fixed_effects)
                         (Intercept)                         TrialInBlock 
                         1.353577419                          0.002528096 
                              Block2                               Block3 
                         0.187019467                          0.126105269 
                              Block4                               Block5 
                         0.105883854                         -0.334139230 
                    phasePreparation                  TrialInBlock:Block2 
                        -1.299114412                         -0.011662011 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                        -0.023089554                         -0.010171168 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                        -0.002404067                         -0.001985429 
             Block2:phasePreparation              Block3:phasePreparation 
                        -0.305102557                         -0.213476645 
             Block4:phasePreparation              Block5:phasePreparation 
                        -0.223802256                          0.230539774 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                         0.025071416                          0.041757496 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                         0.019360686                          0.010732750 
print(learning_diagnostics$Mixed_Z$random_effects)
$subject
   (Intercept)  TrialInBlock
2  -0.12659865  0.0029943843
3   0.07188886  0.0019215453
4  -0.18003179  0.0010373833
5  -0.34805899  0.0010072593
7   0.05044426 -0.0008655676
8   0.24469200  0.0004400951
10  0.73778702 -0.0079000916
11  0.47466205 -0.0034692325
13  0.03063876 -0.0021687529
14  0.04276772 -0.0026600999
15 -0.12972566  0.0018099850
16  0.04714354  0.0025942608
17 -0.27112242  0.0008305766
18  0.04492925  0.0001822943
19 -0.33312577  0.0011472055
20 -0.25977048  0.0019207945
22 -0.37044512  0.0025131660
23  0.27392543 -0.0013352055

with conditional variances for "subject" 
print(head(learning_diagnostics$Mixed_Z$scaled_residuals))
          1           2           3           4           5           6 
 0.56805124  0.37425066  0.28826247 -0.96807903 -0.00162998 -0.84463387 

2 Step-Analysis

#2.1 Plots for RMS ± SD: Separate Plot per Block

plot_stepwise_rms_by_block_split <- function(tagged_data) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  # Assign step numbers and buffer rows
  step_data <- tagged_data %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- purrr::map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  # Compute RMS
  step_summary <- window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = as.numeric(Step),
      Block = factor(Block)
    )

  # Summary for plotting
  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    )

  # === ORIGINAL: Separate plots per block ===
  blocks <- unique(plot_data$Block)
  block_plots <- purrr::map(blocks, function(b) {
    block_data <- filter(plot_data, Block == b)

    ggplot(block_data, aes(x = Step, y = mean_rms)) +
      geom_point(color = "steelblue", size = 2) +
      geom_errorbar(aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms), width = 0.3) +
      facet_wrap(~ Axis, scales = "free_y") +
      ylim(0, 3.25) +
      labs(
        title = paste("Block", b, "- Step-Wise CoM RMS Acceleration ± SD"),
        x = "Step Number",
        y = "RMS Acceleration (m/s²)"
      ) +
      theme_minimal() +
      theme(
        text = element_text(size = 12),
        strip.text = element_text(face = "bold")
      )
  })
  names(block_plots) <- paste0("Block_", blocks)

  # === ADDITIONAL: Bar plots comparing blocks per axis ===
  axis_labels <- unique(plot_data$Axis)
  comparative_plots <- purrr::map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS Acceleration ± SD — Axis", ax),
        x = "Step Number",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5)
      )
  })
  names(comparative_plots) <- paste0("Axis_", axis_labels)

  # Return both sets of plots
  return(list(
    per_block = block_plots,
    comparative = comparative_plots
  ))
}


# ---- Generate and Show Plots ----
stepwise_plots <- plot_stepwise_rms_by_block_split(tagged_data)

# Show per-block plots
for (plot_name in names(stepwise_plots$per_block)) {
  cat("\n\n=====", plot_name, "=====\n\n")
  print(stepwise_plots$per_block[[plot_name]])
}


===== Block_1 =====



===== Block_2 =====



===== Block_3 =====



===== Block_4 =====



===== Block_5 =====

# Show comparative axis-based plots
for (plot_name in names(stepwise_plots$comparative)) {
  cat("\n\n=====", plot_name, "=====\n\n")
  print(stepwise_plots$comparative[[plot_name]])
}


===== Axis_X =====



===== Axis_Y =====



===== Axis_Z =====

#2.2 Step Pairwise Model RMS: model <- lmer(RMS ~ Step + (1 | subject) + (1 | trial), data = data_sub)

# -------- Global Settings to Suppress Emmeans Warnings --------
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# -------- Step-Wise LMM + Full Diagnostics --------
run_stepwise_lmm_full_diagnostics <- function(tagged_data, dataset_name = "Mixed") {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, trial, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject)
    ) %>%
    mutate(
      trial_id = interaction(subject, trial, drop = TRUE)
    )


  axis_labels <- c("X", "Y", "Z")
  blocks <- unique(step_summary$Block)
  results <- list()

  for (blk in blocks) {
    for (axis in axis_labels) {
      data_sub <- step_summary %>%
        filter(Block == blk, Axis == axis)

      model <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = data_sub)
      aov_tbl <- anova(model)
      emmeans_out <- emmeans(model, pairwise ~ Step)

      key <- glue::glue("{dataset_name} - Block {blk} - Axis {axis}")

      results[[key]] <- list(
        ANOVA = aov_tbl,
        Pairwise = summary(emmeans_out$contrasts),
        Emmeans = summary(emmeans_out$emmeans),
        FixedEffects = fixef(model),
        RandomEffects = ranef(model),
        ScaledResiduals = resid(model, scaled = TRUE),
        Model = model
      )
    }
  }

  return(results)
}

# -------- Run Full Diagnostic LMMs --------
stepwise_lmm_diag_results <- run_stepwise_lmm_full_diagnostics(tagged_data)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00381883 (tol = 0.002, component 1)
# -------- Print Function --------
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}

# -------- Output Diagnostics --------
print_stepwise_lmm_diagnostics(stepwise_lmm_diag_results)
=========== STEPWISE LMM DIAGNOSTICS: Mixed ===========
--- Mixed - Block 1 - Axis X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
Step 0.1645  0.0329     5  3151  2.2702 0.04511 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast       estimate      SE   df t.ratio p.value
 Step1 - Step2 -0.000397 0.00677 3151  -0.059  1.0000
 Step1 - Step3  0.007712 0.00677 3151   1.139  0.8653
 Step1 - Step4  0.007607 0.00678 3151   1.121  0.8726
 Step1 - Step5 -0.011848 0.00677 3151  -1.749  0.4991
 Step1 - Step6  0.003061 0.00677 3151   0.452  0.9976
 Step2 - Step3  0.008109 0.00677 3151   1.197  0.8384
 Step2 - Step4  0.008004 0.00678 3151   1.180  0.8465
 Step2 - Step5 -0.011451 0.00677 3151  -1.691  0.5381
 Step2 - Step6  0.003458 0.00677 3151   0.511  0.9958
 Step3 - Step4 -0.000106 0.00679 3151  -0.016  1.0000
 Step3 - Step5 -0.019561 0.00678 3151  -2.886  0.0453
 Step3 - Step6 -0.004651 0.00677 3151  -0.687  0.9835
 Step4 - Step5 -0.019455 0.00679 3151  -2.865  0.0481
 Step4 - Step6 -0.004546 0.00678 3151  -0.670  0.9852
 Step5 - Step6  0.014909 0.00677 3151   2.201  0.2374

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 0.8681882108  0.0003971126 -0.0077122210 -0.0076066700  0.0118484333 
        Step6 
-0.0030608525 

Random Effects:
$trial_id
        (Intercept)
14.1   2.685725e-01
7.2    2.181518e-01
18.2  -2.249061e-01
20.2  -1.986507e-01
23.2  -2.008950e-01
4.3    1.660555e-01
5.3   -2.601874e-02
10.3   2.143537e-01
15.3   3.988128e-01
16.3   2.455727e-01
17.3  -5.572928e-02
2.4   -3.593609e-02
7.4   -2.631619e-01
14.4   4.736172e-01
15.4   5.693907e-01
17.4   1.686108e-02
23.4  -1.655601e-01
3.5    2.996368e-01
4.5   -1.431230e-01
7.5   -1.986744e-01
10.5  -9.089346e-01
14.5   3.509545e-01
18.5  -1.441938e-01
19.5  -2.564294e-02
20.5  -2.031300e-01
22.5  -8.499156e-02
3.6   -8.015004e-02
5.6   -6.793401e-02
14.6   4.314668e-01
15.6   3.964350e-01
16.6   2.350752e-01
17.6  -1.350342e-01
18.6  -1.686790e-01
19.6   1.055164e-02
20.6  -1.013320e-01
22.6   2.037766e-01
2.7   -3.612899e-02
3.7    2.852472e-02
4.7    8.354007e-02
5.7   -2.562498e-01
7.7    3.086760e-01
8.7   -2.550900e-01
10.7  -6.602823e-01
11.7  -3.357470e-01
15.7   4.216950e-02
16.7   1.888427e-01
17.7   5.705658e-02
18.7  -2.480981e-01
22.7  -8.480812e-02
23.7   3.711666e-01
2.8   -8.881431e-02
3.8   -1.643909e-03
4.8    4.202974e-01
5.8   -2.405759e-01
7.8    5.510160e-02
8.8   -8.904536e-01
10.8   7.583179e-01
11.8   6.684579e-02
14.8  -1.053177e-01
15.8   1.181018e-01
16.8   2.976483e-01
17.8  -1.195488e-01
18.8  -4.984203e-03
19.8  -6.833946e-02
20.8   9.018688e-02
22.8  -7.270372e-02
2.9   -1.342283e-01
3.9    5.860631e-01
4.9   -5.162709e-02
7.9   -3.382774e-01
10.9  -2.404793e-01
11.9  -1.037613e-01
13.9   7.897322e-02
14.9   6.314206e-02
15.9   4.169523e-02
16.9  -1.234155e-01
17.9  -1.812074e-02
18.9  -1.306546e-01
19.9   8.369020e-02
20.9  -2.323599e-02
22.9   1.449358e-01
23.9  -8.988055e-01
2.10  -3.894624e-02
3.10   5.093475e-01
4.10   1.570298e-01
5.10  -9.748009e-02
7.10  -2.332931e-01
8.10  -4.107488e-01
10.10  5.084932e-01
11.10  4.010019e-01
14.10  2.492416e-01
15.10 -4.005323e-01
17.10 -4.125528e-02
18.10  1.677404e-01
3.11   5.023870e-02
5.11  -1.600795e-01
7.11   1.907342e-01
8.11  -7.010762e-01
10.11  5.014631e-01
14.11  2.320214e-01
15.11 -1.991632e-02
17.11  2.598475e-02
18.11  2.557835e-01
19.11  8.665962e-02
22.11 -1.953512e-01
23.11 -1.756302e-01
2.12  -1.007107e-02
3.12  -1.547449e-01
4.12   1.806337e-01
7.12  -1.896180e-01
8.12  -5.534997e-01
10.12 -6.824374e-01
13.12  5.477371e-05
14.12  2.599194e-02
15.12 -3.593499e-01
16.12 -6.743347e-02
17.12  3.612282e-02
18.12  1.019149e-01
19.12 -4.846811e-02
23.12  4.468331e-01
3.13   1.054606e-01
4.13  -7.605871e-03
5.13  -2.078577e-01
7.13   3.101531e-02
8.13  -3.034046e-01
10.13 -5.781796e-01
13.13  8.278510e-02
14.13  2.505911e-01
15.13 -2.099092e-01
16.13  5.694023e-01
17.13 -5.505216e-02
18.13 -5.815379e-02
19.13 -7.925013e-02
22.13 -8.271172e-02
23.13  6.272013e-01
2.14  -2.151026e-01
3.14   2.050655e-01
5.14  -1.562726e-01
7.14   1.158310e-01
8.14  -5.370485e-01
10.14  1.230332e-01
11.14 -2.317414e-01
14.14 -1.106743e-01
15.14 -2.199225e-01
16.14  1.141437e-01
17.14  2.600838e-01
18.14  1.280968e-01
22.14 -8.464644e-02
23.14  1.436821e+00
2.15   1.288155e-01
4.15   7.131352e-02
5.15  -1.350658e-01
8.15  -2.574010e-01
10.15  3.287337e-01
11.15 -7.539125e-01
13.15  1.867509e-01
15.15 -1.411929e-01
16.15 -7.651658e-02
17.15 -2.195343e-03
18.15  1.914732e-01
19.15  2.107960e-02
20.15 -1.369375e-01
23.15 -8.955239e-02
3.16  -3.083465e-02
4.16   2.421793e-01
5.16   4.730376e-02
7.16  -1.842321e-01
8.16  -3.935254e-01
10.16 -6.041487e-01
11.16 -6.776095e-01
13.16 -1.025992e-01
14.16  5.716159e-02
15.16 -3.419713e-01
16.16  2.648562e-02
19.16  1.274303e-02
20.16  1.862621e-01
22.16  9.107076e-02
23.16  1.670889e-01
3.17  -3.692022e-02
4.17  -1.061579e-01
5.17   1.102904e-01
8.17  -4.806593e-01
10.17 -1.218403e+00
13.17 -1.559250e-01
14.17 -2.101237e-01
15.17 -1.088755e-01
16.17 -2.745365e-02
17.17 -7.552261e-02
18.17 -2.345732e-01
19.17 -2.393874e-02
20.17 -1.892715e-02
22.17 -8.733994e-02
23.17  2.571898e+00
2.18  -2.875053e-02
3.18  -1.423067e-01
4.18  -5.527905e-02
5.18  -4.162256e-02
7.18   3.252677e-01
10.18 -7.702617e-01
13.18 -1.725158e-01
16.18 -8.503824e-02
18.18 -1.321428e-01
20.18 -5.786070e-02
22.18 -2.155336e-01
23.18  2.678386e-01
3.19   1.106849e-01
4.19   1.082460e-01
5.19  -1.749158e-01
7.19   7.471249e-02
8.19  -1.081167e-01
10.19 -1.086252e+00
11.19  4.890615e-01
13.19 -1.350100e-01
14.19  3.248716e-01
15.19  1.270724e-01
16.19 -1.892129e-01
17.19 -4.723252e-02
18.19  9.449079e-03
19.19 -1.301005e-01
20.19 -1.976741e-01
22.19 -4.884937e-02
23.19 -3.086096e-01
3.20  -5.899570e-03
4.20  -1.010684e-01
5.20  -1.353373e-01
7.20  -2.308199e-01
8.20  -1.767363e-01
13.20 -1.961909e-01
14.20 -2.617731e-01
16.20 -4.859857e-02
17.20  3.080025e-02
18.20 -2.523899e-02
19.20 -9.378427e-02
20.20 -1.726464e-02
22.20 -1.009806e-01
23.20  1.241227e+00
2.21  -3.489891e-02
3.21  -6.600649e-01
4.21   1.342702e-01
5.21  -2.539780e-01
7.21  -1.666229e-01
8.21   2.486274e-01
10.21 -2.019720e-01
11.21 -9.705355e-01
14.21  2.114700e-02
15.21 -1.237186e-01
16.21 -2.299161e-02
17.21 -9.687592e-03
18.21  1.156902e-01
19.21 -8.027464e-02
20.21 -3.211510e-01
22.21  9.824140e-02
23.21 -7.167874e-02
2.22  -1.437409e-01
3.22  -3.134492e-01
4.22   1.092324e-01
7.22   1.615214e-01
8.22   1.714724e-01
10.22  2.350652e-01
11.22 -4.509906e-01
13.22  4.923534e-01
14.22  1.852885e-01
15.22  2.795959e-02
16.22 -2.660942e-01
17.22 -8.478092e-02
18.22 -1.032404e-01
19.22  1.056856e-01
20.22 -1.451047e-01
22.22 -5.780709e-02
23.22  1.094174e+00
2.23   1.630387e-01
4.23   2.711805e-01
5.23  -6.710984e-02
7.23   1.078855e-01
8.23   2.942230e-01
10.23  4.702579e-01
11.23  1.555298e-01
13.23  1.012130e-01
15.23  8.264836e-02
17.23  1.108723e-01
18.23  1.070316e-01
19.23  1.128826e-01
20.23  2.792300e-01
22.23 -9.790403e-02
2.24  -1.133855e-01
4.24   4.336839e-02
5.24  -1.068182e-01
7.24   1.376968e-01
8.24   2.637795e-01
10.24  6.842806e-01
13.24  5.878387e-02
14.24 -2.757947e-01
15.24  5.265077e-02
16.24  1.859226e-01
17.24  6.441907e-02
19.24  1.069688e-01
20.24  1.751188e-01
22.24 -5.555568e-02
23.24 -3.659642e-01
2.25   1.601031e-02
3.25  -1.784220e-01
4.25   4.114271e-02
5.25  -1.121506e-01
7.25  -9.387643e-02
10.25 -8.295314e-01
13.25  4.758808e-02
14.25  5.008545e-02
15.25  8.347037e-02
17.25 -8.726725e-02
18.25 -3.304464e-02
19.25  3.638821e-02
20.25  4.349722e-02
22.25  5.747227e-02
2.26   8.151129e-03
3.26  -1.446678e-01
4.26   1.926887e-01
5.26   6.249508e-02
7.26   1.956466e-02
8.26   1.326760e-01
10.26 -2.617424e-01
14.26  3.279892e-01
15.26  1.458522e-01
16.26 -2.068557e-01
18.26  2.200125e-01
19.26 -9.210064e-02
20.26 -8.561738e-02
2.27  -3.039721e-01
3.27  -9.677634e-02
4.27   5.724536e-02
5.27   1.241236e-01
8.27   1.366288e+00
10.27  4.366075e-01
14.27 -2.180079e-01
15.27  2.971468e-01
16.27 -2.500964e-01
17.27 -1.377912e-01
18.27  3.694701e-02
19.27 -1.598070e-01
22.27 -5.733499e-03
23.27 -6.630202e-01
2.28  -9.287797e-02
3.28  -4.839125e-01
4.28  -1.216817e-01
7.28   5.093070e-03
10.28  3.064554e-01
11.28  1.855245e-01
15.28  4.244366e-01
16.28 -2.952009e-02
17.28 -1.517977e-01
19.28  1.555645e-01
20.28 -1.010535e-01
22.28  2.205467e-01
23.28  1.786833e-01
2.29  -2.424109e-01
3.29  -2.451738e-01
4.29  -2.400663e-01
5.29  -1.085197e-01
7.29   3.398765e-03
8.29  -3.036769e-01
13.29  8.347110e-03
14.29 -3.742990e-02
16.29  7.363958e-02
17.29  1.038590e-01
18.29  3.222792e-01
20.29 -2.126068e-01
22.29 -3.243939e-02
23.29 -6.538212e-01
2.30  -2.480734e-01
3.30   4.457236e-01
5.30   2.273017e-02
7.30  -8.249598e-03
10.30  1.102854e+00
11.30  9.076654e-01
13.30 -9.258343e-02
14.30  1.331701e-01
15.30 -6.414701e-02
18.30  4.383158e-01
19.30 -1.575905e-01
20.30 -2.468640e-01
22.30 -2.239311e-01
23.30 -7.733883e-01
2.31  -1.744407e-02
3.31  -1.409643e-01
4.31  -2.224939e-01
7.31  -2.594405e-01
8.31   4.855451e-02
10.31  5.497895e-01
11.31  1.964615e-01
13.31  1.049497e-01
14.31  6.453158e-02
16.31  5.533085e-03
17.31 -9.317107e-02
18.31  1.966623e-01
19.31 -8.389995e-02
20.31 -1.255802e-01
22.31  5.997394e-02
23.31 -5.487091e-01
2.32  -2.373464e-01
4.32  -9.609216e-02
5.32   2.160180e-02
7.32   1.222133e-01
8.32   5.808713e-01
13.32 -1.368530e-01
14.32 -3.498555e-02
15.32  2.152468e-01
17.32 -8.273620e-02
18.32  1.055714e-01
19.32 -3.822352e-02
20.32 -1.152383e-01
22.32  3.065356e-02
23.32  1.015824e+00
2.33  -2.015264e-01
4.33  -2.194942e-01
7.33  -8.742828e-02
8.33   2.364160e-01
13.33  6.634835e-02
15.33  1.341434e-01
16.33 -9.599237e-02
17.33  6.145768e-02
18.33 -7.402172e-02
19.33 -6.116264e-02
20.33  2.203658e-01
22.33 -2.626157e-02
2.34  -7.057808e-02
3.34   1.135730e-01
5.34   7.389653e-01
8.34   1.195921e-01
10.34  1.218231e+00
11.34 -7.074377e-01
13.34  2.323908e-02
14.34 -1.617373e-01
16.34 -7.138652e-02
17.34  1.360346e-01
18.34 -2.247795e-01
19.34 -4.777659e-02
22.34 -5.175498e-02
23.34 -3.048357e-01
2.35  -2.257382e-01
3.35  -2.463031e-01
4.35  -1.939092e-01
5.35  -7.960561e-02
7.35   5.826613e-02
8.35   3.385079e-01
10.35  1.111933e-01
13.35  3.629080e-02
14.35  4.457607e-02
15.35 -2.455640e-01
16.35  2.128481e-01
17.35 -4.117490e-02
18.35  7.517433e-02
19.35  4.674353e-02
20.35 -1.469796e-01
22.35  1.518017e-01
23.35 -1.162149e+00
2.36   4.730054e-02
3.36  -4.009397e-01
5.36  -1.120917e-01
7.36  -3.490213e-02
8.36   1.545074e-01
10.36 -1.623859e-01
11.36  6.646953e-01
13.36 -1.725332e-01
17.36  1.111652e-01
18.36 -2.609522e-02
20.36  6.243375e-02
22.36  4.166740e-01
23.36  5.585861e-01
2.37   3.540214e-01
3.37  -4.367580e-01
4.37  -4.031327e-03
7.37   1.405898e-01
8.37   3.240504e-01
13.37 -2.152056e-01
14.37  5.053446e-03
16.37  1.419418e-01
17.37 -4.975568e-02
18.37 -3.548100e-02
19.37  7.811817e-02
20.37 -5.307813e-03
22.37 -1.480168e-01
23.37 -3.003428e-01
2.38   5.408895e-01
4.38  -2.419795e-02
7.38  -5.469323e-02
8.38  -2.402543e-01
11.38  2.782650e-01
14.38  4.724150e-02
15.38 -1.378584e-01
16.38 -2.064164e-01
17.38  1.412517e-01
18.38 -5.159429e-02
20.38  9.627381e-02
22.38 -3.266479e-02
3.39  -1.495644e-02
4.39  -1.854346e-01
5.39   7.675490e-02
7.39  -2.730809e-01
10.39  1.164811e-01
11.39  1.107867e+00
13.39 -3.850346e-02
14.39  9.514426e-02
15.39 -1.769909e-01
16.39  7.219977e-02
17.39  1.524035e-01
18.39 -2.516368e-02
19.39  6.135026e-02
20.39  3.442931e-01
22.39  1.442567e-02
23.39 -9.102488e-01
2.40   2.151102e-01
3.40   5.853586e-02
4.40  -1.688027e-01
5.40   2.009926e-01
8.40   4.110111e-01
10.40 -7.351627e-01
11.40 -8.894360e-02
13.40 -2.591243e-01
14.40 -7.448025e-02
15.40 -8.075356e-02
16.40 -3.501617e-01
17.40  1.497524e-02
18.40 -1.550667e-02
19.40  2.632445e-03
20.40 -5.795474e-02
22.40 -1.949058e-02
23.40 -7.913716e-01
2.41  -1.295410e-01
3.41  -2.758162e-01
4.41  -2.660740e-01
5.41   8.902017e-02
7.41   7.367503e-02
8.41   2.715906e-01
10.41  2.017385e-01
13.41 -1.164160e-02
14.41 -3.508111e-01
16.41 -1.873779e-01
17.41 -8.161985e-03
19.41 -5.011155e-02
20.41  3.480269e-01
23.41 -4.520999e-01
2.42   5.891618e-01
3.42   5.937360e-01
5.42   2.289540e-01
7.42   1.058530e-01
8.42   7.712217e-01
10.42  9.537387e-01
13.42 -2.101866e-01
14.42 -2.771048e-01
15.42 -7.782139e-02
16.42  4.179126e-02
17.42  7.533950e-02
18.42 -1.679376e-01
19.42  1.247291e-01
20.42  1.841457e-01
22.42  2.367635e-02
23.42 -2.606028e-01
2.43   6.649494e-02
4.43  -3.012023e-01
5.43   1.424907e-01
7.43   1.113866e-01
8.43   1.648847e-01
10.43  4.526749e-01
11.43 -7.019784e-01
14.43 -1.132764e-01
16.43  1.817257e-01
17.43  2.515822e-02
18.43 -1.003457e-01
19.43  4.784532e-02
20.43  2.022571e-01
22.43 -5.428157e-02
23.43  8.085397e-02
2.44   7.531330e-02
3.44  -1.518418e-01
4.44  -2.560914e-02
5.44   8.902938e-02
7.44  -2.543992e-01
10.44 -1.264061e-01
11.44  1.191556e+00
13.44  1.187449e-01
14.44 -5.398540e-01
15.44 -1.064277e-01
16.44  1.629965e-01
17.44 -3.740511e-02
18.44 -3.224241e-01
19.44 -7.545664e-02
20.44  5.572802e-02
22.44  1.452884e-01
23.44  1.805334e-01
2.45   3.277246e-01
3.45   1.888337e-01
4.45   2.927485e-02
5.45   1.910595e-01
7.45   2.003727e-01
11.45  9.494963e-01
13.45 -1.477909e-02
14.45 -1.203135e-01
15.45 -2.239874e-01
16.45 -2.317522e-01
17.45 -2.174553e-01
18.45 -2.020216e-02
19.45  6.307338e-02
20.45  1.199719e-01
23.45  5.889845e-01
2.46  -7.661599e-03
4.46   1.900191e-01
5.46   7.699739e-03
7.46   2.281548e-01
10.46  1.068484e-01
11.46 -7.232590e-01
13.46  5.196113e-01
14.46 -3.708090e-01
15.46  1.334899e-01
17.46 -7.665556e-02
18.46  8.182840e-02
20.46 -2.638618e-02
22.46  8.297910e-02
23.46  1.523788e-01
3.47   1.113021e+00
4.47  -1.064822e-01
5.47   1.089587e-01
7.47  -1.844373e-02
8.47  -1.273028e-01
11.47 -3.543872e-01
13.47 -1.189041e-01
14.47 -3.307427e-01
15.47 -2.690307e-01
16.47 -3.436262e-01
18.47 -1.197347e-01
19.47 -6.563307e-02
22.47 -1.517937e-02
23.47 -9.292019e-01
5.48   1.317653e-01
23.48 -5.995544e-01

$subject
   (Intercept)
2  -0.31358771
3   0.41571928
4  -0.35762562
5  -0.36447351
7  -0.23568086
8   0.39913442
10  0.78691914
11  1.23705880
13 -0.26692918
14  0.27219549
15 -0.04321952
16 -0.31115635
17 -0.51040921
18 -0.34386805
19 -0.56345539
20 -0.34346882
22 -0.34435662
23  0.88720371

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
            1             2             3             4             5 
-0.1320247745  0.0927011090  0.0018054628  0.0009286751  0.1874497471 
            6 
-0.1883382772 

=============================================================

--- Mixed - Block 1 - Axis Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq  Mean Sq NumDF  DenDF F value Pr(>F)
Step 0.04349 0.008698     5 3151.1  0.3736 0.8671

Pairwise Comparisons:
 contrast       estimate      SE   df t.ratio p.value
 Step1 - Step2 -5.48e-03 0.00858 3151  -0.639  0.9881
 Step1 - Step3 -3.55e-03 0.00859 3151  -0.413  0.9985
 Step1 - Step4 -3.50e-03 0.00860 3151  -0.407  0.9986
 Step1 - Step5 -2.64e-04 0.00859 3151  -0.031  1.0000
 Step1 - Step6  4.92e-03 0.00858 3151   0.573  0.9927
 Step2 - Step3  1.93e-03 0.00859 3151   0.224  0.9999
 Step2 - Step4  1.98e-03 0.00860 3151   0.230  0.9999
 Step2 - Step5  5.21e-03 0.00859 3151   0.607  0.9906
 Step2 - Step6  1.04e-02 0.00858 3151   1.212  0.8312
 Step3 - Step4  5.01e-05 0.00861 3151   0.006  1.0000
 Step3 - Step5  3.29e-03 0.00859 3151   0.383  0.9989
 Step3 - Step6  8.47e-03 0.00859 3151   0.986  0.9224
 Step4 - Step5  3.24e-03 0.00861 3151   0.376  0.9990
 Step4 - Step6  8.42e-03 0.00860 3151   0.979  0.9247
 Step5 - Step6  5.18e-03 0.00859 3151   0.604  0.9908

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 0.8619831734  0.0054766894  0.0035499106  0.0034998587  0.0002640287 
        Step6 
-0.0049178222 

Random Effects:
$trial_id
       (Intercept)
14.1  -0.116611580
7.2   -0.284162652
18.2  -0.119880104
20.2  -0.140499393
23.2   0.270395308
4.3    0.130605340
5.3    0.091486439
10.3  -0.986016389
15.3   0.018088181
16.3   0.071141107
17.3  -0.064382296
2.4   -0.291945503
7.4    0.011910607
14.4   0.051907552
15.4   0.301609883
17.4   0.045148825
23.4   0.087777146
3.5   -0.484176198
4.5   -0.011757256
7.5   -0.202466135
10.5  -1.060876702
14.5   0.406979760
18.5  -0.115192020
19.5  -0.022173524
20.5   0.050351108
22.5   0.159427469
3.6   -0.147334676
5.6   -0.013262600
14.6   0.180365713
15.6   0.014636145
16.6   0.035453104
17.6  -0.085211377
18.6  -0.165761832
19.6  -0.011978882
20.6  -0.109686604
22.6  -0.013534831
2.7   -0.044020918
3.7   -0.292593514
4.7   -0.043261272
5.7   -0.101537919
7.7    0.536633966
8.7   -0.086705288
10.7  -0.725740962
11.7  -0.431678515
15.7  -0.094773925
16.7   0.059432750
17.7  -0.131320166
18.7  -0.338718187
22.7   0.174749072
23.7   1.211688216
2.8   -0.119763459
3.8   -0.321275379
4.8   -0.068471531
5.8   -0.075890799
7.8    0.187525180
8.8   -0.486632770
10.8   0.542459797
11.8  -0.618757124
14.8  -0.010520602
15.8  -0.183914471
16.8   0.281659465
17.8  -0.145404198
18.8  -0.074033038
19.8  -0.105938606
20.8  -0.090646869
22.8   0.139994363
2.9    0.011368227
3.9   -0.385536442
4.9    0.023204999
7.9    0.004609366
10.9  -0.769798276
11.9  -0.811948076
13.9   0.144366357
14.9   0.463476220
15.9   0.048121272
16.9   0.343111917
17.9  -0.150891096
18.9  -0.139347747
19.9  -0.123324974
20.9  -0.121794631
22.9  -0.012334481
23.9   0.099907029
2.10  -0.104794709
3.10   0.223391725
4.10  -0.094555995
5.10  -0.109544184
7.10  -0.226517541
8.10   0.236512307
10.10 -0.236838524
11.10  0.150728731
14.10  0.261752104
15.10  0.252931116
17.10 -0.031404687
18.10  0.095617583
3.11  -0.091905844
5.11  -0.197314452
7.11   0.529457797
8.11   0.637621596
10.11  0.559192304
14.11  0.250865477
15.11  0.056448868
17.11 -0.045176297
18.11 -0.091201272
19.11 -0.053843643
22.11  0.029182116
23.11 -0.015589986
2.12  -0.074763994
3.12   0.342819274
4.12  -0.032821434
7.12   0.067076890
8.12  -0.334460849
10.12 -0.703588075
13.12  0.083327431
14.12 -0.056160996
15.12 -0.105516681
16.12  0.123561337
17.12  0.063531071
18.12 -0.236317030
19.12  0.062040253
23.12  0.660564672
3.13   0.060825135
4.13  -0.046077322
5.13  -0.015764718
7.13  -0.034356594
8.13   0.254011677
10.13 -1.312509914
13.13 -0.476159075
14.13  0.365526925
15.13 -0.125954429
16.13  0.176877677
17.13 -0.169826524
18.13  0.015576972
19.13  0.015412751
22.13 -0.182303954
23.13  0.465473513
2.14  -0.233849061
3.14  -0.138696408
5.14  -0.072495225
7.14  -0.009261849
8.14   0.456982868
10.14 -0.462817154
11.14 -0.931911186
14.14 -0.087984646
15.14 -0.027231054
16.14 -0.143731028
17.14  0.043586019
18.14  0.028068096
22.14 -0.180396827
23.14  0.073746586
2.15  -0.191740640
4.15   0.110224673
5.15  -0.228872316
8.15  -0.161038182
10.15 -0.592538599
11.15 -0.597843310
13.15 -0.049629207
15.15 -0.068061771
16.15  0.161572318
17.15  0.100658617
18.15  0.078523363
19.15 -0.032048998
20.15 -0.098804337
23.15  0.056586110
3.16  -0.136822702
4.16  -0.163838559
5.16   0.013510367
7.16  -0.144579548
8.16  -0.404942846
10.16 -0.801224519
11.16 -0.641839987
13.16 -0.094699841
14.16 -0.067801756
15.16 -0.126235611
16.16 -0.084290355
19.16  0.067336596
20.16 -0.176558313
22.16 -0.134834897
23.16  0.676634207
3.17   0.321782349
4.17  -0.111123303
5.17  -0.111124699
8.17  -0.347961019
10.17 -0.856599548
13.17 -0.191808905
14.17  0.004936509
15.17 -0.026578797
16.17 -0.202941975
17.17  0.066517310
18.17 -0.177098725
19.17 -0.068600151
20.17 -0.126878761
22.17 -0.022649736
23.17 -0.301017111
2.18  -0.081450304
3.18  -0.362941289
4.18   0.051378472
5.18  -0.104029109
7.18  -0.042610062
10.18 -1.052527597
13.18 -0.210956065
16.18 -0.058878516
18.18 -0.268883698
20.18 -0.008592179
22.18 -0.011679460
23.18  0.742306243
3.19  -0.011297915
4.19  -0.121697605
5.19  -0.138599179
7.19  -0.100272987
8.19  -0.051181130
10.19 -1.177362073
11.19  0.028452530
13.19 -0.261925649
14.19  0.059904548
15.19 -0.188412597
16.19 -0.120648655
17.19  0.216199726
18.19  0.011864235
19.19  0.094703190
20.19 -0.064102198
22.19 -0.084323025
23.19 -0.447687297
3.20   0.604343809
4.20   0.032054859
5.20   0.022160146
7.20  -0.156918331
8.20   0.095579840
13.20 -0.065063240
14.20 -0.241600656
16.20 -0.289227218
17.20 -0.100563557
18.20 -0.004209508
19.20 -0.090447971
20.20 -0.030062864
22.20  0.122251137
23.20 -0.184803045
2.21  -0.110948673
3.21   0.031617764
4.21   0.011852604
5.21  -0.029295253
7.21  -0.125054585
8.21  -0.205360170
10.21  0.459116652
11.21 -1.029113760
14.21 -0.306495992
15.21 -0.098916210
16.21 -0.188275509
17.21 -0.080761491
18.21 -0.100439880
19.21  0.123631053
20.21  0.082415166
22.21  0.099551337
23.21  1.013794414
2.22  -0.038705950
3.22   0.153002119
4.22   0.130542704
7.22  -0.092752607
8.22  -0.309096557
10.22  0.214078903
11.22 -0.784932727
13.22  0.151130525
14.22 -0.105097638
15.22 -0.064399877
16.22 -0.016096730
17.22  0.091384144
18.22 -0.019968479
19.22 -0.014255839
20.22 -0.260039489
22.22  0.017401509
23.22  0.347401917
2.23  -0.092203002
4.23  -0.061013228
5.23   0.213294731
7.23  -0.121307381
8.23   0.367197824
10.23 -0.785679326
11.23  0.213596832
13.23 -0.213139963
15.23 -0.032847561
17.23 -0.122666825
18.23  0.018550393
19.23  0.104610046
20.23  0.046625274
22.23  0.030526593
2.24  -0.035372115
4.24  -0.129297977
5.24   0.056993921
7.24   0.091271031
8.24   0.219609869
10.24 -0.210111370
13.24  0.161517966
14.24 -0.130808921
15.24 -0.174283406
16.24 -0.233971436
17.24  0.029379474
19.24  0.034443819
20.24 -0.097247892
22.24 -0.068090869
23.24 -0.220809994
2.25  -0.137738744
3.25   0.115010480
4.25   0.088280386
5.25   0.027617028
7.25   0.107603278
10.25 -0.127421682
13.25 -0.032000884
14.25 -0.308735086
15.25 -0.076154132
17.25 -0.158317137
18.25  0.091095407
19.25 -0.073386115
20.25 -0.023655991
22.25 -0.130639662
2.26   0.113968927
3.26  -0.090486589
4.26  -0.085672906
5.26   0.016372446
7.26  -0.223942684
8.26  -0.821909240
10.26  0.072323651
14.26 -0.072808610
15.26  0.348385028
16.26 -0.021706043
18.26 -0.151045472
19.26  0.001480580
20.26  0.119803277
2.27  -0.139641565
3.27  -0.042090834
4.27   0.001737437
5.27   0.067629591
8.27  -0.676585262
10.27  0.239935836
14.27 -0.177429304
15.27 -0.183648241
16.27  0.179845400
17.27 -0.118740716
18.27  0.079233366
19.27 -0.039041306
22.27 -0.153703757
23.27 -0.179416625
2.28  -0.087205117
3.28   0.212336152
4.28  -0.094993765
7.28   0.152802853
10.28  0.358101464
11.28 -0.905361933
15.28 -0.038951925
16.28 -0.199006210
17.28 -0.143297437
19.28  0.002844455
20.28 -0.006670544
22.28  0.080797409
23.28 -0.248343516
2.29  -0.153668404
3.29   0.005913395
4.29   0.105680918
5.29  -0.121298612
7.29  -0.281116859
8.29  -0.374020430
13.29  0.143788496
14.29 -0.044919375
16.29  0.012482373
17.29 -0.061109915
18.29  0.269569111
20.29 -0.142777750
22.29 -0.210843227
23.29 -0.829810011
2.30  -0.258820972
3.30   0.358779048
5.30  -0.036918773
7.30  -0.039548377
10.30  1.556776360
11.30  0.487349496
13.30 -0.180595542
14.30 -0.075047231
15.30  0.092943122
18.30 -0.069910420
19.30  0.022139913
20.30 -0.106185536
22.30 -0.042117458
23.30 -0.294986733
2.31   0.255883023
3.31   0.483267020
4.31   0.028381115
7.31  -0.267796230
8.31  -0.396134645
10.31  0.095948833
11.31  2.738895509
13.31 -0.328444475
14.31  0.018702919
16.31  0.068452734
17.31 -0.002178906
18.31 -0.086190561
19.31  0.029928796
20.31  0.075047101
22.31 -0.008731144
23.31  0.159714835
2.32  -0.136676752
4.32  -0.050029982
5.32   0.326607595
7.32   0.137949709
8.32   0.139305026
13.32 -0.338798223
14.32 -0.078823775
15.32 -0.101254738
17.32  0.012865597
18.32 -0.098682311
19.32 -0.126905945
20.32 -0.205861477
22.32  0.157251812
23.32 -0.240106683
2.33  -0.147286077
4.33  -0.139725811
7.33   0.108371286
8.33   1.313633491
13.33 -0.173667941
15.33 -0.109342138
16.33 -0.250758256
17.33 -0.114279862
18.33  0.132949833
19.33  0.085445697
20.33 -0.130452097
22.33  0.007852470
2.34  -0.004370372
3.34   0.057214006
5.34   0.113689642
8.34   0.488262921
10.34  1.766539632
11.34 -0.533406413
13.34 -0.092185162
14.34 -0.148061787
16.34 -0.035807040
17.34  0.230641365
18.34  0.358968729
19.34  0.013774127
22.34  0.006750783
23.34 -0.029507220
2.35  -0.212424035
3.35  -0.324584979
4.35  -0.016936558
5.35  -0.043556180
7.35  -0.214428721
8.35  -0.399589187
10.35  2.174339705
13.35  0.197822536
14.35 -0.102226682
15.35  0.027295497
16.35  0.010696836
17.35 -0.050331396
18.35  0.098421067
19.35 -0.084651925
20.35  0.012777631
22.35 -0.041987655
23.35 -1.147192154
2.36  -0.305346248
3.36  -0.376794639
5.36   0.028348319
7.36  -0.198816084
8.36  -0.463085262
10.36  0.218576090
11.36 -0.271800183
13.36  0.049185785
17.36 -0.129250732
18.36  0.310214493
20.36 -0.167720143
22.36  0.144488955
23.36  0.253499416
2.37   0.445565577
3.37  -0.410119132
4.37  -0.027323947
7.37   0.050376365
8.37   1.456762505
13.37 -0.328112550
14.37 -0.157736826
16.37  0.068054641
17.37 -0.106921771
18.37  0.253854136
19.37  0.186745288
20.37 -0.003015787
22.37  0.037031883
23.37  0.246072639
2.38   0.631470965
4.38  -0.061823937
7.38  -0.026876760
8.38  -0.116215818
11.38  1.081726270
14.38 -0.329677300
15.38 -0.018465761
16.38 -0.001731865
17.38 -0.012354527
18.38  0.320169737
20.38  0.127643133
22.38  0.059441314
3.39  -0.459374984
4.39   0.072340383
5.39   0.070764945
7.39   0.314891918
10.39  0.969547146
11.39  1.006795285
13.39 -0.052172166
14.39  0.142174381
15.39  0.020129110
16.39 -0.067036469
17.39  0.117361832
18.39 -0.135248018
19.39 -0.222262509
20.39  0.348776922
22.39  0.012198849
23.39 -0.410175732
2.40  -0.087495602
3.40  -0.098647083
4.40  -0.132457569
5.40   0.049476645
8.40   0.585596024
10.40  0.456790077
11.40  1.155737255
13.40 -0.429785957
14.40  0.111221005
15.40 -0.007339134
16.40  0.146872576
17.40  0.195953326
18.40  0.229682999
19.40 -0.041389610
20.40  0.116392975
22.40 -0.092338099
23.40 -0.780135712
2.41   0.137149895
3.41   0.529065096
4.41  -0.118206040
5.41  -0.130242772
7.41  -0.169803609
8.41  -0.128909293
10.41  0.578293779
13.41 -0.347046182
14.41  0.041428164
16.41 -0.122781330
17.41  0.251428772
19.41 -0.102802845
20.41  0.025998449
23.41 -0.521167773
2.42   0.374081450
3.42   0.423162690
5.42  -0.176780025
7.42   0.041677290
8.42  -0.032905698
10.42 -0.259002436
13.42 -0.281203993
14.42 -0.049057382
15.42 -0.060894845
16.42 -0.015722147
17.42  0.049263558
18.42  0.163404213
19.42  0.072708033
20.42  0.025013061
22.42 -0.021550817
23.42  1.764759939
2.43   0.248831909
4.43   0.156088203
5.43   0.030342911
7.43   0.146404084
8.43   0.058889296
10.43 -0.244887618
11.43  0.065975057
14.43  0.285954885
16.43  0.080573384
17.43  0.080008653
18.43  0.142943892
19.43 -0.096696348
20.43  0.485220520
22.43 -0.058199907
23.43 -0.552300578
2.44   0.167512143
3.44  -0.240950757
4.44   0.007918817
5.44   0.045492732
7.44   0.036071328
10.44  0.997436840
11.44  0.516728883
13.44  0.273620259
14.44  0.083410704
15.44 -0.004035759
16.44 -0.077163388
17.44  0.106558643
18.44  0.087877179
19.44  0.124827992
20.44  0.220720574
22.44  0.137540604
23.44 -0.030920094
2.45   0.357434280
3.45   0.086709739
4.45   0.316149855
5.45   0.225634204
7.45  -0.148090811
11.45 -0.834249191
13.45  0.726218791
14.45 -0.076558143
15.45  0.308781227
16.45  0.082326314
17.45  0.165083334
18.45  0.061990666
19.45 -0.008541938
20.45  0.103554568
23.45 -0.670360692
2.46   0.227698248
4.46   0.246662910
5.46   0.049735712
7.46   0.437046407
10.46  1.632750814
11.46 -1.091252069
13.46  0.421955538
14.46  0.038060410
15.46  0.182986603
17.46 -0.034736973
18.46 -0.287575413
20.46  0.153073269
22.46 -0.097035002
23.46 -0.525776200
3.47   0.400225498
4.47  -0.086595495
5.47   0.061244855
7.47   0.019112267
8.47  -0.365258106
11.47  2.591503194
13.47  1.764557202
14.47  0.141058294
15.47  0.118756395
16.47  0.072666166
18.47 -0.279282957
19.47  0.103383229
22.47 -0.038857018
23.47 -0.142609307
5.48   0.032113870
23.48 -0.049936301

$subject
   (Intercept)
2  -0.31203347
3  -0.01612672
4  -0.48290124
5  -0.42909261
7  -0.33982119
8   0.38713526
10  1.37789148
11  1.44781710
13 -0.07823661
14  0.42791678
15 -0.32991041
16 -0.40550283
17 -0.50639462
18 -0.28886302
19 -0.45217993
20 -0.30829814
22 -0.49633916
23  0.80493934

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.36732185 -0.16127923  0.01344194  0.01376996  0.06401542  0.14803012 

=============================================================

--- Mixed - Block 1 - Axis Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Step  1.942  0.3884     5 3151.2     4.3 0.0006697 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast      estimate     SE   df t.ratio p.value
 Step1 - Step2 -0.07159 0.0169 3151  -4.238  0.0003
 Step1 - Step3 -0.03566 0.0169 3151  -2.109  0.2830
 Step1 - Step4 -0.03589 0.0169 3151  -2.119  0.2775
 Step1 - Step5 -0.04665 0.0169 3151  -2.759  0.0646
 Step1 - Step6 -0.01574 0.0169 3151  -0.932  0.9384
 Step2 - Step3  0.03594 0.0169 3151   2.125  0.2744
 Step2 - Step4  0.03571 0.0169 3151   2.109  0.2830
 Step2 - Step5  0.02494 0.0169 3151   1.475  0.6803
 Step2 - Step6  0.05585 0.0169 3151   3.306  0.0123
 Step3 - Step4 -0.00023 0.0170 3151  -0.014  1.0000
 Step3 - Step5 -0.01099 0.0169 3151  -0.650  0.9871
 Step3 - Step6  0.01992 0.0169 3151   1.178  0.8475
 Step4 - Step5 -0.01076 0.0170 3151  -0.635  0.9884
 Step4 - Step6  0.02015 0.0169 3151   1.190  0.8419
 Step5 - Step6  0.03091 0.0169 3151   1.828  0.4477

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

Fixed Effects:
(Intercept)       Step2       Step3       Step4       Step5       Step6 
 1.77809141  0.07159200  0.03565592  0.03588628  0.04664855  0.01573742 

Random Effects:
$trial_id
        (Intercept)
14.1   0.0310326430
7.2    0.7923597172
18.2  -1.5449978965
20.2   0.0258649701
23.2  -0.6689585029
4.3    0.1646379234
5.3   -0.1257642483
10.3   1.1975465344
15.3   0.3135354818
16.3  -0.6365720278
17.3   0.0154424284
2.4   -0.2040571887
7.4    0.4762449512
14.4   0.1555567695
15.4   0.7291088812
17.4  -0.0253246193
23.4  -0.7940679056
3.5   -0.8276012987
4.5   -0.3658089327
7.5    0.6560742510
10.5   0.6835668024
14.5  -0.0125879458
18.5  -0.9840668764
19.5  -0.4874462410
20.5  -0.1406533893
22.5  -0.2363683487
3.6   -0.4750263444
5.6   -0.0188829390
14.6  -0.3539695746
15.6  -0.3193124382
16.6  -0.6986765202
17.6  -0.2118993646
18.6  -0.6923351523
19.6  -0.2463116089
20.6  -0.1371500577
22.6  -0.0435709510
2.7   -0.0196696231
3.7   -0.6152370450
4.7    0.1453727957
5.7   -0.0983662715
7.7   -0.8448461179
8.7   -0.6549890771
10.7  -0.1444406611
11.7  -2.3636814769
15.7  -0.2417766933
16.7  -0.2635296958
17.7  -0.1377788213
18.7  -1.0815048425
22.7   0.3283787154
23.7   0.3199953144
2.8    0.1998675237
3.8   -0.0532793346
4.8   -0.1198763073
5.8   -0.2476495236
7.8    0.3189255221
8.8   -1.3109104847
10.8   2.4088174829
11.8   1.9542527292
14.8   0.2758929233
15.8   0.0826823003
16.8   0.0041318004
17.8  -0.0232317239
18.8  -0.8595693545
19.8  -0.3768344622
20.8  -0.1225114762
22.8  -0.0307349137
2.9    0.4000967519
3.9    0.0933680866
4.9    0.1902489663
7.9    0.5310651575
10.9  -0.5998971145
11.9  -1.2712407772
13.9   0.7581701668
14.9  -0.2920874312
15.9   0.4993383810
16.9   0.0633687675
17.9   0.0471584463
18.9  -0.9032584652
19.9  -0.1808716546
20.9  -0.4085057469
22.9  -0.2630288608
23.9  -1.0107559391
2.10  -0.4565343957
3.10   0.1384784389
4.10   0.2448795950
5.10  -0.4787499005
7.10   0.3203456017
8.10  -0.4429817547
10.10  4.5906218970
11.10 -1.9836164328
14.10  0.2441157322
15.10  0.6815883466
17.10 -0.0893822503
18.10 -0.3015186088
3.11  -0.2490439716
5.11  -0.2511583114
7.11   0.8345879487
8.11   0.4555071187
10.11  3.2719285413
14.11 -0.2156649053
15.11  0.8109721598
17.11  0.0924524736
18.11 -0.0085789590
19.11 -0.0228723561
22.11 -0.1621344290
23.11 -1.5608888177
2.12  -0.1505553359
3.12  -0.4650033968
4.12   0.1106040659
7.12  -0.1117626696
8.12  -1.0852863020
10.12 -1.2059606587
13.12  0.7196119528
14.12 -0.3850398440
15.12  0.1108987334
16.12  0.4190397095
17.12  0.1135565070
18.12 -0.0288995066
19.12  0.0389338881
23.12  0.2295814374
3.13  -0.3771064793
4.13   0.0699456023
5.13  -0.5974787467
7.13   0.3096585849
8.13  -0.6538307440
10.13 -0.2100206083
13.13 -0.0571936243
14.13  0.0765105345
15.13 -0.1486660807
16.13 -0.5816597146
17.13 -0.0691443520
18.13 -0.0792238007
19.13 -0.0730433448
22.13 -0.2088136695
23.13  0.7393807139
2.14  -0.4799041342
3.14   0.0429662177
5.14  -0.5358328034
7.14   0.4014564907
8.14  -1.5775988155
10.14 -0.0479511402
11.14 -1.9403520535
14.14 -0.2530772185
15.14 -0.2862241153
16.14  0.0787551071
17.14  0.0265391024
18.14 -0.5628291265
22.14 -0.5402438870
23.14 -0.1750153066
2.15  -0.4841753839
4.15  -0.0497227773
5.15  -0.4261586494
8.15  -1.1183774994
10.15  0.0236986820
11.15  0.0288746897
13.15  0.4195270874
15.15 -0.2038761194
16.15  0.0967921740
17.15  0.0485205745
18.15 -0.3875406735
19.15 -0.1245816535
20.15 -0.4948657276
23.15  0.5086647586
3.16  -0.3302975311
4.16   0.1767873074
5.16  -0.1853504170
7.16  -0.0365448478
8.16  -0.2578912865
10.16 -0.4115380333
11.16  0.1996665121
13.16  0.3188729604
14.16 -0.2503187194
15.16 -0.3321234423
16.16  0.5058177595
19.16 -0.3889623408
20.16 -0.2627288194
22.16  0.0442784503
23.16 -0.0692493745
3.17  -0.7236498574
4.17   0.4688075806
5.17  -0.1206421864
8.17  -0.4084936265
10.17  0.5436250493
13.17  0.0059979902
14.17  0.0701759101
15.17  0.2758167115
16.17 -0.3496498983
17.17 -0.0878553346
18.17 -0.3155344102
19.17 -0.1918277541
20.17  0.0248886785
22.17  0.0185697337
23.17  0.5356832319
2.18   0.5142914577
3.18   0.0125777671
4.18  -0.0759059101
5.18  -0.4823325960
7.18   0.0647820201
10.18  0.0465254280
13.18 -0.1696524058
16.18 -0.1610706207
18.18 -0.6882878202
20.18  0.0379247110
22.18 -0.1518661380
23.18 -0.0810386220
3.19  -0.5385990198
4.19  -0.1352045538
5.19  -0.3464164396
7.19   0.3765839937
8.19  -0.3624901866
10.19 -0.9502627909
11.19  0.8844839964
13.19  0.2195772678
14.19 -0.3682919374
15.19  0.2044035770
16.19  0.3724705047
17.19  0.1619943427
18.19 -0.3897538573
19.19  0.2541758102
20.19 -0.0222397167
22.19  0.0017746477
23.19  0.6473871237
3.20  -1.1396690519
4.20  -0.1666577931
5.20  -0.5995050909
7.20   0.0143843210
8.20   0.7335103804
13.20  0.9644892272
14.20  0.1239780208
16.20 -0.0214393693
17.20 -0.1516851603
18.20 -0.5410911559
19.20 -0.0751905575
20.20 -0.3598506406
22.20 -0.2419198070
23.20  2.7303834859
2.21  -0.2219105323
3.21  -0.9085175774
4.21  -0.1696232315
5.21  -0.0571372583
7.21  -0.5282029310
8.21  -0.2584264369
10.21  0.5957270845
11.21 -0.6363837109
14.21 -0.0882838557
15.21  0.1092676681
16.21 -0.0126356749
17.21 -0.0841637519
18.21 -0.5548192749
19.21  0.3244225333
20.21 -0.1002243936
22.21  0.1472172752
23.21  2.5580440955
2.22  -0.0145598381
3.22  -0.3222140830
4.22  -0.0306658277
7.22  -0.2157042884
8.22  -0.5942377543
10.22 -1.6407591514
11.22 -0.9261756893
13.22  0.6517301374
14.22  0.4500582645
15.22  0.2178153795
16.22 -0.2216736716
17.22 -0.1134276382
18.22 -0.3351951489
19.22  0.0083859541
20.22 -0.2666001652
22.22 -0.0521621908
23.22  0.7232963905
2.23  -0.1284683564
4.23   0.3442556864
5.23   0.2915079890
7.23   0.0148436462
8.23  -0.2163542274
10.23 -1.2030277717
11.23 -0.7437645516
13.23  0.0979295770
15.23  0.0145048403
17.23 -0.0105355610
18.23  0.1627697776
19.23  0.2634102107
20.23 -0.3050350635
22.23 -0.2482912208
2.24  -0.0608145217
4.24   0.1468070981
5.24  -0.2807539020
7.24   0.2739366834
8.24  -0.4323949241
10.24 -0.9708674140
13.24 -0.0948884529
14.24  0.7207530774
15.24 -0.4614797950
16.24  0.0497954521
17.24  0.0086816481
19.24 -0.2954560002
20.24  0.0087182051
22.24 -0.2757293678
23.24  0.2306331889
2.25  -0.6250430850
3.25  -1.3152517460
4.25  -0.0578255286
5.25  -0.0389116370
7.25   0.3812886312
10.25 -0.4905658205
13.25  0.9427460517
14.25 -0.1026051474
15.25  0.1027336800
17.25  0.0719358861
18.25 -0.1023203125
19.25 -0.1063828351
20.25 -0.1850315360
22.25 -0.0768759361
2.26   0.1520407241
3.26  -0.1238441520
4.26  -0.1571532795
5.26   0.1441510559
7.26  -0.0618937397
8.26   0.8077194272
10.26 -0.1853478969
14.26  0.0003245317
15.26  0.4397425972
16.26 -0.0020027955
18.26 -0.1210737555
19.26  0.0195486249
20.26 -0.2134425568
2.27   0.2712828127
3.27   1.1831094267
4.27   0.2373657291
5.27   0.6045174904
8.27   0.5045495916
10.27 -0.6002517681
14.27 -0.2440969131
15.27 -0.3238599620
16.27 -0.1958495860
17.27 -0.1872673617
18.27 -0.2274508790
19.27 -0.4366045828
22.27 -0.1502931103
23.27  0.4313875717
2.28  -0.1605267788
3.28  -0.1855684248
4.28   0.2049731090
7.28  -0.2654513953
10.28 -0.8245419764
11.28 -1.2736790315
15.28 -0.0139648565
16.28 -0.2801289749
17.28 -0.2207943806
19.28 -0.1021687866
20.28 -0.0150391837
22.28 -0.2177467189
23.28 -1.2597971698
2.29   0.6339642893
3.29   0.8284787787
4.29  -0.0519198079
5.29   0.2599848188
7.29  -0.0341455333
8.29  -0.3158943122
13.29  0.4938120446
14.29  0.3012398032
16.29  0.0207787339
17.29  0.0488214189
18.29 -0.2709453772
20.29 -0.3024379391
22.29 -0.0531260824
23.29 -0.4823593763
2.30  -0.2873217324
3.30   0.4870818452
5.30   0.4993756785
7.30  -0.0678075226
10.30 -0.7694882191
11.30  3.6245397134
13.30 -0.0556396068
14.30  0.2903040680
15.30 -0.1617183085
18.30  0.4063359657
19.30  0.0605862108
20.30  0.1145732414
22.30 -0.1081076606
23.30 -0.7269831220
2.31  -0.2202983930
3.31  -0.0149382199
4.31  -0.1983941836
7.31  -0.8994338309
8.31  -0.4501195324
10.31  0.3140021244
11.31  2.7130972897
13.31 -0.2187327198
14.31 -0.2926378072
16.31  0.6254916199
17.31 -0.0800349868
18.31  0.9611897382
19.31 -0.0597982627
20.31 -0.4233646435
22.31 -0.0526532217
23.31  1.4543145890
2.32  -0.1788044890
4.32  -0.1157616380
5.32  -0.0877354852
7.32  -0.4133613530
8.32   1.2391856011
13.32 -0.4164905431
14.32  0.5400920878
15.32 -0.1338498503
17.32  0.0376345811
18.32  0.2207239653
19.32  0.4706682023
20.32  0.6160531036
22.32 -0.1406187941
23.32  3.5343533680
2.33  -0.4951737461
4.33   0.2241725897
7.33  -0.5493134577
8.33   2.6697337975
13.33 -0.0883678028
15.33 -0.6673938100
16.33 -0.2269893820
17.33  0.0807424999
18.33  0.1500991684
19.33  0.0092641598
20.33  0.1698479843
22.33  0.0051818910
2.34  -0.1491076071
3.34   0.0813862118
5.34   0.3363186795
8.34   0.4964220360
10.34  0.3094857943
11.34 -0.3491689171
13.34  0.3974953604
14.34 -0.0532125209
16.34 -0.4423421236
17.34 -0.0505242475
18.34  0.0800886291
19.34  0.2215984562
22.34  0.4390279816
23.34  0.2802824078
2.35  -0.1572118726
3.35   0.8249635172
4.35  -0.2606250891
5.35   0.0996937392
7.35  -0.3128443786
8.35   0.7154017074
10.35 -0.1303918151
13.35 -0.1069123430
14.35  0.1163357785
15.35 -0.4086032638
16.35 -0.3564510589
17.35 -0.0193365105
18.35  0.6170640690
19.35  0.2709648452
20.35  0.3913201464
22.35  0.0394341418
23.35 -0.1116393693
2.36   0.0440250060
3.36   0.4246299331
5.36   0.1380882838
7.36   0.0201880863
8.36   0.0817931118
10.36  0.1670161829
11.36  3.4805977985
13.36 -0.7297825188
17.36 -0.1510096835
18.36  0.1128895845
20.36 -0.0779623732
22.36  0.1293335934
23.36 -0.1541044583
2.37   0.5054109153
3.37   0.7292914387
4.37  -0.2877865670
7.37   0.4352978680
8.37   0.5408046724
13.37 -0.7738284749
14.37  0.0050214817
16.37  0.6500821981
17.37 -0.2721282342
18.37  0.8181852829
19.37 -0.0380769719
20.37  0.2017381445
22.37  0.2336318157
23.37 -0.3762659514
2.38   0.9995935061
4.38  -0.1975121185
7.38   0.1153423794
8.38   0.4530736411
11.38  0.0813820581
14.38 -0.0987493167
15.38 -0.6179566235
16.38 -0.2807243953
17.38 -0.0159175649
18.38  0.3371742334
20.38  0.3047252399
22.38  0.1615732800
3.39   0.1957122824
4.39   0.2575185193
5.39   0.5270909585
7.39   0.0741292523
10.39  0.4432704726
11.39  0.4319491689
13.39 -0.5860917860
14.39  0.0673322635
15.39 -0.3192479340
16.39  0.1105980029
17.39 -0.2322735462
18.39  0.5899456373
19.39 -0.0969428500
20.39  0.3692689996
22.39  0.2064828899
23.39 -0.1052076232
2.40  -0.1926826300
3.40   0.4155342513
4.40  -0.0495453841
5.40   0.2008912001
8.40  -0.1931883498
10.40 -0.3474091014
11.40  1.8658383450
13.40 -0.9086253968
14.40  0.1941310803
15.40 -0.7738358209
16.40  0.8241619262
17.40  0.2009358816
18.40  0.8848287349
19.40 -0.3367000579
20.40  0.1615352992
22.40  0.0049654780
23.40  0.1828947820
2.41  -0.1962953470
3.41   0.0911133246
4.41  -0.4239122507
5.41   0.2288846733
7.41  -0.6393311330
8.41  -0.8870249648
10.41 -1.1431809213
13.41 -0.9853350874
14.41 -0.2181925174
16.41  0.0702412949
17.41  0.2748372705
19.41  0.2885539121
20.41  0.1811017104
23.41 -0.4112938295
2.42   0.0499839541
3.42   1.5069782471
5.42   0.2067164674
7.42  -0.4352310491
8.42   1.5736331115
10.42  0.0620541383
13.42 -0.9501361993
14.42  0.0461084898
15.42 -0.1583739909
16.42 -0.6057880783
17.42  0.0945881521
18.42  0.6327769597
19.42  0.3096893002
20.42 -0.0673416737
22.42  0.3170001922
23.42 -1.4269655055
2.43   0.3328491647
4.43  -0.5719243818
5.43   0.4943121630
7.43  -0.0215171177
8.43   0.2887327858
10.43  0.5215996844
11.43 -0.5321828896
14.43 -0.1554029106
16.43  0.1647572774
17.43  0.1911432732
18.43  0.2746485465
19.43 -0.2338407563
20.43  0.4670717281
22.43  0.1709235181
23.43 -0.0063676338
2.44  -0.3231601395
3.44   0.2976221523
4.44   0.3580267397
5.44   0.1962188642
7.44  -0.0900638292
10.44 -0.8629342820
11.44  1.7448919210
13.44  0.1000505264
14.44 -0.2561474902
15.44 -0.3247380106
16.44  0.2857868346
17.44 -0.0243737058
18.44  1.2540657757
19.44  0.2784859643
20.44  0.0190501330
22.44  0.2265743082
23.44  0.0387772495
2.45   0.4651265845
3.45   0.9652569584
4.45   0.1433712370
5.45   0.1408454701
7.45   0.3236846353
11.45 -0.8331342360
13.45 -0.0507640407
14.45 -0.0899033212
15.45  1.4503744465
16.45  0.1006895028
17.45 -0.0506977228
18.45  0.8783363075
19.45  0.3717847667
20.45  0.3200929736
23.45 -2.0208740930
2.46   0.2680905937
4.46  -0.0483056484
5.46   0.2335244444
7.46  -0.6776706792
10.46 -1.9799009402
11.46 -1.9877406903
13.46  0.3010983802
14.46 -0.1380034561
15.46 -0.5918493613
17.46  0.2454269405
18.46  1.3781481620
20.46  0.1269030030
22.46  0.3450880314
23.46 -1.1388951888
3.47   0.7742669840
4.47  -0.2387938914
5.47   0.2065771573
7.47  -0.4355986552
8.47   0.9912476599
11.47 -1.1671565985
13.47 -0.0289682982
14.47 -0.2058442197
15.47  0.4656034960
16.47  0.6559052388
18.47  1.2690422602
19.47  0.2988328189
22.47  0.1086211767
23.47 -0.5143409890
5.48  -0.2451955577
23.48 -1.3047209486

$subject
   (Intercept)
2   -0.8638459
3    1.0001267
4   -0.6663734
5   -0.9705752
7    0.2207340
8    0.7731093
10   1.0767297
11   2.3399490
13   0.3965736
14  -0.8533339
15   0.0456545
16  -0.5574008
17  -1.2815074
18   0.1110446
19  -0.8987958
20  -0.8513550
22  -0.7623684
23   1.7416345

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
 0.21361758 -0.24249548 -0.17088005 -0.17164653 -0.06187026  0.30262151 

=============================================================

--- Mixed - Block 2 - Axis X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 16.394  1.4904    11  6049   16.89 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.003946 0.0179 6049  -0.220  1.0000
 Step1 - Step3   -0.005719 0.0179 6049  -0.320  1.0000
 Step1 - Step4    0.004589 0.0179 6049   0.256  1.0000
 Step1 - Step5    0.000053 0.0179 6049   0.003  1.0000
 Step1 - Step6    0.031659 0.0179 6049   1.769  0.8349
 Step1 - Step7    0.052129 0.0179 6049   2.911  0.1370
 Step1 - Step8    0.065019 0.0179 6049   3.633  0.0149
 Step1 - Step9    0.090900 0.0179 6049   5.079  <.0001
 Step1 - Step10   0.106504 0.0179 6049   5.951  <.0001
 Step1 - Step11   0.118291 0.0179 6049   6.610  <.0001
 Step1 - Step12   0.131198 0.0179 6049   7.331  <.0001
 Step2 - Step3   -0.001773 0.0179 6049  -0.099  1.0000
 Step2 - Step4    0.008535 0.0179 6049   0.477  1.0000
 Step2 - Step5    0.003999 0.0179 6049   0.223  1.0000
 Step2 - Step6    0.035605 0.0179 6049   1.989  0.7008
 Step2 - Step7    0.056074 0.0179 6049   3.132  0.0753
 Step2 - Step8    0.068965 0.0179 6049   3.854  0.0066
 Step2 - Step9    0.094846 0.0179 6049   5.300  <.0001
 Step2 - Step10   0.110450 0.0179 6049   6.172  <.0001
 Step2 - Step11   0.122237 0.0179 6049   6.830  <.0001
 Step2 - Step12   0.135144 0.0179 6049   7.551  <.0001
 Step3 - Step4    0.010308 0.0179 6049   0.576  1.0000
 Step3 - Step5    0.005772 0.0179 6049   0.323  1.0000
 Step3 - Step6    0.037378 0.0179 6049   2.089  0.6311
 Step3 - Step7    0.057848 0.0179 6049   3.231  0.0562
 Step3 - Step8    0.070738 0.0179 6049   3.953  0.0045
 Step3 - Step9    0.096619 0.0179 6049   5.399  <.0001
 Step3 - Step10   0.112223 0.0179 6049   6.271  <.0001
 Step3 - Step11   0.124010 0.0179 6049   6.929  <.0001
 Step3 - Step12   0.136918 0.0179 6049   7.651  <.0001
 Step4 - Step5   -0.004536 0.0179 6049  -0.253  1.0000
 Step4 - Step6    0.027070 0.0179 6049   1.513  0.9375
 Step4 - Step7    0.047540 0.0179 6049   2.655  0.2494
 Step4 - Step8    0.060430 0.0179 6049   3.377  0.0356
 Step4 - Step9    0.086311 0.0179 6049   4.823  0.0001
 Step4 - Step10   0.101915 0.0179 6049   5.695  <.0001
 Step4 - Step11   0.113702 0.0179 6049   6.353  <.0001
 Step4 - Step12   0.126610 0.0179 6049   7.075  <.0001
 Step5 - Step6    0.031606 0.0179 6049   1.766  0.8365
 Step5 - Step7    0.052076 0.0179 6049   2.908  0.1380
 Step5 - Step8    0.064966 0.0179 6049   3.630  0.0151
 Step5 - Step9    0.090847 0.0179 6049   5.076  <.0001
 Step5 - Step10   0.106451 0.0179 6049   5.948  <.0001
 Step5 - Step11   0.118238 0.0179 6049   6.607  <.0001
 Step5 - Step12   0.131145 0.0179 6049   7.328  <.0001
 Step6 - Step7    0.020469 0.0179 6049   1.143  0.9927
 Step6 - Step8    0.033360 0.0179 6049   1.864  0.7816
 Step6 - Step9    0.059241 0.0179 6049   3.310  0.0440
 Step6 - Step10   0.074845 0.0179 6049   4.182  0.0017
 Step6 - Step11   0.086632 0.0179 6049   4.841  0.0001
 Step6 - Step12   0.099539 0.0179 6049   5.562  <.0001
 Step7 - Step8    0.012890 0.0179 6049   0.720  0.9999
 Step7 - Step9    0.038771 0.0179 6049   2.165  0.5751
 Step7 - Step10   0.054375 0.0179 6049   3.037  0.0983
 Step7 - Step11   0.066162 0.0179 6049   3.695  0.0119
 Step7 - Step12   0.079070 0.0179 6049   4.416  0.0006
 Step8 - Step9    0.025881 0.0179 6049   1.446  0.9543
 Step8 - Step10   0.041485 0.0179 6049   2.318  0.4636
 Step8 - Step11   0.053272 0.0179 6049   2.977  0.1156
 Step8 - Step12   0.066179 0.0179 6049   3.698  0.0118
 Step9 - Step10   0.015604 0.0179 6049   0.872  0.9994
 Step9 - Step11   0.027391 0.0179 6049   1.531  0.9323
 Step9 - Step12   0.040299 0.0179 6049   2.252  0.5117
 Step10 - Step11  0.011787 0.0179 6049   0.659  1.0000
 Step10 - Step12  0.024695 0.0179 6049   1.380  0.9675
 Step11 - Step12  0.012908 0.0179 6049   0.721  0.9999

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 7.690118e-01  3.945967e-03  5.719087e-03 -4.588718e-03 -5.300349e-05 
        Step6         Step7         Step8         Step9        Step10 
-3.165905e-02 -5.212852e-02 -6.501902e-02 -9.089965e-02 -1.065038e-01 
       Step11        Step12 
-1.182909e-01 -1.311984e-01 

Random Effects:
$trial_id
        (Intercept)
10.1  -0.1157166863
16.1   0.0413623674
17.1  -0.1182402599
19.1  -0.0643224989
7.2   -0.0935501347
14.2   0.1513759525
17.2  -0.1057685968
20.2   0.0320108893
7.3    0.1407141648
10.3   0.4736570012
17.3  -0.0425401306
18.3  -0.1329886054
20.3   0.0811664389
2.4   -0.4429187272
7.4   -0.0298049015
10.4   0.5116253766
13.4   0.0010251952
14.4   0.2651724958
16.4   0.1261964543
17.4   0.1054406284
18.4  -0.1768597533
19.4  -0.0926396760
20.4  -0.0595823069
22.4   0.0094732814
23.4   0.3599300890
2.5   -0.0973643063
3.5    0.1024058702
5.5   -0.0188821934
7.5    0.1817516475
10.5   0.3991727780
11.5  -0.1772548064
13.5   0.5900176605
14.5   0.2883464537
17.5  -0.0746408421
18.5  -0.1764973200
20.5   0.0308500230
3.6    0.0987352904
8.6   -0.1741153430
10.6   0.7003936893
11.6  -0.4906296194
14.6   0.4699589045
15.6   0.0058249465
16.6  -0.0354586581
17.6  -0.0831518250
20.6   0.1252128827
2.7   -0.4288716734
3.7    0.3877650643
5.7   -0.0386416910
7.7    0.3107652888
8.7   -0.1867284241
11.7  -0.1196989702
13.7  -0.0629869849
14.7   0.1597849032
15.7   0.0409430658
16.7   0.0037903067
17.7   0.0289039036
18.7  -0.0988972744
19.7  -0.0217095158
20.7   0.0341134573
22.7  -0.1025386409
2.8   -0.6120450053
3.8    0.0425450458
5.8   -0.0109579564
7.8   -0.0313613511
10.8   0.1805798612
11.8  -0.1752597622
14.8   0.3721396089
15.8   0.2224787338
17.8  -0.1377964024
18.8  -0.0307355627
19.8  -0.0470732878
22.8  -0.0138962105
2.9    0.1927677047
3.9    0.0177271737
4.9    0.1724928895
5.9    0.0619354379
7.9    0.0597576884
8.9   -0.0966796188
10.9   0.1954028125
13.9  -0.0856635621
14.9  -0.0825108631
16.9   0.0112457613
17.9   0.1807856772
18.9   0.0133245001
19.9   0.0753319744
22.9   0.0603796839
2.10   0.4405235522
8.10  -0.2034545290
10.10  0.5902558287
11.10  1.0032193085
13.10  0.0950693168
14.10  0.0619967482
15.10 -0.0361664635
16.10 -0.0826203999
17.10 -0.1362895456
19.10 -0.0805612432
22.10 -0.0658659971
2.11  -0.1782078590
4.11  -0.0939464180
7.11  -0.0730755223
8.11  -0.1039152568
13.11 -0.1389370738
14.11 -0.0471246352
15.11 -0.0220872096
16.11  0.4933968842
17.11 -0.0463966833
19.11 -0.0500605074
23.11 -0.1448527873
2.12  -0.0976518801
4.12   0.0739214202
5.12  -0.0481057022
8.12   0.9353542827
13.12 -0.1051227757
15.12  0.1034053408
16.12 -0.1997185275
17.12 -0.0097332928
18.12  0.0754192590
19.12  0.1315557013
22.12 -0.1262374608
23.12 -0.2490770349
2.13  -0.2761089399
3.13  -0.0669558656
4.13  -0.1950806582
5.13  -0.1288714510
7.13  -0.1079975654
10.13  0.4584648552
11.13  0.1777700804
13.13  0.0643920080
14.13  0.3547938296
15.13 -0.0847559141
16.13  0.1033234925
17.13 -0.0276871472
18.13  0.0554142048
19.13  0.0152770034
23.13 -0.3969781786
2.14   1.1061694556
3.14  -0.1617149323
4.14   0.2429625021
7.14  -0.1741223545
8.14  -0.0215920536
10.14  0.2903276736
13.14 -0.0467802519
15.14  0.0476904233
16.14  0.1929851161
17.14 -0.0511470004
18.14 -0.1226061879
19.14 -0.0138216427
23.14 -0.2954161446
2.15  -0.0176593823
4.15   0.0082522393
5.15  -0.0463394156
7.15  -0.1022876204
8.15  -0.2984416550
10.15  0.0493125508
11.15  0.0504337730
13.15 -0.0806264096
14.15  0.1774883556
15.15  0.0752695626
16.15 -0.0686160120
17.15  0.0016501764
18.15 -0.1033336909
19.15 -0.0785555570
23.15  0.0632501253
2.16  -0.1114551428
3.16   0.0445978394
7.16  -0.1217589811
8.16   0.0626195185
10.16 -0.0234285294
11.16  0.6898087488
13.16 -0.0716482315
14.16 -0.1118308240
15.16 -0.0565925493
16.16  0.0524161209
17.16 -0.0671832396
18.16 -0.0932245310
19.16 -0.1849308776
2.17   0.1096803658
3.17   0.0600627974
5.17  -0.0185343320
8.17   0.0663428609
13.17 -0.0835888529
14.17  0.1381118260
15.17 -0.2412002011
17.17 -0.0567843545
18.17 -0.0466044599
19.17  0.1524023438
23.17 -0.0696565150
2.18  -0.2570341809
3.18   0.1195530937
4.18   0.0547131175
5.18  -0.0761304291
7.18   0.0506730671
10.18  0.2009004882
13.18  0.0099008125
16.18 -0.0303209461
23.18  0.0210693827
2.19  -0.3501870907
5.19   0.0742901870
7.19   0.1041937416
10.19 -0.1356610365
11.19 -0.1916411433
13.19  0.1616850871
14.19  0.2216379130
15.19  0.1807266132
16.19 -0.2127273897
17.19 -0.0507751331
18.19 -0.1696390724
2.20  -0.0056235469
3.20   0.1139287619
4.20  -0.1132687151
5.20   0.0058629654
7.20   0.0180029940
10.20  0.3704506615
11.20  0.3744587455
13.20 -0.0195095798
15.20 -0.0979514900
17.20 -0.0351716453
18.20  0.2068350811
23.20  0.2390447500
2.21   0.4787799873
3.21  -0.0934215000
4.21   0.0266404927
5.21  -0.0309985051
7.21  -0.1104865231
14.21  0.3000982903
15.21  0.0699703717
16.21 -0.0723288020
17.21 -0.1507414732
18.21 -0.1397760127
3.22   0.1557507582
4.22  -0.1461805808
5.22  -0.0918798362
7.22   0.0319004951
10.22  0.6919691277
13.22 -0.0793129314
14.22 -0.0804202987
16.22 -0.1716473620
17.22  0.0025810139
18.22  0.0859678221
23.22 -0.1560918836
2.23   0.1524633924
3.23   0.1761516233
4.23   0.0171404265
5.23   0.0011274575
7.23  -0.1646502069
10.23  1.3947749408
11.23  0.7012128856
14.23  0.1468793450
16.23 -0.1372913438
18.23 -0.0814167462
2.24   0.0832209360
3.24   0.2749497592
4.24  -0.0676046592
5.24  -0.1458330266
11.24  0.9601554808
13.24 -0.0250941085
15.24 -0.1789824819
17.24 -0.1037708669
18.24  0.0806834487
23.24 -0.0296504812
2.25  -0.1013425655
3.25  -0.0575524372
4.25   0.2651813360
7.25   0.0639610323
13.25 -0.1314078792
15.25  0.3804145851
16.25 -0.0487037816
17.25  0.0902166423
18.25  0.0238041602
23.25  0.3087039280
2.26  -0.0024955306
3.26   0.0029508550
5.26  -0.0786267149
7.26  -0.0375683325
10.26  0.5270576881
11.26  2.0495933423
13.26 -0.0445667827
15.26  0.2479722538
16.26  0.1545948932
17.26  0.1055878128
18.26 -0.1269052051
19.26 -0.1576759395
22.26 -0.0269706698
23.26 -0.0377046145
2.27  -0.1102104886
3.27  -0.1750668404
8.27  -0.2635104738
10.27  0.2434675312
11.27  1.0461757709
13.27  0.1109364394
15.27  0.0579668253
16.27 -0.1211706386
17.27  0.1378388484
18.27 -0.1590207110
22.27  0.1207414654
23.27  0.4679052289
2.28  -0.1576809006
3.28   0.1487516691
5.28  -0.0539774563
7.28   0.0086425812
8.28  -0.0973924131
13.28  0.2944018367
15.28  0.1253604067
16.28 -0.1850178060
17.28  0.0268271667
18.28 -0.0048630481
19.28 -0.2022729843
23.28  0.4180861273
2.29   0.5700499878
3.29   0.3273044458
4.29  -0.1092927755
5.29  -0.0316381969
7.29   0.1957713195
8.29   0.4264894984
10.29  0.3475395488
14.29  0.1794624353
16.29 -0.1058035840
17.29  0.1161009117
18.29 -0.0105532871
23.29  0.3337076421
3.30   0.3653549918
4.30   0.0499938383
5.30   0.1818476983
7.30  -0.0995845424
8.30   0.2913218916
11.30 -0.8289546264
15.30  0.0164932455
16.30 -0.0103611324
18.30 -0.0415966623
23.30  0.2314068104
2.31   0.8277672050
5.31   0.1831151366
7.31   0.3127290650
8.31   0.6483885175
10.31 -0.6181597440
16.31 -0.0739872993
18.31 -0.1138450579
19.31 -0.0135463758
23.31  0.0651167563
3.32  -0.1875127723
4.32   0.0795439144
5.32   0.3645527902
7.32   0.0975259672
8.32   0.0005455159
10.32 -0.4033949520
13.32 -0.0444591401
16.32  0.1812102829
17.32  0.2622652340
19.32 -0.0883222716
23.32  0.1246531643
2.33  -0.0374999191
3.33  -0.0052196847
4.33  -0.0987288509
5.33   0.1527196381
7.33   0.2482029803
8.33  -0.1376325202
10.33  0.1534947072
11.33 -0.6375954602
13.33  0.1735759779
15.33 -0.1381467202
16.33  0.2730230571
17.33  0.2142695933
18.33 -0.2350347511
19.33 -0.1396653018
20.33 -0.0399971992
22.33 -0.0264496631
2.34  -0.0641632079
4.34   0.0055317100
5.34  -0.1049313005
7.34   0.1720111519
8.34   0.1877810741
10.34  0.1330048303
11.34  0.3787606610
13.34 -0.0399152205
15.34  0.4151452744
16.34  0.6571396643
17.34  0.0754640372
18.34 -0.0294723767
23.34  0.2392643425
2.35   0.1350123075
3.35  -0.1717362226
4.35  -0.0186680297
5.35   0.0787918852
7.35  -0.1503587355
8.35  -0.2037961060
10.35 -0.2125869364
13.35 -0.0167713268
15.35  0.0643273266
16.35  0.0470333780
17.35 -0.1561071702
18.35  0.2841378203
19.35  0.0289916914
22.35 -0.0679565454
2.36   0.0249725072
4.36   0.2275668654
8.36   0.5964522522
10.36 -0.6493330217
13.36 -0.1146472554
15.36  0.0762122026
16.36  0.3400981336
17.36 -0.0394866536
18.36  0.3822345763
19.36 -0.0262052346
22.36  0.0983797811
23.36  0.1397277884
2.37  -0.2529071213
4.37   0.1603453914
7.37   0.4254142405
8.37  -0.0966444618
11.37  0.0155566881
13.37  0.1878451297
14.37 -0.2095526090
15.37 -0.0037377448
16.37  0.0920707937
17.37  0.2445504286
18.37  0.5982581488
22.37  0.6853715317
23.37  0.0562506597
2.38   0.1580627494
3.38  -0.0065382751
4.38   0.0222881493
7.38  -0.0285267527
8.38  -0.3679948067
13.38  0.1172328463
14.38  0.5944144467
15.38  0.0721996905
16.38 -0.0231927193
17.38  0.1998138317
18.38  0.4794248122
19.38  0.0440984057
22.38  0.2555767776
23.38  0.1551533725
2.39   0.1456142907
3.39  -0.2021996413
5.39  -0.0562774644
8.39  -0.4137271145
11.39 -0.3618715020
13.39  0.1197002620
14.39 -0.2196995061
15.39 -0.0151295021
16.39 -0.0944111666
17.39  0.2637451765
18.39  0.0659969211
19.39 -0.0602162850
22.39  0.0724092131
23.39 -0.4517626490
3.40   0.2448671313
4.40   0.0253256715
5.40   0.1258546289
7.40  -0.0807297740
10.40 -0.0836173762
14.40 -0.2262000709
15.40 -0.0356711267
16.40  0.0368080471
18.40  0.0969913550
19.40  0.0048016214
20.40 -0.0941897488
23.40 -0.5195312492
3.41  -0.4620837702
4.41  -0.1676594803
5.41   0.2496615840
7.41   0.1181480495
10.41 -1.2028927097
11.41 -0.4196758500
13.41  0.0100243123
14.41 -0.2561963290
15.41  0.0278633749
16.41 -0.1627774356
17.41  0.0053518286
18.41  0.1580458818
19.41  0.3568452864
20.41 -0.0097280786
2.42   0.5319531508
4.42  -0.0323421791
5.42   0.1400780962
7.42  -0.2555518784
8.42   0.1954434099
10.42 -1.2495591954
11.42 -1.1627155108
15.42 -0.1030265116
16.42 -0.0619635525
17.42 -0.0020645088
18.42  0.3246808982
19.42  0.1388130262
20.42 -0.0953350199
22.42  0.0593055133
23.42 -0.2162540395
2.43  -0.6007516838
3.43   0.7346781235
4.43  -0.1300231629
5.43   0.2743050990
7.43  -0.3843938072
10.43 -0.1208832150
13.43 -0.3623775915
14.43 -0.2829834951
15.43 -0.3711894450
18.43 -0.0759081288
19.43  0.1167185524
20.43 -0.0775266282
22.43 -0.2077382882
23.43 -0.1447714170
3.44  -0.3778699939
4.44  -0.2231813976
5.44  -0.1464646354
10.44 -0.8565370306
11.44 -1.1963185215
13.44 -0.3102008319
14.44 -0.3126667212
15.44 -0.3291759793
16.44  0.0937646591
17.44 -0.0628944971
19.44 -0.0299724569
20.44  0.0068125596
22.44 -0.1212349296
23.44 -0.0770878897
2.45  -0.7225459997
3.45  -0.4492201573
4.45  -0.3234884320
5.45  -0.2596713193
7.45  -0.4264378315
13.45  0.0426512097
14.45 -0.6124809525
16.45 -0.3163160253
17.45 -0.2315049344
18.45 -0.0431452333
20.45 -0.0458430679
22.45 -0.3685164078
23.45 -0.4207286990
2.46   0.1803970846
5.46  -0.3194050201
7.46  -0.2161434719
10.46 -0.5174885320
11.46 -0.9294757266
13.46 -0.3650986431
14.46 -0.7741843542
15.46 -0.1813260203
16.46 -0.4829607706
17.46 -0.3822172200
18.46 -0.3212894548
20.46 -0.0245972743
22.46 -0.3528649098
3.47  -0.7902993083
5.47  -0.4284196833
8.47  -0.6383127676
10.47 -1.0336478258
14.47 -0.4609899112
15.47 -0.4554522606
16.47 -0.3544565886
17.47 -0.1566058799
18.47 -0.5099562050
20.47 -0.0732767689

$subject
   (Intercept)
2   0.21377542
3   0.21174466
4  -0.28900637
5  -0.24164859
7  -0.14896757
8   0.10733646
10  0.69239747
11  0.75984258
13 -0.25151138
14  0.20584730
15 -0.12093034
16 -0.15215116
17 -0.26864587
18 -0.11351644
19 -0.28815279
20 -0.21096170
22 -0.11922694
23  0.01377527

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.59088941 -0.57079747 -0.57877128 -0.32558864 -0.31688762  0.00181276 

=============================================================

--- Mixed - Block 2 - Axis Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 13.929  1.2663    11  6049   11.51 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate   SE   df t.ratio p.value
 Step1 - Step2   -0.00746 0.02 6049  -0.373  1.0000
 Step1 - Step3   -0.01002 0.02 6049  -0.501  1.0000
 Step1 - Step4   -0.01676 0.02 6049  -0.839  0.9996
 Step1 - Step5   -0.00293 0.02 6049  -0.147  1.0000
 Step1 - Step6    0.01510 0.02 6049   0.756  0.9998
 Step1 - Step7    0.02316 0.02 6049   1.158  0.9919
 Step1 - Step8    0.03614 0.02 6049   1.808  0.8137
 Step1 - Step9    0.05712 0.02 6049   2.858  0.1563
 Step1 - Step10   0.07741 0.02 6049   3.874  0.0061
 Step1 - Step11   0.10730 0.02 6049   5.369  <.0001
 Step1 - Step12   0.12487 0.02 6049   6.249  <.0001
 Step2 - Step3   -0.00256 0.02 6049  -0.128  1.0000
 Step2 - Step4   -0.00930 0.02 6049  -0.466  1.0000
 Step2 - Step5    0.00452 0.02 6049   0.226  1.0000
 Step2 - Step6    0.02256 0.02 6049   1.129  0.9934
 Step2 - Step7    0.03061 0.02 6049   1.531  0.9321
 Step2 - Step8    0.04360 0.02 6049   2.182  0.5631
 Step2 - Step9    0.06458 0.02 6049   3.232  0.0561
 Step2 - Step10   0.08487 0.02 6049   4.247  0.0013
 Step2 - Step11   0.11476 0.02 6049   5.743  <.0001
 Step2 - Step12   0.13233 0.02 6049   6.622  <.0001
 Step3 - Step4   -0.00675 0.02 6049  -0.338  1.0000
 Step3 - Step5    0.00708 0.02 6049   0.354  1.0000
 Step3 - Step6    0.02512 0.02 6049   1.257  0.9841
 Step3 - Step7    0.03317 0.02 6049   1.659  0.8865
 Step3 - Step8    0.04615 0.02 6049   2.310  0.4696
 Step3 - Step9    0.06714 0.02 6049   3.360  0.0376
 Step3 - Step10   0.08742 0.02 6049   4.375  0.0008
 Step3 - Step11   0.11731 0.02 6049   5.871  <.0001
 Step3 - Step12   0.13489 0.02 6049   6.750  <.0001
 Step4 - Step5    0.01383 0.02 6049   0.692  0.9999
 Step4 - Step6    0.03186 0.02 6049   1.595  0.9114
 Step4 - Step7    0.03992 0.02 6049   1.997  0.6960
 Step4 - Step8    0.05290 0.02 6049   2.647  0.2535
 Step4 - Step9    0.07388 0.02 6049   3.697  0.0118
 Step4 - Step10   0.09417 0.02 6049   4.713  0.0002
 Step4 - Step11   0.12406 0.02 6049   6.208  <.0001
 Step4 - Step12   0.14163 0.02 6049   7.088  <.0001
 Step5 - Step6    0.01804 0.02 6049   0.903  0.9991
 Step5 - Step7    0.02609 0.02 6049   1.305  0.9787
 Step5 - Step8    0.03907 0.02 6049   1.955  0.7239
 Step5 - Step9    0.06005 0.02 6049   3.005  0.1071
 Step5 - Step10   0.08034 0.02 6049   4.021  0.0034
 Step5 - Step11   0.11023 0.02 6049   5.516  <.0001
 Step5 - Step12   0.12780 0.02 6049   6.396  <.0001
 Step6 - Step7    0.00805 0.02 6049   0.403  1.0000
 Step6 - Step8    0.02104 0.02 6049   1.053  0.9964
 Step6 - Step9    0.04202 0.02 6049   2.103  0.6209
 Step6 - Step10   0.06231 0.02 6049   3.118  0.0784
 Step6 - Step11   0.09219 0.02 6049   4.614  0.0003
 Step6 - Step12   0.10977 0.02 6049   5.493  <.0001
 Step7 - Step8    0.01298 0.02 6049   0.649  1.0000
 Step7 - Step9    0.03397 0.02 6049   1.699  0.8692
 Step7 - Step10   0.05425 0.02 6049   2.714  0.2195
 Step7 - Step11   0.08414 0.02 6049   4.209  0.0016
 Step7 - Step12   0.10171 0.02 6049   5.088  <.0001
 Step8 - Step9    0.02098 0.02 6049   1.050  0.9965
 Step8 - Step10   0.04127 0.02 6049   2.065  0.6478
 Step8 - Step11   0.07116 0.02 6049   3.561  0.0192
 Step8 - Step12   0.08873 0.02 6049   4.440  0.0006
 Step9 - Step10   0.02029 0.02 6049   1.015  0.9974
 Step9 - Step11   0.05018 0.02 6049   2.511  0.3330
 Step9 - Step12   0.06775 0.02 6049   3.390  0.0341
 Step10 - Step11  0.02989 0.02 6049   1.496  0.9421
 Step10 - Step12  0.04746 0.02 6049   2.375  0.4232
 Step11 - Step12  0.01757 0.02 6049   0.879  0.9993

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 0.807635461  0.007458707  0.010015671  0.016762651  0.002933741 -0.015102056 
       Step7        Step8        Step9       Step10       Step11       Step12 
-0.023155105 -0.036137864 -0.057120342 -0.077408046 -0.107296624 -0.124869748 

Random Effects:
$trial_id
        (Intercept)
10.1   1.625279e-01
16.1  -8.410986e-02
17.1  -1.293481e-01
19.1   2.591589e-02
7.2   -1.795502e-01
14.2   5.004792e-01
17.2  -2.361149e-01
20.2   2.533687e-01
7.3   -2.597688e-01
10.3   2.492420e-01
17.3  -3.380444e-02
18.3  -2.344076e-01
20.3   4.566332e-03
2.4   -5.064619e-01
7.4    1.850174e-01
10.4   2.915752e-01
13.4  -7.968696e-02
14.4   2.440929e-01
16.4  -2.162242e-01
17.4  -1.372282e-01
18.4   2.915973e-02
19.4  -7.936194e-02
20.4  -2.528895e-02
22.4  -6.959292e-02
23.4   1.618694e-02
2.5   -2.106538e-01
3.5   -1.617750e-01
5.5    5.443467e-04
7.5   -8.844270e-02
10.5   4.944226e-01
11.5  -1.499493e-01
13.5   1.656988e-01
14.5   1.816330e-01
17.5  -6.939578e-02
18.5  -7.766231e-02
20.5   2.388564e-01
3.6   -3.653444e-03
8.6   -2.522389e-01
10.6   1.349992e-01
11.6  -1.659952e-01
14.6   1.533643e-01
15.6  -7.332321e-02
16.6   8.475781e-02
17.6  -1.540071e-01
20.6   1.282472e-01
2.7   -3.831709e-01
3.7   -3.178462e-01
5.7   -1.347005e-02
7.7   -5.025262e-02
8.7   -3.225913e-01
11.7   3.666163e-01
13.7   8.219520e-02
14.7   2.103730e-01
15.7  -4.149650e-02
16.7  -2.373688e-01
17.7   7.064841e-02
18.7   7.246229e-02
19.7  -1.462025e-01
20.7  -1.217714e-01
22.7   1.054214e-01
2.8   -3.926651e-01
3.8   -2.450243e-01
5.8   -8.850291e-02
7.8    2.194067e-01
10.8   1.697195e-01
11.8   3.226263e-01
14.8   1.100034e-01
15.8  -5.957775e-02
17.8  -8.222548e-02
18.8  -1.016952e-01
19.8  -1.913601e-01
22.8  -1.112406e-02
2.9    1.397306e-01
3.9    3.078566e-01
4.9   -5.823958e-03
5.9   -5.846798e-02
7.9   -6.892941e-02
8.9   -4.996795e-02
10.9   5.312459e-01
13.9  -2.065909e-01
14.9   1.164356e-02
16.9  -2.822664e-01
17.9   2.567523e-02
18.9  -1.551140e-01
19.9  -9.299783e-02
22.9  -2.961856e-02
2.10  -1.599579e-01
8.10  -7.040643e-02
10.10  5.887739e-01
11.10 -2.745426e-01
13.10  1.574236e-01
14.10  1.698100e-01
15.10 -9.736024e-02
16.10 -1.510738e-01
17.10 -7.866806e-02
19.10 -9.659672e-02
22.10  2.142604e-02
2.11  -1.642381e-01
4.11  -7.481462e-02
7.11   3.267353e-01
8.11   1.863825e-01
13.11 -2.054442e-01
14.11  6.738078e-02
15.11  1.305021e-01
16.11 -4.237502e-03
17.11  1.098915e-01
19.11 -9.103322e-03
23.11 -2.636468e-01
2.12   1.156718e-01
4.12   2.145919e-02
5.12   1.940601e-02
8.12   3.021191e-01
13.12 -1.155272e-01
15.12  1.118742e-01
16.12 -1.956759e-01
17.12 -6.937313e-02
18.12 -7.927979e-02
19.12  2.059307e-01
22.12 -5.333474e-02
23.12 -3.031976e-01
2.13  -2.025303e-01
3.13  -3.120529e-01
4.13   3.867533e-01
5.13  -4.454852e-02
7.13  -7.186444e-02
10.13 -1.914754e-01
11.13 -1.103972e-01
13.13  3.233692e-02
14.13 -1.585759e-01
15.13 -1.537605e-01
16.13 -2.559477e-01
17.13 -2.722529e-02
18.13 -2.710549e-01
19.13 -5.279204e-02
23.13 -2.570307e-01
2.14  -1.296755e-01
3.14   1.400362e-01
4.14  -2.032693e-02
7.14  -1.787157e-01
8.14  -1.773049e-01
10.14  1.377279e-01
13.14 -8.127785e-02
15.14  1.319314e-01
16.14 -1.491790e-02
17.14  8.289955e-02
18.14  8.342141e-02
19.14 -4.429921e-02
23.14 -3.296499e-01
2.15  -6.128447e-02
4.15  -1.774328e-01
5.15   4.644816e-03
7.15  -6.426144e-02
8.15   5.817713e-02
10.15  9.535212e-01
11.15 -3.667889e-01
13.15 -1.218483e-01
14.15 -4.511846e-02
15.15  6.088226e-02
16.15  1.981124e-01
17.15  1.255664e-01
18.15  5.708268e-02
19.15 -1.595752e-01
23.15  6.374821e-01
2.16  -1.556178e-03
3.16   1.362361e-01
7.16  -4.808323e-03
8.16  -1.844828e-01
10.16  5.190901e-03
11.16 -1.626944e-01
13.16 -4.939273e-02
14.16  2.842984e-01
15.16 -2.876394e-02
16.16  8.438302e-03
17.16 -9.019345e-02
18.16 -4.386403e-03
19.16  6.291769e-02
2.17   2.277239e-01
3.17  -4.085617e-02
5.17  -7.991180e-02
8.17   3.995340e-01
13.17 -1.871624e-01
14.17  9.829641e-02
15.17 -1.653992e-01
17.17  6.448139e-02
18.17  2.939829e-02
19.17  2.074629e-02
23.17  1.526467e-01
2.18   1.538078e-01
3.18   6.543389e-01
4.18   2.884333e-03
5.18   6.880697e-02
7.18  -5.527521e-02
10.18  4.565531e-01
13.18 -5.532149e-02
16.18 -1.896077e-01
23.18  1.048251e-01
2.19   1.190138e-01
5.19   5.279083e-02
7.19   1.755938e-01
10.19  3.308126e-01
11.19  8.001468e-01
13.19  7.399625e-02
14.19  1.538773e-01
15.19 -8.816131e-03
16.19 -1.613407e-01
17.19 -1.918828e-02
18.19 -2.488699e-01
2.20   2.231043e-01
3.20  -2.585580e-01
4.20   8.672556e-02
5.20   4.013659e-02
7.20   3.569197e-01
10.20  6.073295e-01
11.20  9.265194e-01
13.20 -5.969106e-02
15.20  5.758387e-02
17.20  1.445676e-01
18.20 -7.638348e-02
23.20  2.814904e-01
2.21  -9.947993e-03
3.21   1.547086e-01
4.21  -1.226777e-01
5.21   1.251786e-02
7.21  -9.872337e-02
14.21  9.755488e-02
15.21  2.338744e-01
16.21 -4.324381e-03
17.21 -1.641408e-01
18.21 -1.721733e-01
3.22   6.832198e-01
4.22  -8.809003e-02
5.22  -5.887264e-02
7.22  -9.784700e-03
10.22  2.082500e-01
13.22  2.511386e-02
14.22  1.384114e-01
16.22  1.545266e-03
17.22  1.425893e-01
18.22 -1.774554e-03
23.22 -2.461431e-01
2.23   6.055848e-01
3.23   3.590099e-01
4.23  -2.684412e-02
5.23   1.369743e-02
7.23  -6.677548e-02
10.23  8.706235e-01
11.23  8.989852e-01
14.23 -5.789702e-02
16.23  2.141276e-03
18.23 -1.145475e-01
2.24   1.505474e-01
3.24   1.412805e-02
4.24  -1.044834e-02
5.24   7.242025e-02
11.24  8.446670e-01
13.24 -1.037055e-01
15.24 -6.008525e-02
17.24  2.808639e-01
18.24 -8.010205e-02
23.24 -1.162503e-02
2.25   1.114456e-01
3.25   8.350353e-01
4.25   7.649791e-03
7.25   3.630306e-03
13.25  1.517190e-01
15.25 -3.460807e-02
16.25  1.961139e-01
17.25  2.349458e-01
18.25  1.795475e-01
23.25  7.929503e-02
2.26   3.930389e-01
3.26   1.754973e-01
5.26  -1.514588e-02
7.26  -1.104678e-01
10.26  4.132899e-01
11.26  8.015828e-02
13.26  3.819894e-02
15.26  2.304504e-01
16.26  5.903321e-02
17.26  1.493633e-02
18.26 -1.261921e-01
19.26  9.269834e-03
22.26 -1.028124e-01
23.26 -2.037321e-01
2.27   1.313471e-01
3.27  -7.413114e-02
8.27  -2.162982e-01
10.27  8.464512e-01
11.27  1.330642e+00
13.27  4.362413e-01
15.27 -4.026361e-02
16.27  1.555784e-01
17.27  2.688574e-02
18.27 -5.885803e-02
22.27 -9.586072e-02
23.27 -2.807688e-01
2.28   3.080652e-01
3.28  -1.996066e-01
5.28  -6.326669e-03
7.28   4.485525e-02
8.28   8.155925e-02
13.28 -1.291415e-01
15.28  8.257754e-02
16.28 -7.933798e-02
17.28  2.571857e-02
18.28 -1.055981e-01
19.28 -8.332594e-02
23.28  6.860185e-01
2.29  -5.482496e-02
3.29   4.226659e-01
4.29  -1.306841e-01
5.29   5.920903e-02
7.29   7.775391e-02
8.29   2.560549e-01
10.29  6.017574e-01
14.29 -1.069643e-01
16.29 -9.133645e-02
17.29 -4.115194e-02
18.29 -2.449886e-02
23.29  2.632872e-01
3.30   2.198899e-01
4.30  -9.391273e-02
5.30   1.489759e-01
7.30   2.011431e-01
8.30   6.266397e-01
11.30  2.875022e-01
15.30 -2.428414e-02
16.30 -9.836838e-02
18.30 -1.809944e-01
23.30  7.956428e-01
2.31   1.011351e+00
5.31   1.384049e-01
7.31   2.968240e-01
8.31   1.516882e+00
10.31 -5.741489e-01
16.31  7.142275e-01
18.31  4.313314e-02
19.31 -9.302073e-02
23.31  4.336999e-01
3.32   4.115146e-01
4.32   1.624456e-02
5.32   1.992504e-01
7.32   3.751666e-01
8.32   7.379944e-02
10.32  5.917466e-01
13.32  1.681489e-01
16.32  1.169774e-01
17.32  2.220939e-01
19.32 -4.740199e-02
23.32  1.229640e-01
2.33  -1.454486e-01
3.33   1.033756e-01
4.33   3.023871e-03
5.33   2.953877e-01
7.33   2.104749e-01
8.33  -3.516254e-01
10.33 -1.922299e-01
11.33  1.185308e+00
13.33 -1.343605e-01
15.33  2.962174e-01
16.33  9.155210e-01
17.33  3.079209e-01
18.33 -2.001491e-01
19.33 -4.236944e-02
20.33 -2.198308e-01
22.33 -2.872950e-02
2.34  -1.749864e-01
4.34   3.353223e-02
5.34  -4.177164e-02
7.34   8.836799e-02
8.34   1.986283e-01
10.34 -2.213408e-01
11.34  6.598286e-01
13.34  2.456228e-01
15.34  1.514554e-01
16.34  3.282568e-01
17.34  1.076281e-01
18.34 -1.194819e-01
23.34 -8.395137e-02
2.35   2.143999e-01
3.35  -3.504127e-01
4.35  -6.951379e-02
5.35  -1.461034e-01
7.35  -1.984715e-05
8.35  -2.715679e-01
10.35 -3.400211e-01
13.35  2.008890e-01
15.35  1.040166e-01
16.35  2.010181e-01
17.35  2.715794e-01
18.35  2.906584e-01
19.35  4.070754e-02
22.35  2.805385e-02
2.36   1.490677e-01
4.36   1.526212e-01
8.36   8.390304e-01
10.36 -8.924185e-01
13.36 -8.136862e-02
15.36  3.059016e-01
16.36  2.581623e-01
17.36 -4.555461e-02
18.36  1.304873e-01
19.36  2.723239e-01
22.36 -1.799928e-02
23.36  4.526509e-01
2.37   1.589999e-01
4.37   1.684146e-01
7.37  -9.014983e-02
8.37  -5.167720e-01
11.37 -5.376370e-01
13.37  3.345996e-01
14.37  1.647203e-01
15.37  8.020892e-02
16.37  1.365073e-01
17.37  1.853976e-01
18.37  7.090059e-01
22.37 -5.196286e-02
23.37  2.774984e-01
2.38   2.085403e-01
3.38  -1.680876e-01
4.38  -1.609526e-01
7.38  -1.385525e-01
8.38  -1.190788e-02
13.38  3.873248e-01
14.38  3.038799e-01
15.38  2.151135e-01
16.38  2.014189e-01
17.38 -3.885311e-02
18.38  6.053777e-01
19.38  1.232794e-01
22.38 -3.390764e-02
23.38  1.499054e-01
2.39  -2.169543e-01
3.39  -4.992514e-01
5.39  -1.224492e-01
8.39  -4.083059e-01
11.39 -7.763480e-01
13.39 -6.268387e-02
14.39  4.194717e-02
15.39 -2.530920e-02
16.39 -1.288375e-01
17.39  1.259505e-01
18.39  1.287404e-01
19.39  1.945970e-01
22.39  1.893788e-01
23.39 -5.278637e-01
3.40  -3.131109e-01
4.40   1.445025e-01
5.40  -9.899442e-02
7.40  -2.678022e-02
10.40 -2.838367e-01
14.40  7.130188e-02
15.40 -4.782069e-02
16.40  1.156926e-01
18.40  4.122801e-01
19.40 -1.243850e-01
20.40  1.472218e-01
23.40 -5.482892e-01
3.41   1.222089e-01
4.41  -7.844550e-02
5.41   7.150953e-02
7.41  -1.732370e-01
10.41 -1.085120e+00
11.41 -1.036533e+00
13.41  2.270135e-01
14.41 -4.298978e-01
15.41 -1.507530e-01
16.41 -1.225689e-01
17.41  2.449457e-03
18.41  3.788229e-01
19.41  2.416615e-01
20.41 -7.061450e-02
2.42   3.157744e-01
4.42   1.424534e-01
5.42   7.229090e-03
7.42   2.264486e-02
8.42  -3.550870e-01
10.42 -1.225370e+00
11.42 -1.327350e+00
15.42 -1.960981e-01
16.42 -4.247349e-02
17.42 -1.522084e-01
18.42  1.834095e-01
19.42  5.784824e-02
20.42 -4.011526e-02
22.42  2.406516e-01
23.42 -4.583616e-01
2.43  -4.955033e-01
3.43   3.043908e-01
4.43  -1.324206e-01
5.43   2.197565e-01
7.43  -3.010155e-01
10.43 -5.502586e-01
13.43 -3.347626e-01
14.43 -2.574218e-01
15.43 -2.365133e-01
18.43  2.755410e-02
19.43 -1.300450e-01
20.43 -1.510621e-01
22.43  9.629672e-02
23.43 -8.784509e-02
3.44  -1.979293e-01
4.44  -3.790733e-03
5.44  -1.057025e-01
10.44 -1.088026e+00
11.44 -1.352612e+00
13.44 -4.084416e-01
14.44  1.760178e-02
15.44 -3.766214e-01
16.44 -8.349299e-02
17.44 -1.160178e-01
19.44 -7.702399e-02
20.44 -1.171196e-02
22.44 -5.767215e-02
23.44 -2.982057e-01
2.45  -7.244343e-01
3.45  -7.560553e-01
4.45  -2.801754e-01
5.45  -2.964652e-01
7.45  -4.918686e-01
13.45 -5.471189e-02
14.45 -5.909710e-01
16.45 -3.107275e-01
17.45 -3.522778e-01
18.45 -6.831559e-02
20.45 -1.718463e-01
22.45 -1.498191e-01
23.45 -5.457292e-01
2.46  -5.777463e-01
5.46  -1.973379e-01
7.46  -1.810495e-01
10.46 -2.954875e-01
11.46 -7.293406e-01
13.46 -4.397005e-01
14.46 -7.635246e-01
15.46 -9.338278e-02
16.46 -5.370520e-01
17.46 -4.775502e-01
18.46 -4.874875e-01
20.46  5.223916e-03
22.46 -2.936198e-01
3.47  -8.935988e-01
5.47  -3.365190e-01
8.47  -9.398037e-01
10.47 -1.184053e+00
14.47 -5.097907e-01
15.47 -4.402916e-01
16.47 -4.870287e-01
17.47 -2.373490e-01
18.47 -5.028958e-01
20.47 -1.030147e-01

$subject
    (Intercept)
2   0.160435851
3   0.323195581
4  -0.397440352
5  -0.366438272
7  -0.161185436
8   0.526067425
10  0.669010310
11  0.913607435
13 -0.236212911
14  0.128820381
15 -0.207556320
16 -0.108708512
17 -0.229662285
18 -0.168390245
19 -0.275132447
20 -0.176581330
22 -0.403510144
23  0.009681272

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
 0.04311958  0.22465908  0.07524298 -0.03666331 -0.29926209 -0.26387066 

=============================================================

--- Mixed - Block 2 - Axis Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 59.617  5.4198    11  6049   18.11 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate    SE   df t.ratio p.value
 Step1 - Step2   -0.03221 0.033 6049  -0.977  0.9982
 Step1 - Step3   -0.00130 0.033 6049  -0.039  1.0000
 Step1 - Step4    0.00384 0.033 6049   0.117  1.0000
 Step1 - Step5    0.01112 0.033 6049   0.338  1.0000
 Step1 - Step6    0.04710 0.033 6049   1.429  0.9580
 Step1 - Step7    0.08058 0.033 6049   2.444  0.3764
 Step1 - Step8    0.10316 0.033 6049   3.130  0.0757
 Step1 - Step9    0.16877 0.033 6049   5.121  <.0001
 Step1 - Step10   0.18490 0.033 6049   5.610  <.0001
 Step1 - Step11   0.21682 0.033 6049   6.579  <.0001
 Step1 - Step12   0.26287 0.033 6049   7.976  <.0001
 Step2 - Step3    0.03092 0.033 6049   0.938  0.9987
 Step2 - Step4    0.03606 0.033 6049   1.094  0.9950
 Step2 - Step5    0.04334 0.033 6049   1.315  0.9774
 Step2 - Step6    0.07931 0.033 6049   2.406  0.4016
 Step2 - Step7    0.11280 0.033 6049   3.421  0.0309
 Step2 - Step8    0.13538 0.033 6049   4.108  0.0024
 Step2 - Step9    0.20099 0.033 6049   6.098  <.0001
 Step2 - Step10   0.21711 0.033 6049   6.587  <.0001
 Step2 - Step11   0.24904 0.033 6049   7.556  <.0001
 Step2 - Step12   0.29508 0.033 6049   8.953  <.0001
 Step3 - Step4    0.00514 0.033 6049   0.156  1.0000
 Step3 - Step5    0.01242 0.033 6049   0.377  1.0000
 Step3 - Step6    0.04840 0.033 6049   1.468  0.9491
 Step3 - Step7    0.08188 0.033 6049   2.483  0.3507
 Step3 - Step8    0.10446 0.033 6049   3.169  0.0675
 Step3 - Step9    0.17007 0.033 6049   5.160  <.0001
 Step3 - Step10   0.18619 0.033 6049   5.649  <.0001
 Step3 - Step11   0.21812 0.033 6049   6.618  <.0001
 Step3 - Step12   0.26417 0.033 6049   8.015  <.0001
 Step4 - Step5    0.00728 0.033 6049   0.221  1.0000
 Step4 - Step6    0.04326 0.033 6049   1.312  0.9777
 Step4 - Step7    0.07674 0.033 6049   2.327  0.4571
 Step4 - Step8    0.09932 0.033 6049   3.013  0.1048
 Step4 - Step9    0.16493 0.033 6049   5.004  <.0001
 Step4 - Step10   0.18105 0.033 6049   5.493  <.0001
 Step4 - Step11   0.21298 0.033 6049   6.462  <.0001
 Step4 - Step12   0.25903 0.033 6049   7.859  <.0001
 Step5 - Step6    0.03598 0.033 6049   1.092  0.9951
 Step5 - Step7    0.06946 0.033 6049   2.106  0.6182
 Step5 - Step8    0.09204 0.033 6049   2.793  0.1832
 Step5 - Step9    0.15765 0.033 6049   4.783  0.0001
 Step5 - Step10   0.17377 0.033 6049   5.273  <.0001
 Step5 - Step11   0.20570 0.033 6049   6.241  <.0001
 Step5 - Step12   0.25175 0.033 6049   7.638  <.0001
 Step6 - Step7    0.03348 0.033 6049   1.015  0.9974
 Step6 - Step8    0.05606 0.033 6049   1.701  0.8682
 Step6 - Step9    0.12167 0.033 6049   3.692  0.0121
 Step6 - Step10   0.13780 0.033 6049   4.181  0.0018
 Step6 - Step11   0.16973 0.033 6049   5.150  <.0001
 Step6 - Step12   0.21577 0.033 6049   6.547  <.0001
 Step7 - Step8    0.02258 0.033 6049   0.685  0.9999
 Step7 - Step9    0.08819 0.033 6049   2.674  0.2392
 Step7 - Step10   0.10431 0.033 6049   3.163  0.0687
 Step7 - Step11   0.13624 0.033 6049   4.132  0.0022
 Step7 - Step12   0.18229 0.033 6049   5.528  <.0001
 Step8 - Step9    0.06561 0.033 6049   1.991  0.7000
 Step8 - Step10   0.08173 0.033 6049   2.480  0.3528
 Step8 - Step11   0.11366 0.033 6049   3.449  0.0282
 Step8 - Step12   0.15971 0.033 6049   4.846  0.0001
 Step9 - Step10   0.01612 0.033 6049   0.489  1.0000
 Step9 - Step11   0.04805 0.033 6049   1.458  0.9515
 Step9 - Step12   0.09410 0.033 6049   2.855  0.1576
 Step10 - Step11  0.03193 0.033 6049   0.969  0.9983
 Step10 - Step12  0.07797 0.033 6049   2.366  0.4297
 Step11 - Step12  0.04604 0.033 6049   1.397  0.9643

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 1.649974022  0.032214041  0.001296841 -0.003843850 -0.011123491 -0.047099269 
       Step7        Step8        Step9       Step10       Step11       Step12 
-0.080582242 -0.103163036 -0.168771305 -0.184896148 -0.216824713 -0.262869547 

Random Effects:
$trial_id
        (Intercept)
10.1  -5.762952e-01
16.1  -4.946757e-01
17.1  -3.900829e-01
19.1   2.240480e-01
7.2    4.444755e-01
14.2   8.071837e-02
17.2  -4.271270e-01
20.2   2.394246e-01
7.3    4.153491e-01
10.3  -2.288072e-02
17.3  -1.910727e-01
18.3  -6.996297e-01
20.3   2.192115e-01
2.4   -6.339821e-01
7.4    4.602146e-01
10.4   1.540343e-01
13.4   3.269232e-01
14.4   2.200370e-01
16.4  -1.661912e-01
17.4  -2.407092e-01
18.4  -3.998786e-01
19.4  -2.409749e-05
20.4   2.482828e-01
22.4   1.565591e-01
23.4   7.817541e-03
2.5   -4.611330e-01
3.5   -6.902964e-01
5.5   -4.673483e-01
7.5    8.017329e-01
10.5   1.786367e+00
11.5   8.226454e-01
13.5   1.195140e+00
14.5  -2.040331e-01
17.5  -1.265584e-01
18.5  -5.512549e-02
20.5   4.362592e-02
3.6    7.653682e-02
8.6   -6.198497e-01
10.6   3.236348e-01
11.6  -5.590400e-01
14.6  -1.672623e-01
15.6   2.486885e-01
16.6  -5.890546e-01
17.6  -9.815769e-02
20.6   1.197783e-01
2.7   -2.790657e-01
3.7    2.589510e-01
5.7   -3.345589e-01
7.7    6.800823e-01
8.7   -6.370732e-01
11.7   1.165848e+00
13.7  -9.562241e-02
14.7  -7.819424e-02
15.7   2.359852e-01
16.7  -6.838414e-01
17.7   1.140800e-01
18.7  -4.930543e-01
19.7  -7.990978e-02
20.7   3.548060e-01
22.7  -2.653525e-02
2.8   -5.065269e-01
3.8   -5.033965e-01
5.8   -4.155798e-01
7.8    3.513861e-01
10.8   4.545563e-01
11.8  -1.710633e-02
14.8  -1.729129e-01
15.8   5.010633e-01
17.8  -3.624280e-02
18.8   6.287850e-02
19.8  -2.476005e-01
22.8  -1.011262e-01
2.9    5.339478e-01
3.9    3.185564e-01
4.9    4.739846e-01
5.9   -9.165268e-02
7.9    3.770034e-01
8.9   -2.348195e-01
10.9   1.965447e+00
13.9  -3.028169e-01
14.9   1.373355e-01
16.9  -2.546720e-01
17.9   2.392330e-01
18.9   5.551927e-01
19.9  -4.759026e-02
22.9   1.103371e-01
2.10   9.307668e-01
8.10  -3.629397e-01
10.10  1.383279e+00
11.10 -3.847529e-01
13.10  7.518416e-02
14.10 -1.196924e-01
15.10  2.912458e-01
16.10 -2.615746e-01
17.10 -1.512677e-01
19.10 -2.975442e-01
22.10  1.503535e-01
2.11  -2.537337e-01
4.11  -3.893225e-02
7.11   1.740838e-01
8.11  -1.558569e-01
13.11 -2.287801e-01
14.11 -5.084816e-01
15.11 -6.871747e-02
16.11 -4.095212e-02
17.11 -1.304641e-02
19.11 -2.482640e-01
23.11 -7.676189e-01
2.12  -6.057563e-01
4.12   4.928881e-01
5.12  -2.672025e-01
8.12   9.101365e-01
13.12  7.559644e-02
15.12  5.653374e-02
16.12  6.260060e-03
17.12 -1.600791e-03
18.12  6.157910e-01
19.12  3.540743e-01
22.12 -9.673680e-02
23.12 -5.397848e-01
2.13  -3.538278e-01
3.13  -6.177271e-01
4.13  -1.171364e-01
5.13  -3.405511e-01
7.13   1.205411e-01
10.13  3.373765e-01
11.13  2.096404e-01
13.13  6.008112e-01
14.13 -1.135225e-01
15.13 -7.639030e-02
16.13  6.020487e-01
17.13  5.066599e-02
18.13  8.708365e-02
19.13 -2.415056e-03
23.13 -4.568808e-01
2.14   3.433186e-02
3.14   6.794463e-02
4.14   1.984456e-01
7.14   1.969918e-01
8.14  -1.341117e-01
10.14  1.804231e+00
13.14 -1.813068e-01
15.14  3.562271e-01
16.14  4.566275e-01
17.14  2.428082e-01
18.14  2.409998e-01
19.14  4.520980e-02
23.14 -2.948417e-01
2.15   7.371081e-02
4.15   1.581960e-01
5.15   3.653941e-02
7.15   1.625747e-01
8.15  -2.234869e-01
10.15  1.737078e+00
11.15 -3.937318e-01
13.15  2.421705e-01
14.15 -2.134675e-01
15.15  1.345743e-01
16.15  1.339099e+00
17.15  1.936351e-01
18.15  6.009865e-01
19.15 -2.179247e-01
23.15  5.804121e-01
2.16   4.587787e-01
3.16  -6.603012e-02
7.16   1.421769e-01
8.16   4.059745e-01
10.16  1.391335e+00
11.16 -1.019313e+00
13.16  8.366097e-02
14.16 -3.435420e-02
15.16  1.631135e-01
16.16  4.819563e-01
17.16 -1.203148e-02
18.16  4.242580e-01
19.16 -6.919681e-02
2.17   5.418413e-01
3.17   6.572685e-01
5.17  -3.006316e-02
8.17   2.828438e-01
13.17 -4.658493e-02
14.17 -4.431834e-01
15.17 -3.372537e-01
17.17 -1.701594e-02
18.17  1.648627e-01
19.17  3.882249e-01
23.17  1.466697e-01
2.18   1.048237e-01
3.18   6.578454e-01
4.18  -2.534890e-01
5.18  -1.152154e-01
7.18   6.887082e-01
10.18  2.460492e+00
13.18 -2.946977e-01
16.18  7.002832e-01
23.18 -1.443846e-01
2.19   4.451786e-01
5.19   1.639125e-01
7.19   5.159478e-01
10.19  4.270903e+00
11.19  1.436388e+00
13.19 -6.757466e-02
14.19 -6.561936e-02
15.19 -9.293844e-02
16.19  3.783138e-01
17.19  1.606631e-01
18.19 -4.089511e-01
2.20   8.221353e-02
3.20  -1.255964e-01
4.20  -2.283002e-01
5.20   9.384798e-02
7.20   5.977932e-01
10.20  2.528309e+00
11.20  1.824785e+00
13.20 -1.612725e-01
15.20  2.145527e-01
17.20 -1.514351e-02
18.20  9.578680e-02
23.20  1.504259e+00
2.21   1.538774e-01
3.21   2.340513e-01
4.21  -7.670148e-02
5.21  -4.709802e-02
7.21   3.281296e-01
14.21 -1.815156e-01
15.21  2.998308e-01
16.21  1.366077e-01
17.21 -3.843567e-02
18.21 -2.662562e-01
3.22   2.447183e-01
4.22   1.603031e-01
5.22  -9.528319e-02
7.22   4.447870e-01
10.22  3.853728e-01
13.22  8.554435e-01
14.22  1.910204e-01
16.22  1.825793e-01
17.22 -5.641862e-02
18.22  1.823506e-01
23.22  2.394371e-01
2.23   9.008256e-01
3.23   3.104125e-01
4.23   5.367506e-02
5.23  -1.561476e-03
7.23   9.878618e-02
10.23 -1.399426e+00
11.23  3.807470e+00
14.23 -2.806280e-01
16.23  2.450044e-01
18.23 -9.303667e-02
2.24   4.745857e-01
3.24   3.090047e-01
4.24  -7.696847e-02
5.24   8.525713e-01
11.24 -7.295868e-02
13.24  4.443394e-01
15.24  1.044267e-01
17.24 -1.053739e-01
18.24  3.397253e-01
23.24  2.570998e-01
2.25   7.076713e-01
3.25   3.109971e-01
4.25   2.401107e-01
7.25   2.705429e-01
13.25  3.360792e-01
15.25  6.822175e-01
16.25  6.326039e-01
17.25  5.297576e-01
18.25  6.652966e-01
23.25  2.241289e-01
2.26   8.137479e-02
3.26   2.212430e-02
5.26  -1.973851e-01
7.26   4.233399e-01
10.26 -1.877871e-01
11.26  2.606609e+00
13.26  5.873863e-01
15.26  3.654354e-01
16.26  6.973264e-01
17.26  2.397283e-01
18.26  2.710363e-01
19.26  1.326203e-01
22.26 -4.792420e-02
23.26 -3.644526e-01
2.27  -1.220952e-01
3.27  -2.025393e-01
8.27  -5.890596e-01
10.27  1.235457e-01
11.27  2.954362e+00
13.27  2.281901e-01
15.27  4.782221e-02
16.27  2.412523e-02
17.27  1.140824e-01
18.27  3.082081e-01
22.27  4.159610e-02
23.27  3.219732e-01
2.28  -5.167071e-02
3.28   4.878315e-01
5.28   1.314930e-01
7.28  -1.340343e-01
8.28   1.462161e-02
13.28 -8.711674e-02
15.28 -2.470921e-02
16.28  3.055318e-01
17.28  1.160773e-01
18.28  1.057800e+00
19.28 -1.080363e-01
23.28  3.212099e-01
2.29   5.760111e-01
3.29   1.195541e+00
4.29  -1.394223e-01
5.29   1.990983e-01
7.29   7.018688e-01
8.29   9.556316e-01
10.29 -5.043632e-01
14.29 -1.712504e-01
16.29  5.496554e-02
17.29  3.559143e-01
18.29 -2.173305e-01
23.29  1.441034e+00
3.30   7.751470e-01
4.30  -6.745634e-02
5.30   2.815233e-01
7.30   4.801839e-01
8.30   6.997778e-01
11.30 -1.029319e+00
15.30 -2.557605e-01
16.30  2.876546e-01
18.30  3.325939e-01
23.30  9.208665e-01
2.31   7.011346e-01
5.31   3.545541e-01
7.31   4.177815e-01
8.31   2.019577e+00
10.31 -7.345579e-02
16.31  1.001328e+00
18.31  4.134707e-01
19.31 -2.028686e-02
23.31  1.477797e+00
3.32   1.789453e-01
4.32  -2.321837e-01
5.32   6.832607e-01
7.32  -8.731090e-03
8.32   9.291684e-01
10.32 -8.339956e-01
13.32 -5.157349e-01
16.32  3.190538e-01
17.32  2.538380e-01
19.32 -3.099989e-01
23.32 -2.664243e-01
2.33  -2.544859e-01
3.33   1.143937e+00
4.33   2.450615e-01
5.33   8.731498e-01
7.33  -4.891193e-01
8.33   7.988446e-01
10.33 -8.942345e-01
11.33 -2.162509e-01
13.33  4.884382e-02
15.33  7.269340e-01
16.33 -2.189528e-01
17.33  2.195126e-01
18.33  6.862785e-01
19.33 -1.863947e-01
20.33 -7.862368e-02
22.33  1.329693e-01
2.34  -3.652041e-01
4.34   1.482481e-01
5.34   1.881359e-01
7.34  -2.236976e-01
8.34   3.683494e-01
10.34 -3.449748e-01
11.34 -4.375102e-01
13.34 -3.434576e-02
15.34  5.104048e-01
16.34  9.661799e-01
17.34 -1.349942e-01
18.34 -2.688691e-01
23.34  2.201117e-01
2.35  -1.691890e-03
3.35  -5.426872e-01
4.35  -2.192411e-01
5.35  -1.957860e-01
7.35  -3.753232e-01
8.35  -8.870854e-01
10.35 -9.019214e-01
13.35 -1.133774e-02
15.35  4.279571e-02
16.35 -7.288418e-02
17.35 -1.639570e-02
18.35 -6.566431e-02
19.35  1.898232e-01
22.35  4.354048e-01
2.36   4.371251e-01
4.36   8.204774e-02
8.36   6.079463e-01
10.36 -2.251401e+00
13.36 -2.961940e-01
15.36 -2.387012e-01
16.36 -1.098005e-01
17.36  3.021779e-02
18.36  3.783137e-02
19.36 -9.549188e-02
22.36  4.770021e-01
23.36  1.865507e-01
2.37   3.526415e-02
4.37   2.102760e-01
7.37  -2.699796e-01
8.37  -7.102640e-01
11.37 -8.270748e-01
13.37  1.919533e-01
14.37  5.407498e-01
15.37  2.813164e-01
16.37 -2.011363e-01
17.37  6.588573e-02
18.37  8.937855e-01
22.37  1.683714e-01
23.37 -4.037380e-01
2.38   2.452780e-01
3.38  -1.015061e-01
4.38  -2.838086e-01
7.38  -1.005559e+00
8.38   6.606729e-01
13.38  1.012536e-01
14.38  1.645333e+00
15.38 -1.127755e-01
16.38  5.371309e-01
17.38 -1.824733e-01
18.38  6.720217e-01
19.38  6.792821e-01
22.38  1.974763e-01
23.38  3.673335e-01
2.39  -4.617617e-01
3.39  -7.875213e-01
5.39  -1.750513e-01
8.39  -1.247234e+00
11.39 -1.520301e+00
13.39 -3.734697e-01
14.39  1.908347e-01
15.39  2.560163e-01
16.39 -3.856305e-01
17.39  7.526613e-02
18.39  5.024491e-02
19.39 -1.301298e-01
22.39  5.478250e-02
23.39 -7.966506e-01
3.40  -4.630603e-01
4.40  -1.961005e-01
5.40   1.872791e-01
7.40  -6.688192e-01
10.40 -8.828748e-01
14.40  1.870468e-01
15.40  2.086685e-01
16.40  7.476341e-01
18.40 -4.066718e-02
19.40 -2.054500e-01
20.40  1.296449e-01
23.40 -1.263565e+00
3.41  -3.811339e-02
4.41  -1.239982e-01
5.41   1.514721e-01
7.41  -5.205745e-01
10.41 -2.296295e+00
11.41 -1.273034e+00
13.41  8.598960e-02
14.41  5.656188e-01
15.41 -8.219461e-01
16.41 -1.221905e+00
17.41  3.681753e-01
18.41 -5.466631e-02
19.41  3.402393e-01
20.41 -4.379527e-01
2.42  -3.464498e-01
4.42   2.635707e-01
5.42  -3.856667e-02
7.42  -1.381776e+00
8.42  -6.594703e-01
10.42 -2.161666e+00
11.42 -2.763358e+00
15.42 -6.613789e-01
16.42 -4.777555e-01
17.42 -1.179115e-02
18.42 -3.365464e-01
19.42 -1.331155e-01
20.42 -3.362749e-01
22.42 -1.307309e-01
23.42 -1.262483e+00
2.43  -1.113114e+00
3.43   7.258629e-01
4.43  -2.711811e-01
5.43   2.725253e-01
7.43  -1.476433e+00
10.43 -6.908694e-01
13.43 -6.876478e-01
14.43  5.094435e-01
15.43 -7.276969e-01
18.43 -3.375536e-01
19.43 -9.643457e-02
20.43 -1.197841e-01
22.43 -3.341212e-01
23.43  3.161366e-02
3.44  -2.192286e-01
4.44  -3.733350e-01
5.44  -5.093450e-01
10.44 -1.564621e+00
11.44 -2.747473e+00
13.44 -1.029536e+00
14.44 -2.653986e-01
15.44 -1.048889e+00
16.44 -5.398193e-02
17.44 -1.757471e-01
19.44 -4.975089e-01
20.44  3.157947e-02
22.44 -4.578675e-01
23.44 -6.982324e-01
2.45  -1.210067e+00
3.45  -1.019670e+00
4.45  -7.603883e-01
5.45  -5.365669e-01
7.45  -1.574471e+00
13.45 -4.325236e-01
14.45 -7.368981e-01
16.45 -1.091200e+00
17.45 -4.110255e-01
18.45 -1.152941e+00
20.45 -1.603551e-01
22.45 -4.648070e-01
23.45 -9.641243e-01
2.46  -6.251847e-01
5.46  -5.683068e-01
7.46  -1.035732e+00
10.46 -1.947732e+00
11.46  2.421844e-01
13.46 -1.069718e+00
14.46 -8.993476e-01
15.46 -3.233279e-01
16.46 -1.850355e+00
17.46 -7.654455e-01
18.46 -1.688757e+00
20.46 -3.526302e-01
22.46 -8.329980e-01
3.47  -2.000627e+00
5.47  -7.916845e-01
8.47  -1.452170e+00
10.47 -2.386592e+00
14.47 -1.388746e-01
15.47 -1.200658e+00
16.47 -1.458712e+00
17.47 -5.340085e-01
18.47 -1.744856e+00
20.47 -4.651090e-01

$subject
   (Intercept)
2  -0.12040547
3   0.56659645
4  -0.69377969
5  -0.71047237
7   0.12345981
8   0.70163681
10  1.12297474
11  1.71465337
13 -0.41457475
14 -0.49911989
15 -0.24959957
16  0.44464939
17 -0.74192778
18  0.41209531
19 -0.60652520
20 -0.53502833
22 -0.53845878
23  0.02382593

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
 0.33597737  0.07510273  0.01572108  0.25068911 -0.25028643 -0.12556641 

=============================================================

--- Mixed - Block 3 - Axis X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 8.7175 0.51279    17  7531  6.7039 2.975e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.003040 0.0186 7531  -0.164  1.0000
 Step1 - Step3   -0.017560 0.0186 7531  -0.946  1.0000
 Step1 - Step4   -0.022849 0.0186 7531  -1.231  0.9991
 Step1 - Step5   -0.013692 0.0186 7531  -0.738  1.0000
 Step1 - Step6   -0.004735 0.0186 7531  -0.255  1.0000
 Step1 - Step7   -0.011701 0.0186 7531  -0.630  1.0000
 Step1 - Step8   -0.005799 0.0186 7531  -0.312  1.0000
 Step1 - Step9   -0.002450 0.0186 7531  -0.132  1.0000
 Step1 - Step10   0.014070 0.0186 7531   0.758  1.0000
 Step1 - Step11   0.022179 0.0186 7531   1.195  0.9994
 Step1 - Step12   0.026747 0.0186 7531   1.441  0.9941
 Step1 - Step13   0.035647 0.0186 7531   1.920  0.9044
 Step1 - Step14   0.050133 0.0186 7531   2.701  0.3798
 Step1 - Step15   0.055940 0.0186 7531   3.014  0.1936
 Step1 - Step16   0.064677 0.0186 7531   3.484  0.0509
 Step1 - Step17   0.068608 0.0186 7531   3.696  0.0249
 Step1 - Step18   0.088260 0.0186 7531   4.755  0.0003
 Step2 - Step3   -0.014521 0.0186 7531  -0.782  1.0000
 Step2 - Step4   -0.019810 0.0186 7531  -1.067  0.9999
 Step2 - Step5   -0.010653 0.0186 7531  -0.574  1.0000
 Step2 - Step6   -0.001696 0.0186 7531  -0.091  1.0000
 Step2 - Step7   -0.008661 0.0186 7531  -0.467  1.0000
 Step2 - Step8   -0.002760 0.0186 7531  -0.149  1.0000
 Step2 - Step9    0.000589 0.0186 7531   0.032  1.0000
 Step2 - Step10   0.017109 0.0186 7531   0.922  1.0000
 Step2 - Step11   0.025218 0.0186 7531   1.359  0.9970
 Step2 - Step12   0.029787 0.0186 7531   1.605  0.9812
 Step2 - Step13   0.038687 0.0186 7531   2.084  0.8257
 Step2 - Step14   0.053173 0.0186 7531   2.865  0.2730
 Step2 - Step15   0.058980 0.0186 7531   3.177  0.1268
 Step2 - Step16   0.067716 0.0186 7531   3.648  0.0295
 Step2 - Step17   0.071648 0.0186 7531   3.860  0.0137
 Step2 - Step18   0.091300 0.0186 7531   4.919  0.0001
 Step3 - Step4   -0.005289 0.0186 7531  -0.285  1.0000
 Step3 - Step5    0.003868 0.0186 7531   0.208  1.0000
 Step3 - Step6    0.012825 0.0186 7531   0.691  1.0000
 Step3 - Step7    0.005860 0.0186 7531   0.316  1.0000
 Step3 - Step8    0.011761 0.0186 7531   0.634  1.0000
 Step3 - Step9    0.015110 0.0186 7531   0.814  1.0000
 Step3 - Step10   0.031630 0.0186 7531   1.704  0.9662
 Step3 - Step11   0.039739 0.0186 7531   2.141  0.7921
 Step3 - Step12   0.044308 0.0186 7531   2.387  0.6180
 Step3 - Step13   0.053207 0.0186 7531   2.866  0.2719
 Step3 - Step14   0.067694 0.0186 7531   3.647  0.0296
 Step3 - Step15   0.073501 0.0186 7531   3.960  0.0094
 Step3 - Step16   0.082237 0.0186 7531   4.430  0.0013
 Step3 - Step17   0.086169 0.0186 7531   4.642  0.0005
 Step3 - Step18   0.105820 0.0186 7531   5.701  <.0001
 Step4 - Step5    0.009157 0.0186 7531   0.493  1.0000
 Step4 - Step6    0.018114 0.0186 7531   0.976  1.0000
 Step4 - Step7    0.011148 0.0186 7531   0.601  1.0000
 Step4 - Step8    0.017050 0.0186 7531   0.919  1.0000
 Step4 - Step9    0.020399 0.0186 7531   1.099  0.9998
 Step4 - Step10   0.036919 0.0186 7531   1.989  0.8750
 Step4 - Step11   0.045028 0.0186 7531   2.426  0.5880
 Step4 - Step12   0.049596 0.0186 7531   2.672  0.4004
 Step4 - Step13   0.058496 0.0186 7531   3.151  0.1361
 Step4 - Step14   0.072982 0.0186 7531   3.932  0.0105
 Step4 - Step15   0.078790 0.0186 7531   4.245  0.0029
 Step4 - Step16   0.087526 0.0186 7531   4.715  0.0004
 Step4 - Step17   0.091458 0.0186 7531   4.927  0.0001
 Step4 - Step18   0.111109 0.0186 7531   5.986  <.0001
 Step5 - Step6    0.008957 0.0186 7531   0.483  1.0000
 Step5 - Step7    0.001991 0.0186 7531   0.107  1.0000
 Step5 - Step8    0.007893 0.0186 7531   0.425  1.0000
 Step5 - Step9    0.011242 0.0186 7531   0.606  1.0000
 Step5 - Step10   0.027762 0.0186 7531   1.496  0.9911
 Step5 - Step11   0.035871 0.0186 7531   1.932  0.8996
 Step5 - Step12   0.040439 0.0186 7531   2.179  0.7681
 Step5 - Step13   0.049339 0.0186 7531   2.658  0.4105
 Step5 - Step14   0.063825 0.0186 7531   3.438  0.0589
 Step5 - Step15   0.069633 0.0186 7531   3.751  0.0205
 Step5 - Step16   0.078369 0.0186 7531   4.222  0.0032
 Step5 - Step17   0.082301 0.0186 7531   4.434  0.0013
 Step5 - Step18   0.101952 0.0186 7531   5.492  <.0001
 Step6 - Step7   -0.006966 0.0186 7531  -0.375  1.0000
 Step6 - Step8   -0.001064 0.0186 7531  -0.057  1.0000
 Step6 - Step9    0.002285 0.0186 7531   0.123  1.0000
 Step6 - Step10   0.018805 0.0186 7531   1.013  0.9999
 Step6 - Step11   0.026914 0.0186 7531   1.450  0.9937
 Step6 - Step12   0.031482 0.0186 7531   1.696  0.9676
 Step6 - Step13   0.040382 0.0186 7531   2.176  0.7701
 Step6 - Step14   0.054869 0.0186 7531   2.956  0.2222
 Step6 - Step15   0.060676 0.0186 7531   3.269  0.0982
 Step6 - Step16   0.069412 0.0186 7531   3.739  0.0214
 Step6 - Step17   0.073344 0.0186 7531   3.951  0.0097
 Step6 - Step18   0.092995 0.0186 7531   5.010  0.0001
 Step7 - Step8    0.005902 0.0186 7531   0.318  1.0000
 Step7 - Step9    0.009251 0.0186 7531   0.498  1.0000
 Step7 - Step10   0.025771 0.0186 7531   1.388  0.9961
 Step7 - Step11   0.033880 0.0186 7531   1.825  0.9372
 Step7 - Step12   0.038448 0.0186 7531   2.071  0.8329
 Step7 - Step13   0.047348 0.0186 7531   2.551  0.4910
 Step7 - Step14   0.061834 0.0186 7531   3.331  0.0818
 Step7 - Step15   0.067641 0.0186 7531   3.644  0.0299
 Step7 - Step16   0.076377 0.0186 7531   4.115  0.0051
 Step7 - Step17   0.080309 0.0186 7531   4.326  0.0021
 Step7 - Step18   0.099961 0.0186 7531   5.385  <.0001
 Step8 - Step9    0.003349 0.0186 7531   0.180  1.0000
 Step8 - Step10   0.019869 0.0186 7531   1.070  0.9999
 Step8 - Step11   0.027978 0.0186 7531   1.507  0.9903
 Step8 - Step12   0.032546 0.0186 7531   1.753  0.9559
 Step8 - Step13   0.041446 0.0186 7531   2.233  0.7316
 Step8 - Step14   0.055932 0.0186 7531   3.013  0.1938
 Step8 - Step15   0.061740 0.0186 7531   3.326  0.0830
 Step8 - Step16   0.070476 0.0186 7531   3.797  0.0174
 Step8 - Step17   0.074408 0.0186 7531   4.009  0.0078
 Step8 - Step18   0.094059 0.0186 7531   5.067  0.0001
 Step9 - Step10   0.016520 0.0186 7531   0.890  1.0000
 Step9 - Step11   0.024629 0.0186 7531   1.327  0.9977
 Step9 - Step12   0.029197 0.0186 7531   1.573  0.9847
 Step9 - Step13   0.038097 0.0186 7531   2.052  0.8432
 Step9 - Step14   0.052583 0.0186 7531   2.833  0.2922
 Step9 - Step15   0.058391 0.0186 7531   3.146  0.1381
 Step9 - Step16   0.067127 0.0186 7531   3.616  0.0329
 Step9 - Step17   0.071059 0.0186 7531   3.828  0.0155
 Step9 - Step18   0.090710 0.0186 7531   4.887  0.0002
 Step10 - Step11  0.008109 0.0186 7531   0.437  1.0000
 Step10 - Step12  0.012677 0.0186 7531   0.683  1.0000
 Step10 - Step13  0.021577 0.0186 7531   1.162  0.9996
 Step10 - Step14  0.036063 0.0186 7531   1.943  0.8953
 Step10 - Step15  0.041870 0.0186 7531   2.256  0.7155
 Step10 - Step16  0.050607 0.0186 7531   2.726  0.3620
 Step10 - Step17  0.054539 0.0186 7531   2.938  0.2316
 Step10 - Step18  0.074190 0.0186 7531   3.997  0.0081
 Step11 - Step12  0.004568 0.0186 7531   0.246  1.0000
 Step11 - Step13  0.013468 0.0186 7531   0.726  1.0000
 Step11 - Step14  0.027954 0.0186 7531   1.506  0.9904
 Step11 - Step15  0.033762 0.0186 7531   1.819  0.9390
 Step11 - Step16  0.042498 0.0186 7531   2.289  0.6912
 Step11 - Step17  0.046430 0.0186 7531   2.501  0.5293
 Step11 - Step18  0.066081 0.0186 7531   3.560  0.0397
 Step12 - Step13  0.008900 0.0186 7531   0.479  1.0000
 Step12 - Step14  0.023386 0.0186 7531   1.260  0.9988
 Step12 - Step15  0.029193 0.0186 7531   1.573  0.9847
 Step12 - Step16  0.037929 0.0186 7531   2.043  0.8480
 Step12 - Step17  0.041861 0.0186 7531   2.255  0.7159
 Step12 - Step18  0.061513 0.0186 7531   3.314  0.0861
 Step13 - Step14  0.014486 0.0186 7531   0.780  1.0000
 Step13 - Step15  0.020293 0.0186 7531   1.093  0.9998
 Step13 - Step16  0.029029 0.0186 7531   1.564  0.9856
 Step13 - Step17  0.032961 0.0186 7531   1.776  0.9506
 Step13 - Step18  0.052613 0.0186 7531   2.834  0.2913
 Step14 - Step15  0.005807 0.0186 7531   0.313  1.0000
 Step14 - Step16  0.014543 0.0186 7531   0.783  1.0000
 Step14 - Step17  0.018475 0.0186 7531   0.995  0.9999
 Step14 - Step18  0.038127 0.0186 7531   2.054  0.8423
 Step15 - Step16  0.008736 0.0186 7531   0.471  1.0000
 Step15 - Step17  0.012668 0.0186 7531   0.682  1.0000
 Step15 - Step18  0.032320 0.0186 7531   1.741  0.9587
 Step16 - Step17  0.003932 0.0186 7531   0.212  1.0000
 Step16 - Step18  0.023584 0.0186 7531   1.271  0.9987
 Step17 - Step18  0.019652 0.0186 7531   1.059  0.9999

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 0.573935086  0.003039570  0.017560376  0.022849226  0.013692158  0.004735284 
       Step7        Step8        Step9       Step10       Step11       Step12 
 0.011700832  0.005799236  0.002450190 -0.014069897 -0.022178848 -0.026747217 
      Step13       Step14       Step15       Step16       Step17       Step18 
-0.035647009 -0.050133220 -0.055940383 -0.064676513 -0.068608426 -0.088260045 

Random Effects:
$trial_id
        (Intercept)
7.1   -2.335607e-02
20.1  -3.829123e-02
2.2    4.985558e-02
7.2    9.683537e-02
8.2    3.664373e-02
10.2  -2.767938e-02
16.2  -1.535171e-01
17.2   1.330471e-02
23.2  -8.754236e-04
2.3   -1.775388e-01
3.3   -1.490626e-01
8.3    7.726058e-02
10.3   6.171820e-01
11.3   3.207178e-01
16.3   6.446475e-02
17.3   2.976752e-02
20.3   2.791485e-02
2.4   -1.523157e-01
4.4   -4.984816e-02
7.4    1.285154e-01
11.4   1.228496e+00
13.4  -5.833870e-02
14.4   1.011565e-01
16.4  -7.466675e-02
17.4   2.081310e-02
18.4   1.143406e-01
20.4   6.649547e-02
23.4  -1.976532e-02
2.5    2.933885e-01
3.5    3.048811e-01
4.5   -2.226687e-02
7.5    1.106321e-01
8.5    9.746312e-02
11.5   2.159504e-01
13.5   1.132292e-03
14.5   3.955169e-01
15.5  -6.768340e-03
16.5  -4.936514e-02
17.5  -8.934942e-03
18.5   2.311829e-01
23.5   8.261424e-02
4.6    3.679917e-02
5.6   -6.016862e-02
7.6   -3.906979e-02
8.6    4.907929e-01
10.6   1.038269e-01
13.6  -8.383704e-03
14.6   7.756142e-02
17.6  -9.449678e-04
18.6   2.087440e-01
23.6   7.281036e-02
2.7   -1.114305e-01
3.7    1.063079e-01
4.7    6.757103e-02
5.7   -1.216000e-02
7.7    2.113227e-02
8.7    9.251647e-02
13.7   6.104475e-02
14.7   1.434729e-01
16.7  -6.564502e-03
17.7   2.588989e-02
18.7   2.443697e-01
19.7  -5.401857e-02
23.7   1.670962e-01
2.8   -9.306763e-02
3.8    3.115532e-01
4.8    2.917588e-02
7.8   -4.448666e-02
8.8    2.119312e-01
13.8   1.626328e-01
16.8  -1.265928e-02
17.8   1.753349e-02
22.8   5.930584e-02
23.8   1.106949e-01
3.9   -8.018701e-02
4.9    1.124859e-01
7.9    7.042934e-02
13.9   1.217052e-02
16.9   8.329397e-02
17.9  -5.355779e-02
20.9   2.510633e-03
22.9   4.483594e-02
23.9   1.274942e-01
2.10  -2.405668e-01
4.10   7.693016e-02
7.10  -5.406640e-02
8.10   5.706069e-02
14.10  8.717836e-03
18.10 -4.496919e-02
19.10  2.080222e-02
20.10  1.026436e-01
2.11  -1.409571e-01
3.11   1.763941e-01
7.11   8.189480e-03
8.11   2.160734e-01
10.11  1.918960e-01
13.11 -7.981494e-02
16.11  1.428354e-01
17.11 -6.692893e-02
18.11  3.061765e-01
20.11  9.060499e-03
22.11  5.398324e-02
23.11 -2.145993e-02
2.12  -6.453447e-02
5.12  -6.438386e-02
7.12   4.646491e-02
10.12  2.650344e-01
13.12  2.102328e-01
14.12  9.147681e-02
15.12 -8.331124e-02
17.12  8.205763e-03
19.12 -2.960274e-02
20.12  1.045725e-01
3.13   2.388061e-01
7.13   1.253026e-01
8.13   2.103647e-02
10.13  4.840353e-01
13.13 -8.559146e-02
14.13  1.001258e-01
16.13 -4.040974e-03
17.13 -8.794404e-02
18.13  1.833797e-01
23.13  1.390910e-02
2.14  -9.703724e-02
3.14   4.446701e-01
5.14  -3.658603e-02
7.14   7.626023e-02
10.14  6.372946e-01
11.14  1.806901e-01
13.14 -1.123166e-01
14.14 -8.798625e-02
15.14  7.772532e-02
16.14  1.229647e-02
17.14 -1.169461e-02
20.14  1.030571e-01
2.15   7.093261e-02
3.15   8.212825e-02
5.15  -7.673090e-02
7.15   8.257986e-03
8.15   1.261070e-01
10.15  5.403865e-01
14.15 -6.295603e-02
15.15 -5.771015e-02
17.15  4.680894e-02
18.15  2.484816e-01
23.15  3.176935e-03
3.16   1.093257e-01
5.16  -8.073741e-02
8.16  -3.234977e-02
10.16  4.443045e-01
13.16  7.485617e-02
15.16  5.322951e-02
16.16  3.297148e-02
17.16  1.651260e-02
2.17   6.593076e-02
4.17   1.464055e-01
5.17  -3.336657e-02
10.17  1.322136e+00
11.17 -1.903993e-01
13.17 -3.977722e-02
14.17  1.370752e-01
15.17  1.279010e-02
17.17 -2.075142e-02
19.17 -7.313310e-02
22.17  9.176479e-02
23.17  4.585032e-02
2.18   6.838359e-01
4.18  -3.147741e-02
5.18   1.920503e-01
7.18   1.729800e-01
8.18  -3.499606e-03
11.18 -1.720582e-01
15.18 -5.988280e-02
16.18 -8.768607e-02
17.18  2.386662e-01
3.19   2.555460e-01
7.19   1.475173e-01
10.19  6.271371e-01
11.19  9.656652e-01
14.19  2.187104e-02
15.19 -1.179264e-01
18.19  2.470923e-01
23.19  4.111884e-02
3.20   2.028860e-01
4.20   1.795270e-02
7.20  -1.811566e-01
13.20  1.400701e-01
14.20  7.295095e-02
15.20 -1.705829e-01
16.20  1.080926e-01
17.20 -8.010370e-03
2.21   9.145506e-01
7.21   5.764673e-01
8.21   2.415469e-01
10.21  3.491096e-01
13.21  3.205124e-01
14.21 -7.498749e-02
15.21  1.589583e-01
16.21  5.644464e-02
17.21  1.957349e-02
19.21 -9.810996e-02
2.22   5.425540e-02
4.22   4.663387e-02
5.22   2.652691e-02
7.22   1.382674e-01
11.22  1.081741e+00
13.22  1.260307e-01
15.22  2.046497e-01
16.22  1.443747e-01
17.22  2.354863e-01
19.22 -5.650731e-02
20.22  8.965419e-02
23.22 -1.802164e-02
2.23  -4.860093e-02
3.23   2.222834e-01
4.23  -2.105988e-02
5.23  -1.459395e-02
7.23  -1.799776e-03
8.23   5.731839e-01
10.23  6.347894e-01
14.23  4.519421e-02
15.23 -3.789432e-02
16.23  3.294556e-01
17.23  1.770544e-01
2.24  -1.420670e-01
3.24   3.819579e-01
5.24   8.885220e-03
7.24  -6.996151e-02
8.24   1.717492e-01
13.24  2.401780e-01
14.24  1.108463e-01
15.24  9.410666e-02
16.24  3.056438e-01
17.24  1.904579e-01
20.24  9.602439e-02
23.24  2.161924e-01
2.25   6.168487e-01
7.25   7.635570e-02
10.25 -1.520205e-01
13.25  4.854703e-02
15.25 -9.230187e-02
16.25  3.292727e-01
17.25  3.450870e-02
18.25  1.389139e-01
23.25  4.173327e-01
2.26   2.777023e-01
3.26   1.133586e-01
4.26   3.022509e-02
5.26   2.681334e-01
8.26   6.599524e-01
10.26  2.793744e-01
13.26  1.390350e-01
14.26  2.772928e-01
17.26  2.813527e-01
18.26  2.143551e-01
23.26  2.676592e-01
2.27   4.509857e-01
3.27  -7.236866e-02
5.27   2.786739e-01
7.27   3.430897e-01
8.27  -2.061128e-01
10.27  4.499428e-02
11.27 -2.140472e-01
13.27  2.010817e-01
14.27  1.163858e-01
16.27  2.335994e-02
17.27  2.671166e-01
18.27  1.196504e-01
20.27 -9.045738e-03
3.28   9.666980e-03
5.28   5.494226e-02
7.28   6.838048e-02
8.28   2.466468e-02
10.28 -7.027592e-01
11.28 -3.011600e-01
15.28  1.118830e-01
16.28  2.089070e-01
17.28  5.417975e-01
19.28 -9.073435e-02
23.28 -2.249606e-02
2.29   6.976720e-01
4.29   1.228996e-02
5.29  -1.021097e-02
7.29   7.359381e-02
13.29 -6.815044e-02
14.29 -5.505172e-02
15.29  4.340292e-02
17.29 -7.400565e-03
19.29  1.572997e-01
20.29 -3.308530e-02
22.29  9.786260e-02
23.29 -3.303617e-01
2.30   3.917524e-01
3.30   3.839822e-02
5.30   2.035907e-02
7.30  -1.127518e-02
8.30  -2.120963e-01
10.30 -6.794155e-01
13.30 -2.209398e-01
14.30 -1.239073e-02
16.30  1.583832e-01
17.30 -5.810958e-02
18.30  4.117600e-01
20.30  7.046863e-02
22.30 -5.865689e-02
23.30 -4.927774e-01
2.31  -4.528331e-01
3.31  -1.694989e-01
4.31   1.049221e-01
7.31  -1.595373e-01
8.31  -1.840100e-01
10.31 -2.271838e-01
11.31 -4.802663e-01
13.31 -3.260652e-01
15.31  3.749078e-01
16.31  1.887850e-01
17.31 -9.469422e-02
2.32  -5.927549e-01
3.32  -3.124888e-01
5.32   7.581213e-02
7.32  -3.567568e-01
8.32  -3.160681e-01
10.32 -7.667982e-01
11.32 -1.745786e-01
14.32 -4.562580e-01
16.32 -1.540240e-01
17.32 -4.204791e-01
18.32  6.813490e-02
23.32 -1.163530e-02
2.33  -2.289930e-01
5.33  -5.841953e-02
8.33  -2.445306e-01
11.33 -5.309810e-01
13.33 -1.204716e-01
14.33 -2.019227e-01
16.33 -3.927573e-01
17.33 -2.537379e-01
18.33 -8.033687e-02
19.33 -1.339754e-02
20.33  6.003617e-05
23.33 -8.317317e-02
2.34  -1.947785e-01
3.34  -5.712544e-02
8.34  -1.703891e-02
10.34 -4.837973e-01
11.34 -6.606526e-01
13.34 -2.091265e-01
16.34 -1.325570e-01
17.34  3.464884e-02
20.34  5.902390e-02
2.35  -5.117213e-01
3.35  -5.102956e-01
4.35  -9.139917e-02
5.35  -4.337307e-02
7.35  -1.851823e-01
8.35  -2.928341e-01
10.35 -2.032058e-01
13.35 -3.324739e-01
15.35 -2.804768e-01
16.35  1.871538e-01
18.35 -5.018244e-01
20.35 -2.077496e-01
23.35  7.255620e-02
2.36   4.963549e-02
4.36  -2.445491e-01
5.36  -2.274821e-01
7.36  -1.883538e-01
8.36  -3.246451e-01
10.36 -7.084059e-02
14.36 -1.552405e-01
16.36 -3.950054e-01
17.36 -4.376357e-01
18.36 -3.985466e-01
20.36 -1.040184e-01
23.36 -2.262280e-01
2.37  -5.872658e-01
4.37  -1.991461e-01
5.37  -1.029798e-01
7.37  -1.730910e-01
8.37  -2.568665e-01
10.37 -5.595482e-01
13.37  3.369398e-02
14.37 -1.244436e-01
15.37  5.716470e-02
16.37 -2.103962e-01
18.37 -1.639139e-01
20.37 -5.962695e-02
2.38  -1.144929e-01
3.38  -3.860386e-01
5.38  -1.459266e-01
7.38  -3.462066e-01
10.38 -4.510306e-01
13.38  2.156186e-02
16.38 -3.510096e-01
17.38 -2.166637e-01
18.38 -2.832986e-01
20.38 -1.269162e-01
23.38 -2.982747e-01
3.39  -6.303909e-02
4.39  -2.366205e-01
7.39  -2.362986e-01
8.39  -3.445676e-01
10.39 -6.318351e-01
13.39 -1.076285e-01
14.39 -2.319721e-01
16.39 -1.113506e-01
17.39 -1.275577e-01
18.39 -1.489229e-01
23.39 -1.147026e-01
2.40  -2.055013e-01
3.40  -1.175514e-01
5.40  -1.709050e-01
8.40  -2.961354e-01
10.40 -5.190695e-01
13.40 -8.540245e-02
14.40 -2.741729e-01
16.40  2.010489e-02
17.40 -2.468102e-01
2.41  -2.121076e-01
3.41  -3.142841e-01
5.41  -3.073108e-02
7.41  -2.888370e-01
8.41  -2.694136e-01
13.41 -3.182496e-01
15.41 -2.560510e-01
16.41 -1.260782e-02
17.41 -1.746050e-01
18.41 -2.884066e-01
20.41 -2.843816e-01
3.42  -4.148775e-01
4.42  -1.556659e-01
5.42  -1.399914e-01
7.42  -2.185229e-02
11.42 -6.004708e-01
15.42  5.246048e-02
16.42 -3.168850e-01
18.42 -4.688914e-01
20.42 -1.295100e-01
3.43  -2.820617e-01
5.43  -1.909922e-01
15.43 -3.089918e-01
20.43 -1.141558e-01
22.43 -3.522124e-01
15.44  2.090072e-02

$subject
     (Intercept)
2   0.1054959813
3   0.0293800412
4  -0.1571709217
5  -0.2435560774
7  -0.0392739947
8   0.0414781743
10  0.4521724422
11  0.2835402497
13 -0.1611183786
14 -0.0160025974
15 -0.0889312661
16 -0.0293667667
17 -0.0411168339
18  0.1515859178
19 -0.1006703373
20 -0.1591441671
22 -0.0267647522
23 -0.0005367133

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
1.1065321 0.7563700 0.6937123 0.4274399 0.2254632 0.3009317 

=============================================================

--- Mixed - Block 3 - Axis Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 13.173 0.77489    17  7531  9.2083 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.004258 0.0195 7531  -0.219  1.0000
 Step1 - Step3   -0.028112 0.0195 7531  -1.444  0.9939
 Step1 - Step4   -0.031987 0.0195 7531  -1.643  0.9762
 Step1 - Step5   -0.031731 0.0195 7531  -1.630  0.9780
 Step1 - Step6   -0.021659 0.0195 7531  -1.112  0.9998
 Step1 - Step7   -0.032485 0.0195 7531  -1.669  0.9723
 Step1 - Step8   -0.039907 0.0195 7531  -2.050  0.8446
 Step1 - Step9   -0.041413 0.0195 7531  -2.127  0.8006
 Step1 - Step10  -0.015332 0.0195 7531  -0.788  1.0000
 Step1 - Step11  -0.005256 0.0195 7531  -0.270  1.0000
 Step1 - Step12   0.000724 0.0195 7531   0.037  1.0000
 Step1 - Step13   0.011942 0.0195 7531   0.613  1.0000
 Step1 - Step14   0.031394 0.0195 7531   1.612  0.9803
 Step1 - Step15   0.049294 0.0195 7531   2.532  0.5056
 Step1 - Step16   0.069784 0.0195 7531   3.584  0.0366
 Step1 - Step17   0.076068 0.0195 7531   3.907  0.0115
 Step1 - Step18   0.088536 0.0195 7531   4.547  0.0008
 Step2 - Step3   -0.023854 0.0195 7531  -1.225  0.9992
 Step2 - Step4   -0.027729 0.0195 7531  -1.424  0.9948
 Step2 - Step5   -0.027473 0.0195 7531  -1.411  0.9953
 Step2 - Step6   -0.017401 0.0195 7531  -0.894  1.0000
 Step2 - Step7   -0.028228 0.0195 7531  -1.450  0.9937
 Step2 - Step8   -0.035649 0.0195 7531  -1.831  0.9354
 Step2 - Step9   -0.037155 0.0195 7531  -1.908  0.9091
 Step2 - Step10  -0.011075 0.0195 7531  -0.569  1.0000
 Step2 - Step11  -0.000998 0.0195 7531  -0.051  1.0000
 Step2 - Step12   0.004981 0.0195 7531   0.256  1.0000
 Step2 - Step13   0.016200 0.0195 7531   0.832  1.0000
 Step2 - Step14   0.035652 0.0195 7531   1.831  0.9354
 Step2 - Step15   0.053552 0.0195 7531   2.751  0.3454
 Step2 - Step16   0.074042 0.0195 7531   3.803  0.0170
 Step2 - Step17   0.080326 0.0195 7531   4.126  0.0048
 Step2 - Step18   0.092794 0.0195 7531   4.766  0.0003
 Step3 - Step4   -0.003875 0.0195 7531  -0.199  1.0000
 Step3 - Step5   -0.003619 0.0195 7531  -0.186  1.0000
 Step3 - Step6    0.006453 0.0195 7531   0.331  1.0000
 Step3 - Step7   -0.004373 0.0195 7531  -0.225  1.0000
 Step3 - Step8   -0.011795 0.0195 7531  -0.606  1.0000
 Step3 - Step9   -0.013301 0.0195 7531  -0.683  1.0000
 Step3 - Step10   0.012780 0.0195 7531   0.656  1.0000
 Step3 - Step11   0.022856 0.0195 7531   1.174  0.9995
 Step3 - Step12   0.028836 0.0195 7531   1.481  0.9920
 Step3 - Step13   0.040054 0.0195 7531   2.057  0.8406
 Step3 - Step14   0.059506 0.0195 7531   3.056  0.1742
 Step3 - Step15   0.077406 0.0195 7531   3.976  0.0088
 Step3 - Step16   0.097896 0.0195 7531   5.028  0.0001
 Step3 - Step17   0.104180 0.0195 7531   5.351  <.0001
 Step3 - Step18   0.116648 0.0195 7531   5.991  <.0001
 Step4 - Step5    0.000256 0.0195 7531   0.013  1.0000
 Step4 - Step6    0.010328 0.0195 7531   0.530  1.0000
 Step4 - Step7   -0.000499 0.0195 7531  -0.026  1.0000
 Step4 - Step8   -0.007920 0.0195 7531  -0.407  1.0000
 Step4 - Step9   -0.009426 0.0195 7531  -0.484  1.0000
 Step4 - Step10   0.016655 0.0195 7531   0.855  1.0000
 Step4 - Step11   0.026731 0.0195 7531   1.373  0.9966
 Step4 - Step12   0.032710 0.0195 7531   1.680  0.9704
 Step4 - Step13   0.043929 0.0195 7531   2.256  0.7151
 Step4 - Step14   0.063381 0.0195 7531   3.255  0.1020
 Step4 - Step15   0.081281 0.0195 7531   4.175  0.0040
 Step4 - Step16   0.101771 0.0195 7531   5.227  <.0001
 Step4 - Step17   0.108055 0.0195 7531   5.550  <.0001
 Step4 - Step18   0.120523 0.0195 7531   6.190  <.0001
 Step5 - Step6    0.010072 0.0195 7531   0.517  1.0000
 Step5 - Step7   -0.000754 0.0195 7531  -0.039  1.0000
 Step5 - Step8   -0.008176 0.0195 7531  -0.420  1.0000
 Step5 - Step9   -0.009682 0.0195 7531  -0.497  1.0000
 Step5 - Step10   0.016399 0.0195 7531   0.842  1.0000
 Step5 - Step11   0.026475 0.0195 7531   1.360  0.9970
 Step5 - Step12   0.032455 0.0195 7531   1.667  0.9726
 Step5 - Step13   0.043674 0.0195 7531   2.243  0.7243
 Step5 - Step14   0.063125 0.0195 7531   3.242  0.1059
 Step5 - Step15   0.081026 0.0195 7531   4.162  0.0042
 Step5 - Step16   0.101515 0.0195 7531   5.214  <.0001
 Step5 - Step17   0.107799 0.0195 7531   5.537  <.0001
 Step5 - Step18   0.120267 0.0195 7531   6.177  <.0001
 Step6 - Step7   -0.010827 0.0195 7531  -0.556  1.0000
 Step6 - Step8   -0.018248 0.0195 7531  -0.937  1.0000
 Step6 - Step9   -0.019754 0.0195 7531  -1.015  0.9999
 Step6 - Step10   0.006327 0.0195 7531   0.325  1.0000
 Step6 - Step11   0.016403 0.0195 7531   0.843  1.0000
 Step6 - Step12   0.022382 0.0195 7531   1.150  0.9996
 Step6 - Step13   0.033601 0.0195 7531   1.726  0.9619
 Step6 - Step14   0.053053 0.0195 7531   2.725  0.3629
 Step6 - Step15   0.070953 0.0195 7531   3.644  0.0299
 Step6 - Step16   0.091443 0.0195 7531   4.697  0.0004
 Step6 - Step17   0.097727 0.0195 7531   5.020  0.0001
 Step6 - Step18   0.110195 0.0195 7531   5.660  <.0001
 Step7 - Step8   -0.007422 0.0195 7531  -0.381  1.0000
 Step7 - Step9   -0.008928 0.0195 7531  -0.459  1.0000
 Step7 - Step10   0.017153 0.0195 7531   0.881  1.0000
 Step7 - Step11   0.027230 0.0195 7531   1.399  0.9958
 Step7 - Step12   0.033209 0.0195 7531   1.706  0.9659
 Step7 - Step13   0.044428 0.0195 7531   2.282  0.6967
 Step7 - Step14   0.063879 0.0195 7531   3.281  0.0948
 Step7 - Step15   0.081780 0.0195 7531   4.200  0.0036
 Step7 - Step16   0.102269 0.0195 7531   5.253  <.0001
 Step7 - Step17   0.108554 0.0195 7531   5.576  <.0001
 Step7 - Step18   0.121021 0.0195 7531   6.216  <.0001
 Step8 - Step9   -0.001506 0.0195 7531  -0.077  1.0000
 Step8 - Step10   0.024575 0.0195 7531   1.262  0.9988
 Step8 - Step11   0.034652 0.0195 7531   1.780  0.9496
 Step8 - Step12   0.040631 0.0195 7531   2.087  0.8242
 Step8 - Step13   0.051850 0.0195 7531   2.663  0.4068
 Step8 - Step14   0.071301 0.0195 7531   3.662  0.0281
 Step8 - Step15   0.089202 0.0195 7531   4.582  0.0007
 Step8 - Step16   0.109691 0.0195 7531   5.634  <.0001
 Step8 - Step17   0.115975 0.0195 7531   5.957  <.0001
 Step8 - Step18   0.128443 0.0195 7531   6.597  <.0001
 Step9 - Step10   0.026081 0.0195 7531   1.340  0.9975
 Step9 - Step11   0.036157 0.0195 7531   1.857  0.9272
 Step9 - Step12   0.042137 0.0195 7531   2.164  0.7774
 Step9 - Step13   0.053355 0.0195 7531   2.740  0.3523
 Step9 - Step14   0.072807 0.0195 7531   3.740  0.0214
 Step9 - Step15   0.090707 0.0195 7531   4.659  0.0005
 Step9 - Step16   0.111197 0.0195 7531   5.711  <.0001
 Step9 - Step17   0.117481 0.0195 7531   6.034  <.0001
 Step9 - Step18   0.129949 0.0195 7531   6.675  <.0001
 Step10 - Step11  0.010077 0.0195 7531   0.518  1.0000
 Step10 - Step12  0.016056 0.0195 7531   0.825  1.0000
 Step10 - Step13  0.027275 0.0195 7531   1.401  0.9957
 Step10 - Step14  0.046726 0.0195 7531   2.400  0.6080
 Step10 - Step15  0.064627 0.0195 7531   3.319  0.0847
 Step10 - Step16  0.085116 0.0195 7531   4.372  0.0017
 Step10 - Step17  0.091401 0.0195 7531   4.695  0.0004
 Step10 - Step18  0.103868 0.0195 7531   5.335  <.0001
 Step11 - Step12  0.005979 0.0195 7531   0.307  1.0000
 Step11 - Step13  0.017198 0.0195 7531   0.883  1.0000
 Step11 - Step14  0.036650 0.0195 7531   1.882  0.9186
 Step11 - Step15  0.054550 0.0195 7531   2.802  0.3117
 Step11 - Step16  0.075040 0.0195 7531   3.854  0.0140
 Step11 - Step17  0.081324 0.0195 7531   4.177  0.0039
 Step11 - Step18  0.093792 0.0195 7531   4.817  0.0002
 Step12 - Step13  0.011219 0.0195 7531   0.576  1.0000
 Step12 - Step14  0.030670 0.0195 7531   1.575  0.9845
 Step12 - Step15  0.048571 0.0195 7531   2.495  0.5344
 Step12 - Step16  0.069060 0.0195 7531   3.547  0.0415
 Step12 - Step17  0.075345 0.0195 7531   3.870  0.0132
 Step12 - Step18  0.087812 0.0195 7531   4.510  0.0009
 Step13 - Step14  0.019451 0.0195 7531   0.999  0.9999
 Step13 - Step15  0.037352 0.0195 7531   1.918  0.9052
 Step13 - Step16  0.057842 0.0195 7531   2.971  0.2146
 Step13 - Step17  0.064126 0.0195 7531   3.294  0.0914
 Step13 - Step18  0.076594 0.0195 7531   3.934  0.0104
 Step14 - Step15  0.017900 0.0195 7531   0.919  1.0000
 Step14 - Step16  0.038390 0.0195 7531   1.972  0.8828
 Step14 - Step17  0.044674 0.0195 7531   2.295  0.6875
 Step14 - Step18  0.057142 0.0195 7531   2.935  0.2333
 Step15 - Step16  0.020490 0.0195 7531   1.052  0.9999
 Step15 - Step17  0.026774 0.0195 7531   1.375  0.9965
 Step15 - Step18  0.039242 0.0195 7531   2.016  0.8622
 Step16 - Step17  0.006284 0.0195 7531   0.323  1.0000
 Step16 - Step18  0.018752 0.0195 7531   0.963  1.0000
 Step17 - Step18  0.012468 0.0195 7531   0.640  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 0.5818702923  0.0042578243  0.0281119978  0.0319868630  0.0317312185 
        Step6         Step7         Step8         Step9        Step10 
 0.0216588747  0.0324854247  0.0399072551  0.0414130280  0.0153323310 
       Step11        Step12        Step13        Step14        Step15 
 0.0052557342 -0.0007235145 -0.0119424616 -0.0313939079 -0.0492944033 
       Step16        Step17        Step18 
-0.0697840157 -0.0760682167 -0.0885359871 

Random Effects:
$trial_id
        (Intercept)
7.1   -0.1000286271
20.1   0.0484526173
2.2    0.0350216045
7.2   -0.0078730734
8.2    0.1217083693
10.2  -0.0408219349
16.2  -0.0344031787
17.2   0.0402472921
23.2   0.0185062397
2.3   -0.0906566813
3.3   -0.0934769553
8.3    0.2844708019
10.3   0.4692248435
11.3   0.2542355927
16.3   0.0558365736
17.3   0.1885213993
20.3   0.0492817469
2.4    0.0879322039
4.4   -0.1458730308
7.4    0.2947379841
11.4   0.8794311289
13.4   0.0841541444
14.4   0.2937701302
16.4   0.0826598977
17.4  -0.0468197251
18.4  -0.1133937686
20.4   0.1417657630
23.4   0.1187421927
2.5    0.0107376231
3.5    0.0633307419
4.5   -0.0915695828
7.5    0.0976054781
8.5    0.2802815930
11.5   0.5179338045
13.5   0.1320685922
14.5   0.2984876512
15.5  -0.0593356793
16.5   0.2415048603
17.5   0.5234476381
18.5   0.0207016396
23.5   0.0761560559
4.6   -0.0598919320
5.6    0.1781790857
7.6    0.2440990335
8.6    0.5724340825
10.6   0.4954900709
13.6   0.1630647090
14.6  -0.0256392031
17.6  -0.0221608801
18.6  -0.1357701640
23.6  -0.0614977729
2.7   -0.2419532409
3.7    0.3261942333
4.7   -0.0792912830
5.7    0.0293355808
7.7   -0.0157331200
8.7    0.1982406025
13.7   0.0884039280
14.7   0.2154196981
16.7   0.2000117832
17.7   0.0677722156
18.7   0.0758088161
19.7  -0.0976159016
23.7   0.1323084903
2.8    0.0957455424
3.8    0.2009116330
4.8   -0.1050682614
7.8   -0.0188606372
8.8    0.6970003007
13.8   0.1829094658
16.8   0.0534339692
17.8   0.2006261197
22.8  -0.1161787945
23.8   0.1739267501
3.9    0.1128437246
4.9   -0.1576736878
7.9   -0.0134450406
13.9   0.2058694431
16.9   0.1584785940
17.9   0.2088344599
20.9   0.0010125061
22.9  -0.0112267464
23.9  -0.0115131567
2.10   0.0049948276
4.10  -0.1932045079
7.10  -0.0525839781
8.10   0.2119100543
14.10  0.2391775462
18.10  0.2198761826
19.10  0.0444639190
20.10  0.1890583374
2.11  -0.0975515058
3.11   0.1980215420
7.11   0.1298555585
8.11   0.5440510690
10.11  0.0730094818
13.11 -0.0199663077
16.11 -0.0026781111
17.11 -0.0110935270
18.11  0.0269188710
20.11 -0.0027638843
22.11 -0.0534501520
23.11 -0.0346724485
2.12   0.0547511918
5.12  -0.0849692103
7.12   0.0213621456
10.12  0.6013981487
13.12 -0.0323748318
14.12  0.1635940259
15.12  0.0944775356
17.12  0.1261201220
19.12 -0.0803815807
20.12  0.0366714259
3.13   0.0120737139
7.13   0.0047150349
8.13   0.1105476371
10.13  0.4159926765
13.13  0.0022776369
14.13  0.1769834852
16.13  0.0422768616
17.13  0.2055891916
18.13  0.0658063032
23.13 -0.0074836125
2.14  -0.0481707856
3.14   0.4549938353
5.14   0.0047294263
7.14   0.1481569528
10.14  0.4201614060
11.14  0.1337291358
13.14 -0.0088645777
14.14  0.1044300940
15.14  0.3689635724
16.14 -0.0323330309
17.14 -0.0526635857
20.14  0.3992919936
2.15   0.0007901201
3.15   0.1502762802
5.15   0.0446724223
7.15  -0.1015939185
8.15  -0.0428978136
10.15  0.3410012020
14.15 -0.0934778663
15.15  0.2829031351
17.15  0.0072477422
18.15 -0.0832520343
23.15 -0.2406606575
3.16   0.4075160479
5.16   0.0639222016
8.16   0.3250725903
10.16  0.4579414573
13.16 -0.0113916546
15.16  0.2541419860
16.16 -0.0487088801
17.16  0.0732111349
2.17   0.2560744270
4.17   0.0616466762
5.17   0.1852782235
10.17  0.7674487704
11.17  0.0586949568
13.17 -0.0168749481
14.17  0.1345836091
15.17  0.1422350334
17.17  0.0454432962
19.17 -0.0970609332
22.17 -0.1180744873
23.17  0.1614106376
2.18   0.5343794088
4.18   0.0146831049
5.18   0.1261874828
7.18   0.0968583015
8.18   0.1242183009
11.18 -0.0774737939
15.18  0.3977213394
16.18  0.0742783806
17.18  0.0623301876
3.19   0.3314051587
7.19   0.0586929330
10.19  0.4735117645
11.19  0.2289138813
14.19 -0.0620517796
15.19  0.0269425902
18.19 -0.1381616444
23.19  0.2449549010
3.20   0.2005916831
4.20   0.1298680040
7.20  -0.0588589051
13.20  0.1891770109
14.20 -0.0089964120
15.20 -0.2057643759
16.20  0.0638402292
17.20  0.2589473509
2.21   0.6614565500
7.21   0.2326129722
8.21  -0.0635641231
10.21  0.6394352165
13.21  0.3732632364
14.21 -0.0049209247
15.21 -0.0007423095
16.21  0.0102500637
17.21  0.1567476042
19.21 -0.0912284789
2.22   0.3773416498
4.22  -0.0059116716
5.22  -0.1236383255
7.22  -0.0080616566
11.22  0.2627308452
13.22 -0.0282971557
15.22 -0.0471335453
16.22 -0.0775266880
17.22  0.1634679549
19.22 -0.0386283662
20.22 -0.1346912570
23.22  0.4244663440
2.23  -0.1397172128
3.23   0.0856633695
4.23   0.4013614738
5.23   0.0233270438
7.23  -0.0361857832
8.23   0.0120414425
10.23  0.3011276399
14.23  0.0768157212
15.23  0.1085126504
16.23  0.0776924971
17.23  0.1844253330
2.24   0.2620071173
3.24   0.3256715507
5.24  -0.0940193224
7.24   0.5424883530
8.24  -0.1056356999
13.24  0.4097117434
14.24 -0.1101040110
15.24  0.0459074834
16.24  0.0264830158
17.24  0.2659184500
20.24  0.0147146909
23.24 -0.0180129785
2.25   0.3367898463
7.25   0.1864897263
10.25  0.3047334823
13.25  0.1125661811
15.25 -0.0101816613
16.25  0.1477367962
17.25  0.0455196522
18.25 -0.0839433302
23.25  0.5288764501
2.26   0.4231018311
3.26   0.0736754048
4.26   0.1302548971
5.26   0.2392536669
8.26   0.3501802778
10.26 -0.0402178222
13.26  0.0115158479
14.26 -0.0429087805
17.26  0.0109491070
18.26 -0.0344055409
23.26  0.0919971539
2.27   0.5122989586
3.27   0.1354111737
5.27   0.3476852593
7.27   0.2035021759
8.27  -0.2474201070
10.27  0.1920885474
11.27  0.0916565495
13.27  0.1751046299
14.27  0.0918410175
16.27  0.1212427950
17.27 -0.0763334827
18.27  0.2081045359
20.27 -0.0257388057
3.28   0.0698211398
5.28   0.0470425171
7.28   0.0702151605
8.28  -0.2068434724
10.28 -0.8289818719
11.28 -0.2017393948
15.28  0.0528471586
16.28 -0.0417501393
17.28  0.2260204954
19.28 -0.1343996597
23.28 -0.0034659221
2.29   0.2269350605
4.29   0.2385086999
5.29  -0.0081390543
7.29   0.1595161770
13.29 -0.2137771415
14.29  0.2962651616
15.29  0.1001800212
17.29 -0.0381928785
19.29  0.2370471993
20.29  0.0951926408
22.29  0.1468618602
23.29 -0.2640003264
2.30   0.4925856239
3.30  -0.2496421855
5.30   0.0199640948
7.30   0.0492513183
8.30  -0.0478321565
10.30 -0.7271872500
13.30 -0.1447905815
14.30  0.0643720991
16.30 -0.0903654023
17.30 -0.1225416750
18.30  0.6786888194
20.30  0.0345883205
22.30  0.0479557361
23.30 -0.5485761337
2.31  -0.4048043033
3.31  -0.1469561945
4.31   0.2638413563
7.31  -0.2726810624
8.31  -0.4207139589
10.31 -0.0015431007
11.31 -0.3658082115
13.31 -0.3494637350
15.31 -0.1093178552
16.31  0.1916842263
17.31 -0.1941723414
2.32  -0.5293055995
3.32  -0.3499898007
5.32   0.0991191946
7.32  -0.3792431905
8.32  -0.0107769158
10.32 -0.8798255623
11.32 -0.1788135102
14.32 -0.4945057255
16.32 -0.0514182808
17.32 -0.4815165371
18.32  0.1425393446
23.32  0.0065237328
2.33  -0.1700501212
5.33   0.1399718630
8.33  -0.0403578978
11.33 -0.4156771945
13.33 -0.1195894862
14.33 -0.2337477432
16.33 -0.3442240739
17.33 -0.2571319135
18.33  0.2538085885
19.33 -0.0307235542
20.33 -0.0715753642
23.33 -0.1717378447
2.34  -0.2136058800
3.34  -0.1673195703
8.34   0.0724943865
10.34  0.0439829548
11.34 -0.5428847949
13.34 -0.1846182242
16.34 -0.0713651598
17.34 -0.2419618938
20.34 -0.0900363665
2.35  -0.5001925677
3.35  -0.6261918799
4.35  -0.1058535024
5.35  -0.0054771935
7.35  -0.1783787415
8.35  -0.4990492811
10.35 -0.3957570303
13.35 -0.3638345776
15.35 -0.0377062117
16.35 -0.1337186410
18.35 -0.3928095992
20.35 -0.3173330053
23.35  0.1960742370
2.36  -0.1854229581
4.36  -0.2496800877
5.36  -0.3252577997
7.36  -0.2648808046
8.36  -0.4576013132
10.36 -0.0157943173
14.36 -0.1274183029
16.36 -0.2618227825
17.36 -0.4172271455
18.36 -0.2607334724
20.36 -0.2269270657
23.36 -0.2845455348
2.37  -0.5377794258
4.37  -0.1419579297
5.37  -0.1771393712
7.37  -0.1718909654
8.37  -0.2436610411
10.37 -0.4811778520
13.37 -0.1795591530
14.37 -0.3594629192
15.37 -0.2087700415
16.37  0.2638364289
18.37 -0.1105059333
20.37  0.1002784888
2.38  -0.3045904004
3.38  -0.4468449285
5.38  -0.2537544785
7.38  -0.4142690441
10.38 -0.3630331732
13.38 -0.2098018819
16.38 -0.3560149811
17.38 -0.2338966028
18.38 -0.0166245377
20.38 -0.1053805600
23.38 -0.2374167668
3.39   0.2314956142
4.39  -0.1787615650
7.39  -0.2084488281
8.39  -0.3547535841
10.39 -0.6239251170
13.39 -0.1431779762
14.39 -0.1807789504
16.39 -0.1973666533
17.39 -0.3287169275
18.39 -0.0186936566
23.39 -0.1886496947
2.40  -0.3857802189
3.40  -0.3869343869
5.40  -0.2672235127
8.40  -0.4705712683
10.40 -0.5049290807
13.40 -0.0916841734
14.40 -0.3592177334
16.40 -0.0585978375
17.40 -0.1928209719
2.41  -0.3807526698
3.41  -0.3818531453
5.41  -0.1225902523
7.41  -0.2232755312
8.41  -0.2831213855
13.41 -0.3696459183
15.41 -0.3095052091
16.41  0.1773718841
17.41 -0.3437602143
18.41 -0.0902467172
20.41 -0.2647646972
3.42  -0.4740770913
4.42  -0.0836628665
5.42  -0.2103827188
7.42  -0.1958904493
11.42 -0.3732277061
15.42 -0.2493476201
16.42 -0.3805379454
18.42 -0.3596027450
20.42 -0.0963098266
3.43   0.3402342521
5.43  -0.2566185700
15.43 -0.4000771223
20.43 -0.0783479650
22.43 -0.2335575600
15.44 -0.1576208585

$subject
     (Intercept)
2   0.0638350426
3   0.1776355950
4  -0.1603533305
5  -0.1703379564
7  -0.0814775389
8   0.1834575730
10  0.4894065133
11  0.1216188308
13 -0.1600803088
14  0.0235044564
15  0.0355096724
16 -0.0869335198
17  0.0001685041
18 -0.0653032472
19 -0.1291505089
20 -0.1358795347
22 -0.1511477854
23  0.0455275428

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
1.1844903 0.8088531 0.4877690 0.3625828 0.4619440 0.3403525 

=============================================================

--- Mixed - Block 3 - Axis Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 25.198  1.4822    17  7531  5.0548 3.931e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.024279 0.0363 7531  -0.668  1.0000
 Step1 - Step3   -0.045689 0.0363 7531  -1.257  0.9988
 Step1 - Step4   -0.047983 0.0363 7531  -1.320  0.9979
 Step1 - Step5   -0.061631 0.0363 7531  -1.696  0.9677
 Step1 - Step6   -0.025692 0.0363 7531  -0.707  1.0000
 Step1 - Step7   -0.037183 0.0363 7531  -1.023  0.9999
 Step1 - Step8   -0.031626 0.0363 7531  -0.870  1.0000
 Step1 - Step9   -0.018463 0.0363 7531  -0.508  1.0000
 Step1 - Step10  -0.025220 0.0363 7531  -0.694  1.0000
 Step1 - Step11  -0.016567 0.0363 7531  -0.456  1.0000
 Step1 - Step12  -0.000650 0.0363 7531  -0.018  1.0000
 Step1 - Step13   0.009126 0.0363 7531   0.251  1.0000
 Step1 - Step14   0.037930 0.0363 7531   1.044  0.9999
 Step1 - Step15   0.047521 0.0363 7531   1.308  0.9981
 Step1 - Step16   0.074831 0.0363 7531   2.059  0.8397
 Step1 - Step17   0.115652 0.0363 7531   3.182  0.1252
 Step1 - Step18   0.146428 0.0363 7531   4.029  0.0072
 Step2 - Step3   -0.021410 0.0363 7531  -0.589  1.0000
 Step2 - Step4   -0.023704 0.0363 7531  -0.652  1.0000
 Step2 - Step5   -0.037352 0.0363 7531  -1.028  0.9999
 Step2 - Step6   -0.001414 0.0363 7531  -0.039  1.0000
 Step2 - Step7   -0.012904 0.0363 7531  -0.355  1.0000
 Step2 - Step8   -0.007348 0.0363 7531  -0.202  1.0000
 Step2 - Step9    0.005816 0.0363 7531   0.160  1.0000
 Step2 - Step10  -0.000941 0.0363 7531  -0.026  1.0000
 Step2 - Step11   0.007711 0.0363 7531   0.212  1.0000
 Step2 - Step12   0.023629 0.0363 7531   0.650  1.0000
 Step2 - Step13   0.033405 0.0363 7531   0.919  1.0000
 Step2 - Step14   0.062209 0.0363 7531   1.712  0.9647
 Step2 - Step15   0.071800 0.0363 7531   1.976  0.8811
 Step2 - Step16   0.099109 0.0363 7531   2.727  0.3615
 Step2 - Step17   0.139931 0.0363 7531   3.850  0.0142
 Step2 - Step18   0.170707 0.0363 7531   4.697  0.0004
 Step3 - Step4   -0.002294 0.0363 7531  -0.063  1.0000
 Step3 - Step5   -0.015942 0.0363 7531  -0.439  1.0000
 Step3 - Step6    0.019997 0.0363 7531   0.550  1.0000
 Step3 - Step7    0.008506 0.0363 7531   0.234  1.0000
 Step3 - Step8    0.014062 0.0363 7531   0.387  1.0000
 Step3 - Step9    0.027226 0.0363 7531   0.749  1.0000
 Step3 - Step10   0.020469 0.0363 7531   0.563  1.0000
 Step3 - Step11   0.029122 0.0363 7531   0.801  1.0000
 Step3 - Step12   0.045039 0.0363 7531   1.239  0.9990
 Step3 - Step13   0.054815 0.0363 7531   1.508  0.9902
 Step3 - Step14   0.083619 0.0363 7531   2.301  0.6829
 Step3 - Step15   0.093210 0.0363 7531   2.565  0.4804
 Step3 - Step16   0.120519 0.0363 7531   3.316  0.0855
 Step3 - Step17   0.161341 0.0363 7531   4.439  0.0013
 Step3 - Step18   0.192117 0.0363 7531   5.286  <.0001
 Step4 - Step5   -0.013648 0.0363 7531  -0.376  1.0000
 Step4 - Step6    0.022290 0.0363 7531   0.613  1.0000
 Step4 - Step7    0.010800 0.0363 7531   0.297  1.0000
 Step4 - Step8    0.016356 0.0363 7531   0.450  1.0000
 Step4 - Step9    0.029520 0.0363 7531   0.812  1.0000
 Step4 - Step10   0.022763 0.0363 7531   0.626  1.0000
 Step4 - Step11   0.031415 0.0363 7531   0.864  1.0000
 Step4 - Step12   0.047333 0.0363 7531   1.302  0.9982
 Step4 - Step13   0.057109 0.0363 7531   1.571  0.9849
 Step4 - Step14   0.085913 0.0363 7531   2.364  0.6356
 Step4 - Step15   0.095504 0.0363 7531   2.628  0.4327
 Step4 - Step16   0.122813 0.0363 7531   3.379  0.0708
 Step4 - Step17   0.163635 0.0363 7531   4.502  0.0009
 Step4 - Step18   0.194411 0.0363 7531   5.349  <.0001
 Step5 - Step6    0.035939 0.0363 7531   0.989  1.0000
 Step5 - Step7    0.024448 0.0363 7531   0.673  1.0000
 Step5 - Step8    0.030005 0.0363 7531   0.826  1.0000
 Step5 - Step9    0.043168 0.0363 7531   1.188  0.9994
 Step5 - Step10   0.036411 0.0363 7531   1.002  0.9999
 Step5 - Step11   0.045064 0.0363 7531   1.240  0.9990
 Step5 - Step12   0.060981 0.0363 7531   1.678  0.9708
 Step5 - Step13   0.070757 0.0363 7531   1.947  0.8936
 Step5 - Step14   0.099561 0.0363 7531   2.739  0.3530
 Step5 - Step15   0.109152 0.0363 7531   3.003  0.1985
 Step5 - Step16   0.136462 0.0363 7531   3.755  0.0202
 Step5 - Step17   0.177283 0.0363 7531   4.878  0.0002
 Step5 - Step18   0.208060 0.0363 7531   5.725  <.0001
 Step6 - Step7   -0.011491 0.0363 7531  -0.316  1.0000
 Step6 - Step8   -0.005934 0.0363 7531  -0.163  1.0000
 Step6 - Step9    0.007229 0.0363 7531   0.199  1.0000
 Step6 - Step10   0.000472 0.0363 7531   0.013  1.0000
 Step6 - Step11   0.009125 0.0363 7531   0.251  1.0000
 Step6 - Step12   0.025042 0.0363 7531   0.689  1.0000
 Step6 - Step13   0.034818 0.0363 7531   0.958  1.0000
 Step6 - Step14   0.063622 0.0363 7531   1.751  0.9566
 Step6 - Step15   0.073214 0.0363 7531   2.014  0.8627
 Step6 - Step16   0.100523 0.0363 7531   2.766  0.3351
 Step6 - Step17   0.141344 0.0363 7531   3.889  0.0123
 Step6 - Step18   0.172121 0.0363 7531   4.736  0.0003
 Step7 - Step8    0.005557 0.0363 7531   0.153  1.0000
 Step7 - Step9    0.018720 0.0363 7531   0.515  1.0000
 Step7 - Step10   0.011963 0.0363 7531   0.329  1.0000
 Step7 - Step11   0.020616 0.0363 7531   0.567  1.0000
 Step7 - Step12   0.036533 0.0363 7531   1.005  0.9999
 Step7 - Step13   0.046309 0.0363 7531   1.274  0.9986
 Step7 - Step14   0.075113 0.0363 7531   2.067  0.8354
 Step7 - Step15   0.084704 0.0363 7531   2.331  0.6608
 Step7 - Step16   0.112014 0.0363 7531   3.082  0.1631
 Step7 - Step17   0.152835 0.0363 7531   4.205  0.0035
 Step7 - Step18   0.183611 0.0363 7531   5.052  0.0001
 Step8 - Step9    0.013163 0.0363 7531   0.362  1.0000
 Step8 - Step10   0.006406 0.0363 7531   0.176  1.0000
 Step8 - Step11   0.015059 0.0363 7531   0.414  1.0000
 Step8 - Step12   0.030976 0.0363 7531   0.852  1.0000
 Step8 - Step13   0.040752 0.0363 7531   1.121  0.9997
 Step8 - Step14   0.069556 0.0363 7531   1.914  0.9070
 Step8 - Step15   0.079148 0.0363 7531   2.178  0.7686
 Step8 - Step16   0.106457 0.0363 7531   2.929  0.2364
 Step8 - Step17   0.147278 0.0363 7531   4.052  0.0065
 Step8 - Step18   0.178055 0.0363 7531   4.899  0.0001
 Step9 - Step10  -0.006757 0.0363 7531  -0.186  1.0000
 Step9 - Step11   0.001896 0.0363 7531   0.052  1.0000
 Step9 - Step12   0.017813 0.0363 7531   0.490  1.0000
 Step9 - Step13   0.027589 0.0363 7531   0.759  1.0000
 Step9 - Step14   0.056393 0.0363 7531   1.552  0.9867
 Step9 - Step15   0.065985 0.0363 7531   1.816  0.9400
 Step9 - Step16   0.093294 0.0363 7531   2.567  0.4786
 Step9 - Step17   0.134115 0.0363 7531   3.690  0.0255
 Step9 - Step18   0.164892 0.0363 7531   4.537  0.0008
 Step10 - Step11  0.008653 0.0363 7531   0.238  1.0000
 Step10 - Step12  0.024570 0.0363 7531   0.676  1.0000
 Step10 - Step13  0.034346 0.0363 7531   0.945  1.0000
 Step10 - Step14  0.063150 0.0363 7531   1.738  0.9594
 Step10 - Step15  0.072741 0.0363 7531   2.002  0.8690
 Step10 - Step16  0.100051 0.0363 7531   2.753  0.3438
 Step10 - Step17  0.140872 0.0363 7531   3.876  0.0129
 Step10 - Step18  0.171648 0.0363 7531   4.723  0.0003
 Step11 - Step12  0.015917 0.0363 7531   0.438  1.0000
 Step11 - Step13  0.025693 0.0363 7531   0.707  1.0000
 Step11 - Step14  0.054497 0.0363 7531   1.500  0.9908
 Step11 - Step15  0.064089 0.0363 7531   1.763  0.9536
 Step11 - Step16  0.091398 0.0363 7531   2.515  0.5188
 Step11 - Step17  0.132219 0.0363 7531   3.638  0.0305
 Step11 - Step18  0.162996 0.0363 7531   4.485  0.0010
 Step12 - Step13  0.009776 0.0363 7531   0.269  1.0000
 Step12 - Step14  0.038580 0.0363 7531   1.062  0.9999
 Step12 - Step15  0.048171 0.0363 7531   1.325  0.9978
 Step12 - Step16  0.075481 0.0363 7531   2.077  0.8298
 Step12 - Step17  0.116302 0.0363 7531   3.200  0.1192
 Step12 - Step18  0.147078 0.0363 7531   4.047  0.0067
 Step13 - Step14  0.028804 0.0363 7531   0.793  1.0000
 Step13 - Step15  0.038395 0.0363 7531   1.056  0.9999
 Step13 - Step16  0.065705 0.0363 7531   1.808  0.9421
 Step13 - Step17  0.106526 0.0363 7531   2.931  0.2354
 Step13 - Step18  0.137302 0.0363 7531   3.778  0.0186
 Step14 - Step15  0.009591 0.0363 7531   0.264  1.0000
 Step14 - Step16  0.036901 0.0363 7531   1.015  0.9999
 Step14 - Step17  0.077722 0.0363 7531   2.139  0.7935
 Step14 - Step18  0.108498 0.0363 7531   2.985  0.2073
 Step15 - Step16  0.027309 0.0363 7531   0.751  1.0000
 Step15 - Step17  0.068131 0.0363 7531   1.875  0.9213
 Step15 - Step18  0.098907 0.0363 7531   2.721  0.3653
 Step16 - Step17  0.040821 0.0363 7531   1.123  0.9997
 Step16 - Step18  0.071598 0.0363 7531   1.970  0.8836
 Step17 - Step18  0.030776 0.0363 7531   0.847  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 1.2427887961  0.0242788233  0.0456889513  0.0479827935  0.0616312115 
        Step6         Step7         Step8         Step9        Step10 
 0.0256923599  0.0371830744  0.0316264700  0.0184632835  0.0252200895 
       Step11        Step12        Step13        Step14        Step15 
 0.0165674486  0.0006500407 -0.0091259572 -0.0379298941 -0.0475212771 
       Step16        Step17        Step18 
-0.0748305068 -0.1156519288 -0.1464283426 

Random Effects:
$trial_id
       (Intercept)
7.1    0.103206024
20.1  -0.082297144
2.2    0.055144936
7.2    0.340257711
8.2   -0.085750219
10.2   1.071488248
16.2   0.570079026
17.2   0.344618393
23.2   0.056333909
2.3    0.182062363
3.3    0.032124380
8.3    0.087466236
10.3   1.956693699
11.3   1.264912591
16.3   0.777952893
17.3   0.154315498
20.3   0.232934528
2.4    0.360004017
4.4    0.117159921
7.4    0.417071225
11.4   1.624614409
13.4   0.126562175
14.4   1.037519357
16.4   0.878248561
17.4   0.034315429
18.4   0.487647849
20.4   0.278116642
23.4   0.206161889
2.5   -0.022621425
3.5    0.828982570
4.5   -0.073212122
7.5    0.469254181
8.5    0.195500705
11.5   1.183737045
13.5   0.653885043
14.5   0.997649995
15.5   0.169237257
16.5   0.715174504
17.5   0.332974580
18.5   0.106068117
23.5   0.233094209
4.6   -0.009674351
5.6    0.338911587
7.6    0.687347775
8.6    0.863954861
10.6   1.482882071
13.6   0.463861720
14.6   0.434634721
17.6  -0.075000679
18.6   0.680656041
23.6   0.519062920
2.7   -0.456596223
3.7    0.699524443
4.7    0.087672965
5.7   -0.010653245
7.7    0.212394083
8.7    0.727630923
13.7   0.492485855
14.7   0.584824752
16.7   0.649590268
17.7   0.197726255
18.7   0.291909294
19.7   0.213717572
23.7   0.679337767
2.8    0.390248137
3.8    0.854076552
4.8   -0.187574985
7.8    0.605151417
8.8    0.711429448
13.8   0.754529858
16.8   0.639414549
17.8   0.116821335
22.8   0.150005037
23.8   0.281237318
3.9    0.452477702
4.9   -0.050607538
7.9    0.319956492
13.9   0.393120965
16.9   0.043963055
17.9   0.130153706
20.9   0.025092881
22.9   0.194805581
23.9   0.003887667
2.10  -0.140283201
4.10  -0.075101458
7.10   0.348196197
8.10   0.113555303
14.10  0.580793312
18.10  1.001614305
19.10  0.233073418
20.10  0.304128445
2.11   0.242837866
3.11   0.547149229
7.11   0.301194792
8.11   1.335006727
10.11  2.538506959
13.11  0.101503918
16.11  0.533560126
17.11 -0.065605246
18.11  0.565325584
20.11  0.319638677
22.11  0.189900689
23.11 -0.071744616
2.12  -0.008892200
5.12  -0.129379294
7.12   0.457859404
10.12  2.149821264
13.12  0.465406940
14.12  0.641119775
15.12  0.150809973
17.12 -0.053742652
19.12 -0.008206379
20.12  0.172754990
3.13   0.854933190
7.13  -0.104160228
8.13  -0.013440919
10.13  1.786069815
13.13 -0.013083826
14.13  0.727625836
16.13  0.856846017
17.13  0.119006354
18.13  0.317929860
23.13 -0.117512292
2.14   0.287800660
3.14   1.107535015
5.14  -0.024764105
7.14   0.302290061
10.14  0.977338488
11.14  0.961093830
13.14 -0.008881537
14.14  0.162612272
15.14  0.660906410
16.14  0.251766753
17.14 -0.136479164
20.14  0.551868019
2.15   0.180534717
3.15   0.456290758
5.15   0.095530347
7.15   0.059009047
8.15  -0.305391800
10.15  2.101327590
14.15  0.171732860
15.15  1.034964604
17.15 -0.010655066
18.15  0.150342530
23.15  0.124937461
3.16   0.873189864
5.16   0.083583527
8.16   0.504591141
10.16  2.437964367
13.16 -0.041667503
15.16  0.476820224
16.16 -0.061844126
17.16  0.138230053
2.17   0.554911078
4.17   0.164716832
5.17   0.378013096
10.17  1.379389067
11.17  0.354659685
13.17  0.139987317
14.17  0.287214700
15.17  0.480374623
17.17  0.039258226
19.17 -0.189448987
22.17  0.032771499
23.17  0.734969268
2.18   0.537254755
4.18  -0.191812950
5.18   0.460610192
7.18   0.254387888
8.18   0.437135004
11.18  0.179078459
15.18  0.216835537
16.18  0.306389374
17.18  0.222855210
3.19   0.452602876
7.19   0.514980616
10.19  1.653698830
11.19  0.631818776
14.19  0.066201174
15.19 -0.118872215
18.19  0.513610738
23.19  0.805394771
3.20   0.239362657
4.20  -0.049250803
7.20   0.237791003
13.20  0.273270190
14.20  0.023576985
15.20 -0.515226857
16.20  0.298675236
17.20  0.141772360
2.21   2.054352650
7.21   0.958359105
8.21  -0.096267215
10.21  1.821436235
13.21  0.214588138
14.21  0.211802469
15.21  0.349190190
16.21  0.347802414
17.21  0.165146912
19.21 -0.124815458
2.22   1.137697038
4.22  -0.039212536
5.22  -0.004725778
7.22   0.763308024
11.22  0.049711680
13.22  0.000526622
15.22 -0.149426942
16.22  0.492874898
17.22  0.134792649
19.22 -0.178356460
20.22  0.010720432
23.22  0.037230592
2.23   0.344526859
3.23   0.768151641
4.23   0.474571874
5.23   0.083918732
7.23   0.552589689
8.23   0.549159364
10.23  0.550620156
14.23  0.086880657
15.23  0.050889063
16.23  0.641642008
17.23  0.161014376
2.24   0.596229257
3.24   0.054595112
5.24   0.025649922
7.24   0.819841900
8.24   0.078410531
13.24  0.371832119
14.24 -0.564907035
15.24 -0.093117445
16.24  0.437772228
17.24  0.183145237
20.24  0.235228173
23.24  0.503105755
2.25   0.551415683
7.25  -0.074704109
10.25  0.151424894
13.25  0.121843741
15.25 -0.192109399
16.25  0.589689507
17.25  0.464268957
18.25  0.215342477
23.25  0.696027519
2.26   0.832569578
3.26   0.168897030
4.26   0.216318197
5.26   0.137421396
8.26   0.631842279
10.26 -0.786820332
13.26 -0.219009696
14.26 -0.422786610
17.26  0.129903399
18.26  0.067756818
23.26 -0.016839609
2.27   0.205950652
3.27  -0.366385655
5.27   0.452599958
7.27   0.114163071
8.27  -0.053400156
10.27 -0.820900184
11.27 -0.685775121
13.27  0.544601810
14.27 -0.298902475
16.27 -0.287683651
17.27  0.137314909
18.27  0.769985856
20.27 -0.014225657
3.28   0.164878697
5.28  -0.043097797
7.28  -0.022402593
8.28  -0.169598757
10.28 -2.087552341
11.28 -0.434447084
15.28  0.034312611
16.28 -0.201631239
17.28  0.839431037
19.28 -0.213247131
23.28 -0.381665863
2.29  -0.125998653
4.29   0.057343318
5.29  -0.302651454
7.29  -0.506417062
13.29 -0.080884444
14.29 -0.119511935
15.29  0.125566070
17.29  0.002100625
19.29 -0.112412827
20.29  0.217540637
22.29 -0.134348625
23.29 -0.852249939
2.30  -0.357418551
3.30  -0.475934661
5.30   0.148411677
7.30  -0.503352343
8.30   0.239464859
10.30 -2.265645517
13.30 -0.604823812
14.30 -0.334400585
16.30  0.253606754
17.30 -0.210297586
18.30  0.555289019
20.30  0.096369599
22.30 -0.304941531
23.30 -1.077594315
2.31  -0.780465030
3.31   0.047150479
4.31  -0.007578294
7.31  -0.608919843
8.31  -0.853575845
10.31 -1.230817833
11.31 -0.748289102
13.31 -0.666801058
15.31  0.178878718
16.31 -0.162757025
17.31 -0.231206033
2.32  -1.138213816
3.32  -1.180950248
5.32  -0.190569788
7.32  -1.297321784
8.32  -0.366300998
10.32 -2.471915755
11.32 -0.632092250
14.32 -1.207542259
16.32 -0.421341795
17.32 -0.778706745
18.32 -0.067076196
23.32 -0.323484999
2.33  -0.638152095
5.33  -0.241869468
8.33  -0.417273450
11.33 -1.094425455
13.33 -0.175952606
14.33 -0.643015530
16.33 -1.187621561
17.33 -0.449820120
18.33 -0.566991930
19.33 -0.309351392
20.33 -0.049833014
23.33 -0.713335546
2.34  -0.239551541
3.34  -0.680744229
8.34  -0.401777804
10.34 -1.693715585
11.34 -1.123174044
13.34 -0.753859572
16.34 -0.646373057
17.34 -0.231798235
20.34 -0.387431213
2.35  -0.908945499
3.35  -1.443744273
4.35  -0.027669897
5.35   0.033883389
7.35  -0.509720214
8.35  -0.615986872
10.35 -1.691020087
13.35 -0.855164574
15.35 -0.529951250
16.35 -0.162326143
18.35 -1.119299831
20.35 -0.715802443
23.35  0.043121529
2.36  -0.364991282
4.36  -0.359986971
5.36  -0.544879146
7.36  -0.929915971
8.36  -0.621846609
10.36 -0.770957592
14.36 -0.189850151
16.36 -1.166655147
17.36 -0.802736318
18.36  0.045500041
20.36 -0.359092221
23.36 -0.599717367
2.37  -1.174536126
4.37  -0.437167878
5.37  -0.239810505
7.37  -0.623784868
8.37  -0.401632462
10.37 -0.491056331
13.37 -0.069360596
14.37 -0.535342336
15.37 -0.185354823
16.37 -0.731390814
18.37 -0.625881713
20.37 -0.289234657
2.38  -0.736745627
3.38  -0.924232171
5.38  -0.459052946
7.38  -1.370728596
10.38 -1.723225967
13.38 -0.518109050
16.38 -1.164875653
17.38 -0.452749269
18.38 -0.519054301
20.38 -0.266631430
23.38 -0.619818179
3.39  -0.141229692
4.39  -0.348434317
7.39  -0.328080712
8.39  -0.568863001
10.39 -2.146281497
13.39 -0.563918816
14.39 -0.624284865
16.39 -0.393276307
17.39 -0.507650496
18.39 -0.410907284
23.39 -0.285755265
2.40  -0.676944782
3.40  -0.135233249
5.40  -0.456531749
8.40  -0.746171403
10.40 -1.148666235
13.40 -0.317671731
14.40 -0.896833093
16.40 -0.389000425
17.40 -0.337709896
2.41  -0.692987859
3.41  -1.072801981
5.41   0.076834470
7.41  -1.056985305
8.41  -0.583038624
13.41 -0.853277181
15.41 -0.753959188
16.41 -0.953441627
17.41 -0.405127140
18.41 -0.325598618
20.41 -0.684347318
3.42  -1.086268501
4.42  -0.217707300
5.42  -0.393066648
7.42  -0.400700600
11.42 -1.044068171
15.42 -0.434870245
16.42 -1.057436082
18.42 -1.418821687
20.42 -0.367088483
3.43  -0.397352317
5.43  -0.406060440
15.43 -0.767936568
20.43 -0.044536572
22.43 -0.697501124
15.44 -0.534613021

$subject
   (Intercept)
2   0.02686604
3   0.37307192
4  -0.51231616
5  -0.60573105
7   0.26836714
8   0.09357302
10  1.46119441
11  0.26084184
13 -0.33422270
14  0.09463316
15 -0.18553513
16  0.15917069
17 -0.29978647
18  0.38286737
19 -0.36879146
20 -0.43680683
22 -0.30470477
23 -0.07269101

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
1.3658409 0.9949617 0.7114777 0.6610985 0.5108105 0.3576602 

=============================================================

--- Mixed - Block 4 - Axis X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Step 17.592  1.0348    17 8793.6  14.144 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.021265 0.0154 8840  -1.383  0.9963
 Step1 - Step3   -0.056343 0.0194 8831  -2.901  0.2520
 Step1 - Step4   -0.014225 0.0136 8780  -1.046  0.9999
 Step1 - Step5   -0.034370 0.0154 8840  -2.234  0.7309
 Step1 - Step6   -0.035046 0.0194 8831  -1.807  0.9424
 Step1 - Step7   -0.024882 0.0154 8840  -1.617  0.9797
 Step1 - Step8    0.006222 0.0154 8811   0.405  1.0000
 Step1 - Step9   -0.012173 0.0154 8840  -0.792  1.0000
 Step1 - Step10  -0.001225 0.0154 8840  -0.080  1.0000
 Step1 - Step11   0.016541 0.0154 8811   1.077  0.9998
 Step1 - Step12   0.004309 0.0154 8840   0.280  1.0000
 Step1 - Step13   0.034696 0.0194 8831   1.789  0.9473
 Step1 - Step14   0.036691 0.0154 8840   2.385  0.6198
 Step1 - Step15   0.043765 0.0136 8780   3.218  0.1134
 Step1 - Step16   0.094803 0.0194 8831   4.881  0.0002
 Step1 - Step17   0.088066 0.0154 8840   5.727  <.0001
 Step1 - Step18   0.100357 0.0136 8780   7.379  <.0001
 Step2 - Step3   -0.035078 0.0204 8803  -1.720  0.9631
 Step2 - Step4    0.007040 0.0154 8840   0.458  1.0000
 Step2 - Step5   -0.013105 0.0165 8780  -0.792  1.0000
 Step2 - Step6   -0.013781 0.0204 8803  -0.677  1.0000
 Step2 - Step7   -0.003617 0.0165 8780  -0.219  1.0000
 Step2 - Step8    0.027487 0.0172 8906   1.600  0.9818
 Step2 - Step9    0.009092 0.0165 8780   0.550  1.0000
 Step2 - Step10   0.020040 0.0165 8780   1.211  0.9993
 Step2 - Step11   0.037806 0.0172 8906   2.201  0.7536
 Step2 - Step12   0.025574 0.0165 8780   1.546  0.9873
 Step2 - Step13   0.055961 0.0204 8803   2.748  0.3475
 Step2 - Step14   0.057956 0.0165 8780   3.503  0.0480
 Step2 - Step15   0.065030 0.0154 8840   4.229  0.0031
 Step2 - Step16   0.116069 0.0204 8803   5.692  <.0001
 Step2 - Step17   0.109331 0.0165 8780   6.611  <.0001
 Step2 - Step18   0.121622 0.0154 8840   7.909  <.0001
 Step3 - Step4    0.042118 0.0194 8831   2.169  0.7747
 Step3 - Step5    0.021973 0.0204 8803   1.077  0.9998
 Step3 - Step6    0.021297 0.0232 8780   0.919  1.0000
 Step3 - Step7    0.031462 0.0204 8803   1.542  0.9876
 Step3 - Step8    0.062565 0.0206 8852   3.036  0.1833
 Step3 - Step9    0.044171 0.0204 8803   2.166  0.7763
 Step3 - Step10   0.055118 0.0204 8803   2.702  0.3790
 Step3 - Step11   0.072884 0.0206 8852   3.537  0.0429
 Step3 - Step12   0.060653 0.0204 8803   2.973  0.2133
 Step3 - Step13   0.091039 0.0232 8780   3.928  0.0106
 Step3 - Step14   0.093034 0.0204 8803   4.561  0.0007
 Step3 - Step15   0.100108 0.0194 8831   5.154  <.0001
 Step3 - Step16   0.151147 0.0232 8780   6.517  <.0001
 Step3 - Step17   0.144409 0.0204 8803   7.081  <.0001
 Step3 - Step18   0.156700 0.0194 8831   8.068  <.0001
 Step4 - Step5   -0.020145 0.0154 8840  -1.309  0.9981
 Step4 - Step6   -0.020822 0.0194 8831  -1.074  0.9999
 Step4 - Step7   -0.010657 0.0154 8840  -0.693  1.0000
 Step4 - Step8    0.020447 0.0154 8811   1.332  0.9976
 Step4 - Step9    0.002052 0.0154 8840   0.133  1.0000
 Step4 - Step10   0.013000 0.0154 8840   0.845  1.0000
 Step4 - Step11   0.030766 0.0154 8811   2.004  0.8678
 Step4 - Step12   0.018534 0.0154 8840   1.205  0.9993
 Step4 - Step13   0.048920 0.0194 8831   2.522  0.5131
 Step4 - Step14   0.050916 0.0154 8840   3.309  0.0873
 Step4 - Step15   0.057990 0.0136 8780   4.264  0.0027
 Step4 - Step16   0.109028 0.0194 8831   5.613  <.0001
 Step4 - Step17   0.102291 0.0154 8840   6.652  <.0001
 Step4 - Step18   0.114582 0.0136 8780   8.425  <.0001
 Step5 - Step6   -0.000676 0.0204 8803  -0.033  1.0000
 Step5 - Step7    0.009489 0.0166 8780   0.573  1.0000
 Step5 - Step8    0.040592 0.0172 8906   2.362  0.6375
 Step5 - Step9    0.022198 0.0165 8780   1.342  0.9974
 Step5 - Step10   0.033145 0.0166 8780   2.002  0.8686
 Step5 - Step11   0.050911 0.0172 8906   2.962  0.2191
 Step5 - Step12   0.038680 0.0166 8780   2.337  0.6563
 Step5 - Step13   0.069066 0.0204 8803   3.390  0.0685
 Step5 - Step14   0.071061 0.0166 8780   4.293  0.0024
 Step5 - Step15   0.078135 0.0154 8840   5.078  0.0001
 Step5 - Step16   0.129174 0.0204 8803   6.332  <.0001
 Step5 - Step17   0.122436 0.0165 8780   7.400  <.0001
 Step5 - Step18   0.134727 0.0154 8840   8.756  <.0001
 Step6 - Step7    0.010165 0.0204 8803   0.499  1.0000
 Step6 - Step8    0.041269 0.0206 8852   2.005  0.8673
 Step6 - Step9    0.022874 0.0204 8803   1.123  0.9997
 Step6 - Step10   0.033821 0.0204 8803   1.660  0.9737
 Step6 - Step11   0.051588 0.0206 8852   2.506  0.5254
 Step6 - Step12   0.039356 0.0204 8803   1.931  0.9000
 Step6 - Step13   0.069742 0.0232 8780   3.012  0.1941
 Step6 - Step14   0.071738 0.0204 8803   3.521  0.0452
 Step6 - Step15   0.078811 0.0194 8831   4.063  0.0062
 Step6 - Step16   0.129850 0.0232 8780   5.603  <.0001
 Step6 - Step17   0.123112 0.0204 8803   6.044  <.0001
 Step6 - Step18   0.135403 0.0194 8831   6.981  <.0001
 Step7 - Step8    0.031104 0.0172 8906   1.810  0.9417
 Step7 - Step9    0.012709 0.0165 8780   0.768  1.0000
 Step7 - Step10   0.023656 0.0166 8780   1.429  0.9946
 Step7 - Step11   0.041423 0.0172 8906   2.410  0.6004
 Step7 - Step12   0.029191 0.0166 8780   1.763  0.9536
 Step7 - Step13   0.059577 0.0204 8803   2.924  0.2392
 Step7 - Step14   0.061573 0.0166 8780   3.720  0.0229
 Step7 - Step15   0.068646 0.0154 8840   4.461  0.0011
 Step7 - Step16   0.119685 0.0204 8803   5.867  <.0001
 Step7 - Step17   0.112947 0.0165 8780   6.826  <.0001
 Step7 - Step18   0.125238 0.0154 8840   8.139  <.0001
 Step8 - Step9   -0.018395 0.0172 8906  -1.071  0.9999
 Step8 - Step10  -0.007448 0.0172 8906  -0.433  1.0000
 Step8 - Step11   0.010319 0.0166 8780   0.620  1.0000
 Step8 - Step12  -0.001913 0.0172 8906  -0.111  1.0000
 Step8 - Step13   0.028473 0.0206 8852   1.383  0.9963
 Step8 - Step14   0.030469 0.0172 8906   1.773  0.9514
 Step8 - Step15   0.037543 0.0154 8811   2.446  0.5727
 Step8 - Step16   0.088581 0.0206 8852   4.298  0.0023
 Step8 - Step17   0.081844 0.0172 8906   4.764  0.0003
 Step8 - Step18   0.094134 0.0154 8811   6.132  <.0001
 Step9 - Step10   0.010947 0.0165 8780   0.662  1.0000
 Step9 - Step11   0.028714 0.0172 8906   1.671  0.9719
 Step9 - Step12   0.016482 0.0165 8780   0.996  0.9999
 Step9 - Step13   0.046868 0.0204 8803   2.301  0.6827
 Step9 - Step14   0.048864 0.0165 8780   2.953  0.2236
 Step9 - Step15   0.055937 0.0154 8840   3.638  0.0305
 Step9 - Step16   0.106976 0.0204 8803   5.246  <.0001
 Step9 - Step17   0.100238 0.0165 8780   6.061  <.0001
 Step9 - Step18   0.112529 0.0154 8840   7.318  <.0001
 Step10 - Step11  0.017767 0.0172 8906   1.034  0.9999
 Step10 - Step12  0.005535 0.0166 8780   0.334  1.0000
 Step10 - Step13  0.035921 0.0204 8803   1.763  0.9537
 Step10 - Step14  0.037916 0.0166 8780   2.291  0.6904
 Step10 - Step15  0.044990 0.0154 8840   2.924  0.2392
 Step10 - Step16  0.096029 0.0204 8803   4.707  0.0004
 Step10 - Step17  0.089291 0.0165 8780   5.396  <.0001
 Step10 - Step18  0.101582 0.0154 8840   6.602  <.0001
 Step11 - Step12 -0.012232 0.0172 8906  -0.712  1.0000
 Step11 - Step13  0.018154 0.0206 8852   0.882  1.0000
 Step11 - Step14  0.020150 0.0172 8906   1.172  0.9995
 Step11 - Step15  0.027224 0.0154 8811   1.773  0.9512
 Step11 - Step16  0.078262 0.0206 8852   3.798  0.0173
 Step11 - Step17  0.071525 0.0172 8906   4.163  0.0041
 Step11 - Step18  0.083815 0.0154 8811   5.460  <.0001
 Step12 - Step13  0.030386 0.0204 8803   1.491  0.9913
 Step12 - Step14  0.032382 0.0166 8780   1.956  0.8897
 Step12 - Step15  0.039455 0.0154 8840   2.564  0.4807
 Step12 - Step16  0.090494 0.0204 8803   4.436  0.0013
 Step12 - Step17  0.083756 0.0165 8780   5.062  0.0001
 Step12 - Step18  0.096047 0.0154 8840   6.242  <.0001
 Step13 - Step14  0.001996 0.0204 8803   0.098  1.0000
 Step13 - Step15  0.009069 0.0194 8831   0.468  1.0000
 Step13 - Step16  0.060108 0.0232 8780   2.594  0.4583
 Step13 - Step17  0.053370 0.0204 8803   2.620  0.4383
 Step13 - Step18  0.065661 0.0194 8831   3.385  0.0694
 Step14 - Step15  0.007074 0.0154 8840   0.460  1.0000
 Step14 - Step16  0.058112 0.0204 8803   2.849  0.2825
 Step14 - Step17  0.051375 0.0165 8780   3.105  0.1538
 Step14 - Step18  0.063666 0.0154 8840   4.138  0.0046
 Step15 - Step16  0.051039 0.0194 8831   2.628  0.4327
 Step15 - Step17  0.044301 0.0154 8840   2.881  0.2635
 Step15 - Step18  0.056592 0.0136 8780   4.161  0.0042
 Step16 - Step17 -0.006738 0.0204 8803  -0.330  1.0000
 Step16 - Step18  0.005553 0.0194 8831   0.286  1.0000
 Step17 - Step18  0.012291 0.0154 8840   0.799  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 0.685918450  0.021265083  0.056343256  0.014224924  0.034370192  0.035046474 
       Step7        Step8        Step9       Step10       Step11       Step12 
 0.024881695 -0.006222184  0.012172586  0.001225363 -0.016541212 -0.004309323 
      Step13       Step14       Step15       Step16       Step17       Step18 
-0.034695577 -0.036691120 -0.043764745 -0.094803460 -0.088065762 -0.100356659 

Random Effects:
$trial_id
       (Intercept)
3.1   -0.216925117
4.1   -0.071844243
5.1   -0.012428991
10.1   0.154278311
11.1  -0.261608870
14.1  -0.044546824
16.1  -0.164398687
17.1  -0.131078081
18.1  -0.081189249
19.1   0.111284539
20.1   0.080196681
22.1   0.322068732
23.1   0.100704458
3.2   -0.092274091
4.2    0.014961738
5.2   -0.023358723
8.2   -0.328762978
10.2   0.333388030
13.2  -0.153771263
14.2   0.195856080
16.2  -0.268752285
17.2  -0.026524093
20.2   0.050821132
22.2   0.236544391
2.3    0.102485500
3.3    0.130850493
4.3   -0.040169738
5.3   -0.054271937
7.3   -0.066531170
10.3   0.437868713
11.3  -0.636778661
13.3   0.055092916
14.3   0.139593688
15.3  -0.061942477
17.3  -0.179071809
22.3  -0.016866759
23.3  -0.053909794
2.4   -0.260483901
3.4   -0.181519578
4.4   -0.028932131
5.4   -0.094717350
7.4    0.085770657
8.4   -0.038067362
11.4  -0.433784453
13.4  -0.092644403
14.4  -0.009749129
15.4  -0.261163278
16.4  -0.236584746
17.4  -0.196787730
18.4  -0.066990716
19.4  -0.051088230
20.4  -0.052827619
22.4   0.081609030
23.4   0.033374465
2.5    0.117554671
3.5   -0.045839675
4.5    0.062623099
5.5   -0.094430953
7.5   -0.038199748
8.5    0.191856543
10.5   0.495825311
11.5  -0.400681062
13.5  -0.025241389
14.5  -0.105418112
15.5   0.172711507
16.5  -0.035077757
17.5   0.035036909
18.5  -0.039650320
20.5  -0.009369365
22.5   0.103603312
23.5  -0.288201569
2.6   -0.030993119
3.6   -0.123394091
4.6   -0.123069867
5.6   -0.013886026
7.6    0.466975783
8.6    0.892775839
10.6   0.473883391
11.6   0.019603645
13.6   0.313862104
14.6  -0.211339645
15.6  -0.125200052
16.6  -0.228396116
17.6  -0.071591095
18.6   0.279772623
19.6  -0.076281075
20.6  -0.006812939
23.6   0.109756200
2.7   -0.106234636
3.7   -0.008411090
4.7    0.061513318
5.7   -0.010140702
7.7    0.024167229
8.7    0.139137769
10.7   0.893201329
11.7  -0.040386495
13.7   0.047625047
14.7   0.123329113
15.7   0.348486275
16.7   0.041143574
17.7  -0.013230075
18.7  -0.048777757
19.7  -0.072933189
20.7   0.009436122
22.7  -0.074951069
23.7   0.160638114
2.8   -0.047799555
3.8   -0.138165321
4.8   -0.101131969
5.8   -0.022639743
7.8    0.005493937
8.8    0.485292816
10.8   0.202444743
11.8  -0.412205835
13.8   0.039259484
14.8  -0.126715791
15.8  -0.096382611
16.8  -0.266027049
17.8   0.249934447
18.8  -0.149674053
19.8   0.067451906
20.8  -0.061591708
22.8  -0.025828797
23.8  -0.001980403
2.9   -0.332653708
3.9   -0.070096507
4.9    0.040271654
5.9   -0.144427567
7.9   -0.028396097
8.9   -0.168372639
10.9   0.587484028
11.9  -0.092089218
13.9  -0.166916032
14.9  -0.106625713
15.9   0.061815365
16.9  -0.350222138
17.9   0.069480472
18.9  -0.278332164
19.9   0.063814543
20.9  -0.094358601
22.9  -0.114749658
23.9  -0.015020668
2.10  -0.155533656
3.10   0.031540145
4.10   0.161837544
5.10  -0.032898257
7.10  -0.017703135
8.10  -0.067867526
10.10  1.010736411
11.10  0.259882216
13.10  0.010074304
14.10 -0.026601336
16.10 -0.243861764
17.10  0.089263130
18.10  0.025256351
19.10  0.004788612
20.10  0.031198616
22.10 -0.009545464
23.10 -0.039280719
2.11  -0.203954598
3.11  -0.167793859
4.11   0.021222903
5.11   0.156824368
7.11  -0.234824874
8.11  -0.014468668
10.11  0.685922678
11.11 -0.277224260
13.11 -0.067320322
14.11 -0.029089798
15.11 -0.105255386
16.11 -0.173159963
17.11 -0.018122344
18.11 -0.113148942
19.11 -0.047130376
20.11 -0.095130961
22.11  0.041321808
23.11 -0.117641263
2.12   0.124508432
3.12   0.071082361
5.12   0.042915100
7.12  -0.093284640
8.12   0.359275557
10.12  0.196246631
11.12 -0.060195780
13.12  0.067011995
14.12 -0.054343054
15.12  0.007015840
16.12 -0.312301052
17.12 -0.046387235
18.12 -0.105191935
19.12 -0.004299392
20.12 -0.150373747
22.12  0.020609272
23.12  0.200396706
2.13   0.027418001
3.13   0.156873430
4.13   0.050196499
5.13  -0.047665912
7.13  -0.110036652
8.13   0.305237407
10.13  0.052181032
11.13 -0.233031497
13.13 -0.090938324
14.13  0.053183170
15.13 -0.125011113
16.13 -0.215270615
17.13  0.368739655
18.13  0.008931532
19.13 -0.059170641
20.13  0.239574796
22.13  0.086867989
23.13  0.146226898
2.14   0.253723097
3.14  -0.178954827
4.14  -0.070389293
5.14  -0.082377135
7.14  -0.199717139
8.14   0.183238921
10.14  0.639601696
11.14 -0.297694742
13.14 -0.007063300
14.14 -0.171230675
15.14 -0.194033478
16.14 -0.224501988
17.14  0.090564516
18.14 -0.070832835
19.14  0.018686139
20.14 -0.143936432
22.14  0.052001754
23.14 -0.125601260
2.15   0.025986042
3.15   0.001704563
4.15   0.045819441
5.15  -0.044585279
7.15  -0.089924032
8.15  -0.336875987
10.15  0.819921958
11.15 -0.553427351
14.15 -0.161234382
15.15 -0.155227039
16.15 -0.271991025
17.15 -0.115992258
18.15 -0.075584492
19.15 -0.117196549
20.15  0.303096005
22.15  0.071227525
23.15  0.175071183
2.16  -0.210152271
3.16  -0.212380711
4.16  -0.032057435
5.16  -0.094909904
7.16   0.035256158
8.16  -0.175938323
10.16  0.525969815
11.16 -0.112613055
13.16  0.160778354
14.16  0.071688528
15.16 -0.104234141
16.16 -0.321814230
18.16  0.082908202
19.16 -0.070101254
20.16 -0.087334088
22.16 -0.038622962
23.16  0.094985359
2.17  -0.112381058
3.17  -0.172837777
4.17   0.125081568
7.17   0.412905744
8.17   0.454885014
10.17  0.672750098
11.17 -0.159827683
13.17 -0.044006976
14.17  0.182415232
15.17 -0.186510561
17.17  0.161486230
18.17 -0.014352540
19.17  0.171160571
20.17  0.039534013
22.17  0.019947023
23.17 -0.008466890
2.18  -0.070294450
3.18  -0.151950873
4.18  -0.029971488
5.18  -0.044341333
7.18  -0.223773680
8.18   0.337068588
10.18  0.797901596
11.18 -0.341505332
13.18 -0.002724674
14.18 -0.210494507
15.18 -0.191479152
16.18 -0.264799333
17.18 -0.076191288
18.18  0.027253654
19.18  0.025127065
20.18 -0.049101851
22.18  0.102469419
23.18 -0.335233874
2.19  -0.172484358
3.19   0.157643607
4.19  -0.009716813
5.19  -0.046663836
7.19   0.518543628
8.19  -0.480894903
10.19  0.754699000
11.19  0.439275930
13.19  0.306640947
14.19  0.154152364
15.19  0.339939965
16.19 -0.226565562
17.19 -0.072170438
18.19 -0.192690779
19.19 -0.157137895
20.19 -0.016102159
22.19 -0.061753261
23.19  0.098436696
2.20  -0.335311871
3.20  -0.097076698
4.20  -0.060367106
5.20   0.043109085
7.20  -0.071387033
8.20  -0.276717355
10.20  0.524978846
11.20 -0.213719220
13.20  0.033596462
14.20  0.062072981
15.20 -0.052774058
16.20 -0.075086604
17.20  0.182074204
18.20  0.116991284
19.20  0.259190319
20.20  0.043681161
22.20 -0.061633497
23.20  0.153907566
2.21  -0.028331382
3.21  -0.059262183
4.21   0.232139853
5.21  -0.009762090
7.21   0.186942258
8.21   0.706001391
10.21  0.942469111
11.21 -0.462609175
13.21  0.106479037
14.21  0.132809580
15.21 -0.121938914
16.21  0.248144060
17.21 -0.018187914
18.21 -0.186274030
19.21  0.251984368
20.21 -0.087931151
23.21 -0.142389180
2.22  -0.366996833
3.22   0.089915027
4.22   0.018503585
5.22  -0.052536753
7.22  -0.043066582
8.22  -0.093173970
10.22  0.541702174
11.22 -0.376196700
13.22 -0.119341574
14.22  0.140573843
15.22 -0.162400928
16.22  0.506267605
17.22 -0.031500157
18.22  0.465423855
19.22 -0.021135099
20.22 -0.083618268
22.22  0.049126706
23.22  0.136713152
2.23  -0.142751999
3.23  -0.127977549
4.23  -0.038924663
5.23   0.034367137
7.23  -0.074213898
8.23   0.335415817
10.23  0.795208447
11.23 -0.167754825
13.23 -0.076376124
14.23 -0.240128876
15.23  0.199245475
16.23  0.711650242
17.23  0.140055945
18.23 -0.130019884
19.23  0.038596039
20.23 -0.016163480
22.23 -0.083921910
23.23  0.031172449
2.24  -0.304867228
3.24   0.138939561
4.24  -0.047070297
5.24   0.091883793
7.24   0.035135475
8.24   0.092843526
10.24  0.664652976
11.24 -0.281985985
13.24  0.041832781
15.24 -0.019916509
16.24  0.780635942
17.24  0.022467932
18.24  0.138142041
19.24  0.083916511
20.24  0.137171041
22.24 -0.025814973
2.25  -0.031233523
3.25   0.169013604
4.25   0.003126410
5.25   0.034216132
7.25  -0.190564285
8.25  -0.271686395
10.25 -0.310503835
11.25  0.386192581
14.25 -0.160400737
15.25  0.044332031
16.25  0.249754149
17.25  0.059658006
18.25 -0.115354635
19.25  0.026006710
20.25 -0.129374992
22.25  0.120028135
23.25  0.210223372
2.26  -0.029818850
3.26  -0.242446110
4.26  -0.037773535
5.26  -0.008380341
7.26  -0.120390538
8.26   0.427452024
10.26  0.514975714
11.26 -0.155959376
15.26  0.011934001
16.26 -0.061369617
17.26 -0.062516511
18.26  0.041294890
19.26  0.127299442
20.26  0.174241173
22.26  0.109904900
23.26  0.005598387
2.27  -0.082444844
3.27  -0.179709988
4.27   0.049582324
5.27  -0.023316082
7.27   0.633220596
8.27   2.170777167
10.27 -0.106304283
11.27  0.368963244
13.27  0.195276117
14.27 -0.023789129
15.27  0.017534720
16.27  0.661932814
17.27 -0.018237807
18.27 -0.142817780
19.27 -0.039597107
20.27 -0.012231840
22.27 -0.090318605
23.27  0.391135238
2.28  -0.232519398
3.28  -0.206183728
4.28   0.031959178
5.28   0.308901188
7.28  -0.091004921
8.28   0.974503043
10.28 -0.049251198
11.28  0.066727533
13.28  0.332316750
14.28 -0.200522652
15.28 -0.013009841
16.28  0.448862280
19.28  0.043596625
20.28 -0.130755823
22.28 -0.077146033
23.28  0.298632302
2.29  -0.017914611
3.29   0.474078799
4.29   0.078775116
5.29  -0.075388754
7.29   0.087597955
8.29  -0.084328859
10.29 -0.264758777
11.29  1.449855726
13.29  0.300153926
14.29  0.401652161
15.29 -0.161110800
16.29  1.318111021
17.29  0.301905477
18.29 -0.277067949
19.29  0.000665542
20.29 -0.112052969
22.29  0.094357143
23.29 -0.095689190
2.30  -0.258000594
3.30   0.557629907
4.30   0.092988887
5.30  -0.057478929
7.30   0.257775947
8.30  -0.415375686
10.30 -0.606525189
11.30  0.879949331
13.30  0.082572904
14.30  0.202057467
15.30  0.244337040
16.30  0.409824209
17.30  0.087099055
18.30 -0.197678675
19.30 -0.175837027
20.30 -0.035211532
22.30 -0.047065862
23.30  0.703154081
2.31   0.480422176
3.31   0.395911959
4.31   0.194808486
5.31  -0.039698283
7.31   0.129485364
8.31  -0.201242959
10.31  0.425464275
11.31  0.449878465
13.31 -0.088049418
14.31  0.189609855
15.31  0.032074514
16.31  0.702257243
17.31  0.046795054
18.31 -0.003636726
19.31  0.096883765
20.31 -0.045137362
22.31  0.080856876
23.31  0.198613325
2.32  -0.075843599
3.32   0.462479273
4.32   0.222981444
5.32  -0.078622340
7.32  -0.223608471
8.32   0.177137502
10.32 -0.318087744
11.32  0.898997742
13.32 -0.146271499
14.32  0.431826018
15.32  0.031453267
16.32  0.027229764
17.32  0.144088347
18.32 -0.181001944
19.32 -0.086076613
20.32 -0.204933088
22.32  0.025161974
23.32  0.243739342
2.33  -0.166367929
3.33   0.580827716
4.33   0.134436393
5.33   0.056138538
7.33   0.174047695
8.33   0.269748512
10.33 -0.018257492
11.33  1.050136510
13.33  0.386528965
14.33  0.285138583
15.33  0.022585743
16.33  0.317983965
17.33  0.126627701
18.33  0.130169352
19.33 -0.213627841
20.33  0.238617602
22.33  0.261011115
23.33 -0.126742497
2.34   0.508570510
3.34  -0.229545720
4.34  -0.098936815
5.34   0.134062006
7.34   0.011126597
8.34  -0.423748023
10.34 -0.464557464
11.34  0.574317551
13.34  0.205111488
14.34  0.143226993
15.34  0.120873735
16.34  0.337345093
17.34 -0.001895797
18.34 -0.249322347
19.34  0.119440200
20.34  0.093671587
22.34  0.330571111
23.34  0.213690142
2.35   0.331164794
3.35   0.243665864
4.35   0.070612217
5.35   0.028164411
7.35   0.011334206
8.35  -0.223318487
10.35 -0.412615623
11.35  0.426052811
13.35  0.485265340
14.35  0.325393704
15.35  0.129441596
16.35  0.014660436
17.35 -0.040457582
18.35  0.227258932
19.35 -0.064084136
20.35  0.009810246
22.35  0.158155313
23.35 -0.235105516
2.36   0.303269201
3.36   0.202067460
4.36   0.098543088
5.36  -0.032380907
7.36   0.114448278
8.36  -0.532776200
10.36 -1.296623972
11.36  0.968612597
13.36  0.120060966
14.36  0.268338486
15.36  0.077516021
16.36  0.353837165
17.36  0.147378511
18.36 -0.275832944
19.36  0.016984426
20.36  0.283182035
22.36 -0.136793067
23.36  0.127281434
2.37   0.137252342
3.37  -0.067682748
4.37  -0.061177160
5.37  -0.120678120
7.37   0.235763089
8.37   0.010574286
10.37 -1.165678146
11.37  0.152403214
13.37 -0.289371994
14.37  0.292205504
15.37  0.116543202
16.37  0.080442153
17.37  0.188309524
18.37  0.180794674
20.37 -0.022633366
22.37  0.241780279
23.37 -0.139333660
2.38   0.379399581
3.38   0.141909864
4.38  -0.133518841
5.38  -0.013500269
7.38  -0.357669144
8.38   0.385960499
10.38 -1.390483566
11.38 -0.076243714
13.38 -0.330385842
14.38 -0.032102819
15.38  0.095473246
16.38 -0.182381877
17.38  0.073730691
18.38  0.088624553
19.38  0.160272163
20.38 -0.045716176
22.38 -0.169341201
23.38 -0.162960737
2.39   2.076930901
3.39   0.169171128
4.39  -0.057457245
5.39   0.040253329
7.39   0.044378915
8.39  -0.524409673
10.39 -1.103426673
11.39  0.356927970
14.39 -0.164678471
15.39  0.162529560
16.39 -0.330622260
17.39  0.021919336
18.39  0.371867301
19.39 -0.167332732
20.39  0.031228066
22.39  0.049245003
23.39 -0.520459286
2.40   0.514874722
3.40  -0.210610578
4.40  -0.076419096
5.40   0.020477056
7.40  -0.010831949
8.40  -0.478714131
10.40 -0.966782653
13.40 -0.248709197
14.40 -0.178302977
15.40 -0.124683543
17.40 -0.247464343
18.40 -0.232071170
19.40  0.210726633
20.40 -0.119468380
22.40  0.083365800
23.40 -0.437872067
3.41  -0.028687989
4.41  -0.048525411
5.41   0.156775409
7.41  -0.233290921
10.41 -1.078471340
11.41 -0.297792009
13.41 -0.374245002
14.41 -0.013011697
16.41 -0.287575530
17.41 -0.265624806
18.41  0.435443932
19.41  0.022221789
20.41 -0.161524287
22.41  0.021216393
23.41 -0.227890684
2.42  -0.261601026
3.42   0.133039015
4.42  -0.114893889
5.42  -0.046515582
7.42   0.273546982
8.42  -0.383131403
10.42 -0.754290015
11.42 -0.400740087
13.42 -0.269129464
14.42  0.344065316
15.42 -0.161342406
16.42  0.196184777
17.42 -0.431976691
18.42  0.351413905
19.42 -0.050757209
20.42  0.207877789
22.42 -0.187341931
23.42 -0.302716291
2.43  -0.448381195
3.43  -0.197608304
4.43  -0.262020878
5.43  -0.080276603
7.43  -0.095870124
8.43  -0.851688870
10.43  0.111520039
11.43 -0.223144022
13.43 -0.362175169
14.43 -0.305824839
15.43  0.427004365
16.43 -0.463322441
17.43 -0.434451349
18.43  0.181160895
19.43 -0.101272753
20.43 -0.060361008
22.43 -0.415572106
23.43 -0.338636448
3.44  -0.327482853
4.44  -0.228844138
5.44   0.072903013
7.44  -0.168488423
8.44  -0.890905906
10.44 -0.135986460
11.44  0.008062322
13.44 -0.138188505
14.44 -0.506448144
16.44 -0.717952547
17.44 -0.169465091
18.44  0.732994091
19.44 -0.127039053
20.44 -0.069019935
22.44 -0.431260881
23.44 -0.088680543
2.45   0.047241261
3.45  -0.494815340
4.45  -0.278169350
5.45  -0.017531930
7.45  -0.466405165
8.45  -0.506510638
10.45 -1.331574309
11.45 -0.811784327
13.45 -0.107842110
14.45 -0.529212621
15.45 -0.051022790
16.45 -0.582289422
17.45  0.002096155
18.45  0.208088666
20.45 -0.006965024
22.45 -0.366763754
23.45 -0.121824865
2.46  -0.631467624
3.46  -0.184798045
4.46  -0.043063076
7.46  -0.460504306
8.46  -0.718136303
10.46 -1.389478978
11.46  0.122074945
13.46 -0.358282192
14.46 -0.305532034
15.46 -0.159185946
16.46 -0.672730975
17.46 -0.121308320
18.46 -0.430985035
19.46 -0.015417913
22.46 -0.160830560
2.47  -0.239665527
5.47  -0.118860615
7.47  -0.103717527
11.47 -0.614223705
14.47 -0.271463480
15.47 -0.193385482
18.47 -0.472589611
19.47 -0.401101244
20.47 -0.124284928
22.47 -0.327209031

$subject
   (Intercept)
2   0.06213576
3  -0.08869779
4  -0.23615918
5  -0.34921483
7  -0.05809756
8   0.34452299
10  0.91268145
11  0.40358200
13 -0.22528607
14 -0.04148531
15 -0.13742079
16  0.19163885
17 -0.15176666
18 -0.03116724
19 -0.16597829
20 -0.21820458
22 -0.13400736
23 -0.07707540

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
 0.75509016  0.31253208  0.08523483  0.13105091 -0.37971441 -0.20467934 

=============================================================

--- Mixed - Block 4 - Axis Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Step 48.681  2.8636    17 8798.3  35.117 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.028744 0.0162 8841  -1.771  0.9519
 Step1 - Step3   -0.029159 0.0205 8831  -1.422  0.9949
 Step1 - Step4    0.011218 0.0144 8780   0.781  1.0000
 Step1 - Step5   -0.007764 0.0162 8841  -0.478  1.0000
 Step1 - Step6    0.038185 0.0205 8832   1.865  0.9247
 Step1 - Step7    0.025516 0.0162 8841   1.571  0.9849
 Step1 - Step8    0.071732 0.0162 8811   4.426  0.0013
 Step1 - Step9    0.070764 0.0162 8841   4.359  0.0018
 Step1 - Step10   0.082423 0.0162 8841   5.074  0.0001
 Step1 - Step11   0.085694 0.0162 8811   5.287  <.0001
 Step1 - Step12   0.111452 0.0162 8841   6.861  <.0001
 Step1 - Step13   0.121563 0.0205 8832   5.937  <.0001
 Step1 - Step14   0.142356 0.0162 8841   8.764  <.0001
 Step1 - Step15   0.135288 0.0144 8780   9.422  <.0001
 Step1 - Step16   0.174182 0.0205 8831   8.495  <.0001
 Step1 - Step17   0.196352 0.0162 8841  12.095  <.0001
 Step1 - Step18   0.186383 0.0144 8780  12.980  <.0001
 Step2 - Step3   -0.000415 0.0215 8803  -0.019  1.0000
 Step2 - Step4    0.039962 0.0162 8841   2.462  0.5602
 Step2 - Step5    0.020980 0.0175 8780   1.201  0.9993
 Step2 - Step6    0.066929 0.0215 8803   3.113  0.1507
 Step2 - Step7    0.054261 0.0175 8780   3.106  0.1533
 Step2 - Step8    0.100477 0.0181 8908   5.540  <.0001
 Step2 - Step9    0.099508 0.0175 8780   5.699  <.0001
 Step2 - Step10   0.111167 0.0175 8780   6.364  <.0001
 Step2 - Step11   0.114438 0.0181 8908   6.310  <.0001
 Step2 - Step12   0.140196 0.0175 8780   8.026  <.0001
 Step2 - Step13   0.150307 0.0215 8803   6.990  <.0001
 Step2 - Step14   0.171100 0.0175 8780   9.795  <.0001
 Step2 - Step15   0.164032 0.0162 8841  10.104  <.0001
 Step2 - Step16   0.202926 0.0215 8803   9.425  <.0001
 Step2 - Step17   0.225096 0.0175 8780  12.892  <.0001
 Step2 - Step18   0.215128 0.0162 8841  13.251  <.0001
 Step3 - Step4    0.040377 0.0205 8831   1.969  0.8840
 Step3 - Step5    0.021395 0.0215 8803   0.993  0.9999
 Step3 - Step6    0.067344 0.0245 8780   2.753  0.3441
 Step3 - Step7    0.054675 0.0215 8803   2.539  0.5002
 Step3 - Step8    0.100892 0.0218 8853   4.637  0.0005
 Step3 - Step9    0.099923 0.0215 8803   4.641  0.0005
 Step3 - Step10   0.111582 0.0215 8803   5.181  <.0001
 Step3 - Step11   0.114853 0.0218 8853   5.279  <.0001
 Step3 - Step12   0.140611 0.0215 8803   6.529  <.0001
 Step3 - Step13   0.150722 0.0245 8780   6.160  <.0001
 Step3 - Step14   0.171515 0.0215 8803   7.964  <.0001
 Step3 - Step15   0.164447 0.0205 8831   8.020  <.0001
 Step3 - Step16   0.203341 0.0245 8780   8.304  <.0001
 Step3 - Step17   0.225511 0.0215 8803  10.474  <.0001
 Step3 - Step18   0.215542 0.0205 8831  10.512  <.0001
 Step4 - Step5   -0.018982 0.0162 8841  -1.169  0.9995
 Step4 - Step6    0.026967 0.0205 8832   1.317  0.9979
 Step4 - Step7    0.014298 0.0162 8841   0.880  1.0000
 Step4 - Step8    0.060514 0.0162 8811   3.734  0.0218
 Step4 - Step9    0.059546 0.0162 8841   3.668  0.0275
 Step4 - Step10   0.071205 0.0162 8841   4.383  0.0016
 Step4 - Step11   0.074475 0.0162 8811   4.595  0.0006
 Step4 - Step12   0.100234 0.0162 8841   6.171  <.0001
 Step4 - Step13   0.110345 0.0205 8832   5.389  <.0001
 Step4 - Step14   0.131138 0.0162 8841   8.073  <.0001
 Step4 - Step15   0.124070 0.0144 8780   8.641  <.0001
 Step4 - Step16   0.162964 0.0205 8831   7.948  <.0001
 Step4 - Step17   0.185134 0.0162 8841  11.404  <.0001
 Step4 - Step18   0.175165 0.0144 8780  12.199  <.0001
 Step5 - Step6    0.045949 0.0215 8803   2.136  0.7951
 Step5 - Step7    0.033280 0.0175 8780   1.904  0.9106
 Step5 - Step8    0.079496 0.0181 8908   4.381  0.0016
 Step5 - Step9    0.078528 0.0175 8780   4.495  0.0010
 Step5 - Step10   0.090187 0.0175 8780   5.161  <.0001
 Step5 - Step11   0.093457 0.0181 8908   5.150  <.0001
 Step5 - Step12   0.119216 0.0175 8780   6.822  <.0001
 Step5 - Step13   0.129327 0.0215 8803   6.012  <.0001
 Step5 - Step14   0.150120 0.0175 8780   8.590  <.0001
 Step5 - Step15   0.143051 0.0162 8841   8.806  <.0001
 Step5 - Step16   0.181945 0.0215 8803   8.448  <.0001
 Step5 - Step17   0.204116 0.0175 8780  11.685  <.0001
 Step5 - Step18   0.194147 0.0162 8841  11.952  <.0001
 Step6 - Step7   -0.012669 0.0215 8803  -0.589  1.0000
 Step6 - Step8    0.033547 0.0217 8853   1.544  0.9874
 Step6 - Step9    0.032579 0.0215 8803   1.515  0.9897
 Step6 - Step10   0.044238 0.0215 8803   2.056  0.8410
 Step6 - Step11   0.047508 0.0217 8853   2.186  0.7630
 Step6 - Step12   0.073267 0.0215 8803   3.406  0.0651
 Step6 - Step13   0.083378 0.0244 8780   3.411  0.0641
 Step6 - Step14   0.104171 0.0215 8803   4.843  0.0002
 Step6 - Step15   0.097102 0.0205 8832   4.742  0.0003
 Step6 - Step16   0.135997 0.0245 8780   5.559  <.0001
 Step6 - Step17   0.158167 0.0215 8803   7.356  <.0001
 Step6 - Step18   0.148198 0.0205 8832   7.238  <.0001
 Step7 - Step8    0.046216 0.0181 8908   2.547  0.4940
 Step7 - Step9    0.045247 0.0175 8780   2.590  0.4609
 Step7 - Step10   0.056906 0.0175 8780   3.256  0.1017
 Step7 - Step11   0.060177 0.0181 8908   3.316  0.0854
 Step7 - Step12   0.085936 0.0175 8780   4.917  0.0001
 Step7 - Step13   0.096047 0.0215 8803   4.465  0.0011
 Step7 - Step14   0.116840 0.0175 8780   6.686  <.0001
 Step7 - Step15   0.109771 0.0162 8841   6.758  <.0001
 Step7 - Step16   0.148665 0.0215 8803   6.903  <.0001
 Step7 - Step17   0.170836 0.0175 8780   9.780  <.0001
 Step7 - Step18   0.160867 0.0162 8841   9.903  <.0001
 Step8 - Step9   -0.000969 0.0181 8908  -0.053  1.0000
 Step8 - Step10   0.010690 0.0181 8908   0.589  1.0000
 Step8 - Step11   0.013961 0.0176 8780   0.795  1.0000
 Step8 - Step12   0.039720 0.0181 8908   2.189  0.7613
 Step8 - Step13   0.049831 0.0217 8853   2.293  0.6885
 Step8 - Step14   0.070624 0.0181 8908   3.892  0.0122
 Step8 - Step15   0.063555 0.0162 8811   3.921  0.0109
 Step8 - Step16   0.102449 0.0218 8853   4.709  0.0004
 Step8 - Step17   0.124620 0.0181 8908   6.871  <.0001
 Step8 - Step18   0.114651 0.0162 8811   7.074  <.0001
 Step9 - Step10   0.011659 0.0175 8780   0.667  1.0000
 Step9 - Step11   0.014930 0.0181 8908   0.823  1.0000
 Step9 - Step12   0.040689 0.0175 8780   2.329  0.6618
 Step9 - Step13   0.050799 0.0215 8803   2.362  0.6367
 Step9 - Step14   0.071593 0.0175 8780   4.098  0.0054
 Step9 - Step15   0.064524 0.0162 8841   3.975  0.0089
 Step9 - Step16   0.103418 0.0215 8803   4.804  0.0002
 Step9 - Step17   0.125588 0.0175 8780   7.193  <.0001
 Step9 - Step18   0.115620 0.0162 8841   7.122  <.0001
 Step10 - Step11  0.003271 0.0181 8908   0.180  1.0000
 Step10 - Step12  0.029030 0.0175 8780   1.661  0.9735
 Step10 - Step13  0.039140 0.0215 8803   1.820  0.9388
 Step10 - Step14  0.059934 0.0175 8780   3.429  0.0606
 Step10 - Step15  0.052865 0.0162 8841   3.254  0.1023
 Step10 - Step16  0.091759 0.0215 8803   4.261  0.0027
 Step10 - Step17  0.113929 0.0175 8780   6.522  <.0001
 Step10 - Step18  0.103961 0.0162 8841   6.400  <.0001
 Step11 - Step12  0.025759 0.0181 8908   1.420  0.9950
 Step11 - Step13  0.035870 0.0217 8853   1.651  0.9751
 Step11 - Step14  0.056663 0.0181 8908   3.123  0.1468
 Step11 - Step15  0.049594 0.0162 8811   3.060  0.1725
 Step11 - Step16  0.088488 0.0218 8853   4.067  0.0061
 Step11 - Step17  0.110659 0.0181 8908   6.101  <.0001
 Step11 - Step18  0.100690 0.0162 8811   6.213  <.0001
 Step12 - Step13  0.010111 0.0215 8803   0.470  1.0000
 Step12 - Step14  0.030904 0.0175 8780   1.768  0.9524
 Step12 - Step15  0.023835 0.0162 8841   1.467  0.9928
 Step12 - Step16  0.062729 0.0215 8803   2.913  0.2454
 Step12 - Step17  0.084900 0.0175 8780   4.860  0.0002
 Step12 - Step18  0.074931 0.0162 8841   4.613  0.0006
 Step13 - Step14  0.020793 0.0215 8803   0.967  1.0000
 Step13 - Step15  0.013724 0.0205 8832   0.670  1.0000
 Step13 - Step16  0.052618 0.0245 8780   2.151  0.7860
 Step13 - Step17  0.074789 0.0215 8803   3.478  0.0519
 Step13 - Step18  0.064820 0.0205 8832   3.166  0.1309
 Step14 - Step15 -0.007069 0.0162 8841  -0.435  1.0000
 Step14 - Step16  0.031825 0.0215 8803   1.478  0.9922
 Step14 - Step17  0.053996 0.0175 8780   3.091  0.1594
 Step14 - Step18  0.044027 0.0162 8841   2.710  0.3730
 Step15 - Step16  0.038894 0.0205 8831   1.897  0.9134
 Step15 - Step17  0.061065 0.0162 8841   3.761  0.0197
 Step15 - Step18  0.051096 0.0144 8780   3.558  0.0399
 Step16 - Step17  0.022171 0.0215 8803   1.030  0.9999
 Step16 - Step18  0.012202 0.0205 8831   0.595  1.0000
 Step17 - Step18 -0.009969 0.0162 8841  -0.614  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 0.797763635  0.028744148  0.029159036 -0.011218043  0.007763756 -0.038185112 
       Step7        Step8        Step9       Step10       Step11       Step12 
-0.025516404 -0.071732474 -0.070763810 -0.082422803 -0.085693502 -0.111452312 
      Step13       Step14       Step15       Step16       Step17       Step18 
-0.121563267 -0.142356308 -0.135287552 -0.174181682 -0.196352277 -0.186383373 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.1472809108
4.1   -0.1561970128
5.1   -0.0494788187
10.1  -0.1561626307
11.1  -0.3898361783
14.1  -0.0297435825
16.1  -0.2448464177
17.1  -0.0223464032
18.1  -0.1928776813
19.1  -0.0293703890
20.1   0.0325820641
22.1   0.0731428036
23.1  -0.0051136906
3.2   -0.0849517956
4.2   -0.2168601413
5.2   -0.0077217718
8.2   -0.1418423937
10.2   0.1787806910
13.2  -0.0145501383
14.2   0.6597548648
16.2  -0.0509675936
17.2  -0.0375529686
20.2   0.1618901301
22.2   0.2543791388
2.3    0.0530945987
3.3   -0.1477334799
4.3    0.0032239491
5.3    0.0378920189
7.3    0.0759407571
10.3  -0.2562909375
11.3  -0.5892009732
13.3  -0.0721185035
14.3   0.2437600673
15.3  -0.1750415609
17.3   0.0427712194
22.3   0.0982769910
23.3   0.0419177141
2.4   -0.0201610567
3.4   -0.0565807828
4.4    0.0078059074
5.4    0.0512921680
7.4   -0.1325768578
8.4    0.1837697061
11.4  -0.2369419862
13.4   0.0149445469
14.4  -0.0215882665
15.4  -0.0172468202
16.4  -0.2854274465
17.4  -0.0917588095
18.4  -0.1266929011
19.4  -0.0704385213
20.4  -0.1000976255
22.4  -0.1823566854
23.4  -0.0234359300
2.5    0.1350616317
3.5   -0.1063267497
4.5   -0.1321516563
5.5   -0.1616181373
7.5    0.0316110640
8.5   -0.1078756278
10.5   0.6533707561
11.5  -0.3384625417
13.5   0.1696681980
14.5   0.0375446337
15.5   0.0683442225
16.5  -0.1177632787
17.5   0.1344744998
18.5  -0.1448984168
20.5  -0.0805132592
22.5  -0.1143956488
23.5  -0.2819130639
2.6   -0.3740522223
3.6    0.0136917126
4.6    0.1209084159
5.6    0.0106658681
7.6    0.2132853090
8.6   -0.2728104976
10.6   0.4136726633
11.6   0.0651308250
13.6   0.5964131911
14.6   0.0743064046
15.6  -0.0401501989
16.6  -0.2721864626
17.6  -0.0161938461
18.6   0.2104938447
19.6  -0.0597210366
20.6   0.1072333980
23.6   0.0584420288
2.7   -0.3262882825
3.7   -0.0136765150
4.7   -0.0945832467
5.7    0.0779418615
7.7    0.0678964155
8.7   -0.2878866419
10.7   0.5195253009
11.7  -0.1878754376
13.7  -0.2453361928
14.7   0.1767216654
15.7  -0.0370582181
16.7  -0.2689187847
17.7   0.2343707219
18.7  -0.0791618492
19.7   0.0082302102
20.7  -0.2537780568
22.7  -0.0566707996
23.7  -0.0019410576
2.8    0.2851828513
3.8   -0.1580320339
4.8   -0.0259086303
5.8   -0.1806867300
7.8   -0.0513875109
8.8    0.0971900531
10.8   0.7369715982
11.8  -0.2856853583
13.8  -0.0862929877
14.8  -0.0309301659
15.8   0.1037227836
16.8  -0.2499581212
17.8  -0.2772181998
18.8  -0.0403062592
19.8   0.0548885919
20.8  -0.1521530605
22.8  -0.0801202460
23.8   0.0668645960
2.9   -0.1599547524
3.9   -0.1393073330
4.9    0.0355613868
5.9    0.0052166040
7.9    0.1942153683
8.9   -0.4218176038
10.9   0.2924255029
11.9  -0.1355694747
13.9  -0.2248868603
14.9   0.0211429747
15.9  -0.0402452831
16.9  -0.1371356787
17.9   0.0542476634
18.9  -0.1656911288
19.9  -0.0690874697
20.9  -0.1409914659
22.9   0.0564111493
23.9  -0.0946538294
2.10  -0.1945943379
3.10   0.3557131833
4.10   0.1972101519
5.10   0.1054092711
7.10   0.0774829740
8.10  -0.2449815061
10.10  1.3891866835
11.10 -0.2779126514
13.10 -0.0225233715
14.10 -0.0003510676
16.10 -0.1923272069
17.10  0.2885867644
18.10 -0.1225788799
19.10 -0.0240248133
20.10  0.0871722909
22.10  0.1912907849
23.10 -0.2553209966
2.11   0.3696690594
3.11   0.0927945941
4.11   0.0511438054
5.11  -0.0465791370
7.11   0.0248786413
8.11   0.1031442360
10.11  0.9363323430
11.11 -0.3145342242
13.11  0.0164875438
14.11  0.0229589856
15.11 -0.1356151136
16.11 -0.1024986899
17.11 -0.0756698499
18.11  0.0225036711
19.11 -0.0810814720
20.11  0.0859723683
22.11 -0.0803210061
23.11  0.3996206265
2.12  -0.0925970288
3.12   0.6590811742
5.12   0.1393161617
7.12  -0.0717601098
8.12  -0.0102297588
10.12  0.6314623369
11.12 -0.1671702836
13.12 -0.0461389108
14.12 -0.1366590615
15.12 -0.1436991831
16.12 -0.2333470225
17.12 -0.0645080089
18.12 -0.1113865790
19.12  0.1497984160
20.12 -0.1299071042
22.12 -0.1258528264
23.12  0.0435250180
2.13  -0.2433797096
3.13  -0.2351310610
4.13  -0.0260603389
5.13  -0.0921430857
7.13  -0.0380277331
8.13   0.0156250649
10.13  0.6745460013
11.13 -0.2168827451
13.13  0.0207643736
14.13  0.1564643785
15.13 -0.2328533701
16.13 -0.2402021656
17.13 -0.0951959151
18.13 -0.0805861572
19.13 -0.0992215219
20.13 -0.0324380228
22.13  0.1702244202
23.13 -0.1558293117
2.14   0.0525964985
3.14  -0.2133400057
4.14  -0.1833771176
5.14  -0.0336752559
7.14  -0.0822119719
8.14   0.1959200597
10.14  0.1311659530
11.14 -0.3835885548
13.14 -0.0607947972
14.14 -0.0905406042
15.14 -0.1218061739
16.14 -0.1922590239
17.14 -0.0980016123
18.14  0.1617101958
19.14  0.0147888191
20.14  0.0080893244
22.14 -0.1576016378
23.14  0.0792068486
2.15   0.1960905094
3.15   0.1981294324
4.15   0.0749749471
5.15  -0.0368499109
7.15   0.0104706038
8.15   0.4258489596
10.15  0.1153468965
11.15 -0.5596636033
14.15 -0.1203593036
15.15 -0.2604905887
16.15 -0.0852654377
17.15 -0.1562049249
18.15 -0.1726211057
19.15 -0.0532891359
20.15 -0.0659903002
22.15 -0.0844916002
23.15  0.0146038086
2.16  -0.3044009900
3.16  -0.1390117104
4.16  -0.0836699907
5.16   0.0067357919
7.16  -0.1182096300
8.16   0.3172770814
10.16  1.7545081241
11.16 -0.2090286158
13.16 -0.1062283389
14.16  0.0566842682
15.16 -0.1453458107
16.16 -0.2483670273
18.16  0.3978403266
19.16 -0.0601466548
20.16 -0.1345377718
22.16 -0.0837955737
23.16 -0.1284658981
2.17   0.0099827753
3.17   0.6379546323
4.17   0.0035029113
7.17   0.0173904056
8.17   0.0576038671
10.17  0.6230251394
11.17 -0.3533466924
13.17  0.1130545010
14.17  0.0048524148
15.17  0.0998088141
17.17 -0.0169384617
18.17  0.0749964666
19.17 -0.0779333541
20.17  0.2029717469
22.17  0.0412750274
23.17  0.0698935541
2.18   0.1476951346
3.18   0.1819501075
4.18   0.0318293687
5.18  -0.0214622158
7.18   0.1610691829
8.18  -0.1362272561
10.18  0.2891202163
11.18 -0.6839712647
13.18 -0.1369749923
14.18 -0.1456636495
15.18 -0.2047053623
16.18 -0.1196989803
17.18 -0.1173347275
18.18  0.1155066684
19.18 -0.0799831456
20.18  0.0262031795
22.18  0.0583726911
23.18  0.7246428361
2.19   0.1338918937
3.19  -0.0786732639
4.19  -0.1399598699
5.19  -0.0964130074
7.19   0.1058015276
8.19   0.0999232723
10.19  0.3766477432
11.19 -0.0159083361
13.19  0.0595139732
14.19 -0.2571462355
15.19 -0.0441184437
16.19 -0.0820239780
17.19 -0.0454221193
18.19  0.0101013978
19.19  0.0453873269
20.19 -0.0271762654
22.19 -0.0666246782
23.19  0.4400529372
2.20   0.2779311576
3.20   0.5750952603
4.20  -0.1385226793
5.20   0.0395655883
7.20  -0.0750916007
8.20  -0.1053474291
10.20  0.4687917238
11.20 -0.3386209131
13.20  0.0949516177
14.20  0.1186692767
15.20 -0.1956201797
16.20 -0.1744788560
17.20  0.1644250054
18.20  0.0240332529
19.20 -0.0053989214
20.20 -0.0595054359
22.20 -0.0299249043
23.20 -0.0538405884
2.21   0.2453507703
3.21   0.0054598501
4.21   0.0364084015
5.21  -0.0874323585
7.21   0.0498517461
8.21   0.3445040162
10.21  0.8173499254
11.21 -0.1460493810
13.21 -0.0057376080
14.21  0.0166936131
15.21  0.1878703774
16.21  0.1497074975
17.21 -0.0200076696
18.21 -0.0586087770
19.21 -0.1557165618
20.21 -0.1308328581
23.21 -0.1985228678
2.22   0.3219724548
3.22   0.1643241684
4.22   0.1151777518
5.22   0.1172271249
7.22  -0.1704294123
8.22   0.4937829178
10.22  0.2558564243
11.22 -0.2954389243
13.22  0.0833178758
14.22 -0.0662954422
15.22 -0.0248111005
16.22  0.6650844673
17.22  0.0953914018
18.22 -0.0153716014
19.22  0.0066060054
20.22  0.0990183718
22.22  0.0142796923
23.22  0.3948953853
2.23   0.1026269850
3.23   0.2163647192
4.23   0.2661153417
5.23   0.0284081699
7.23   0.0780675764
8.23   0.7402712904
10.23  1.1392673831
11.23 -0.4181799275
13.23  0.0236344070
14.23 -0.2479363832
15.23  0.2591164701
16.23  0.2705685726
17.23  0.1878711681
18.23  0.1126236362
19.23 -0.0078598910
20.23  0.0201694549
22.23 -0.0751399575
23.23  0.1353311214
2.24  -0.1710644488
3.24  -0.0665846297
4.24  -0.0789334358
5.24   0.1384166546
7.24  -0.1604098680
8.24   0.6429782015
10.24  0.2063249985
11.24  0.1981225536
13.24 -0.0465685287
15.24 -0.1097963567
16.24 -0.3056747542
17.24 -0.0100430821
18.24  0.1613409015
19.24 -0.0096357865
20.24  0.0055742714
22.24  0.0014260064
2.25   0.4246056189
3.25  -0.0262271355
4.25  -0.0747375524
5.25  -0.0909424322
7.25   0.0111767786
8.25  -0.1726992429
10.25 -0.2194774370
11.25  0.7681144546
14.25 -0.1098167000
15.25  0.0360847490
16.25 -0.0453483138
17.25 -0.1479992763
18.25  0.0731575339
19.25 -0.1322521850
20.25 -0.0386396411
22.25  0.0203014722
23.25  0.1443584967
2.26  -0.0749594138
3.26  -0.1858047139
4.26  -0.0864367906
5.26   0.1518786400
7.26  -0.0665156775
8.26  -0.1267403974
10.26  0.7555271314
11.26  0.6670742661
15.26 -0.0419765758
16.26  0.1865628102
17.26 -0.1020871299
18.26  0.0915544280
19.26 -0.0428739932
20.26  0.1540972616
22.26 -0.0864536327
23.26  0.0621738981
2.27   0.1297026659
3.27   0.1233320986
4.27  -0.1349737109
5.27   0.0172974124
7.27   0.2030870722
8.27   1.0170570059
10.27 -0.1594312837
11.27  0.8472264642
13.27  0.0970042292
14.27  0.0240311006
15.27  0.0490617501
16.27  0.2307507672
17.27 -0.1432031484
18.27  0.0458044557
19.27  0.1202059865
20.27 -0.0404301625
22.27 -0.0537563899
23.27  0.4991392832
2.28   0.0731450608
3.28  -0.1335962070
4.28  -0.0771166867
5.28   0.0763369275
7.28  -0.0514322167
8.28   1.2175949017
10.28 -0.0073303733
11.28  0.1383174243
13.28  0.2890902679
14.28  0.1223794327
15.28 -0.1038827438
16.28  0.5375403662
19.28 -0.0103695367
20.28 -0.0231117969
22.28  0.0051564614
23.28 -0.1034136853
2.29   0.0868071876
3.29   1.3781467228
4.29   0.0122971843
5.29  -0.1255606729
7.29   0.0776716544
8.29  -0.1582452752
10.29  0.0473409107
11.29 -0.4534947030
13.29 -0.0266197606
14.29  0.3210083854
15.29 -0.0537032167
16.29  0.4270841245
17.29  0.3440103250
18.29 -0.0354272681
19.29  0.1183275355
20.29 -0.0107164101
22.29  0.2854762523
23.29  0.2305943906
2.30  -0.1408429194
3.30  -0.0966581841
4.30   0.2244341406
5.30  -0.0145553686
7.30   0.0496996626
8.30   0.2697811830
10.30 -0.3092223495
11.30  1.2017225754
13.30  0.2511432993
14.30  0.2510649775
15.30 -0.0868181791
16.30  0.3280659191
17.30  0.1222708976
18.30 -0.0244494033
19.30 -0.0055110701
20.30 -0.1292237765
22.30 -0.1976909658
23.30  0.0245488747
2.31   0.0752749838
3.31   0.2796157604
4.31   0.2943476505
5.31   0.0741477255
7.31  -0.0275635807
8.31  -0.1228303063
10.31  0.4554606866
11.31  0.1132099704
13.31  0.0956947235
14.31 -0.0520783203
15.31  0.3535299616
16.31  0.5263042667
17.31  0.1131341021
18.31  0.2591663842
19.31 -0.0214410110
20.31 -0.0396691671
22.31  0.0030145421
23.31  0.0735867296
2.32   0.3315199939
3.32   0.2804149306
4.32   0.2442885843
5.32   0.0273566366
7.32   0.2043775995
8.32   0.2537835439
10.32 -0.0823291049
11.32  2.9595310436
13.32 -0.0835977678
14.32 -0.0530630156
15.32 -0.0705138824
16.32  0.1807343974
17.32  0.4794760516
18.32 -0.0921324892
19.32 -0.0102969237
20.32 -0.2035333422
22.32 -0.0468239578
23.32  0.6117431893
2.33   0.4856277611
3.33  -0.0808088540
4.33   0.0136488350
5.33  -0.0957033193
7.33   0.1820425851
8.33   0.1001536417
10.33 -0.6921074357
11.33  1.6582363484
13.33  0.2399993134
14.33 -0.1684416128
15.33 -0.0131060791
16.33  0.0205627652
17.33 -0.0051212521
18.33  0.1623524804
19.33  0.2083228098
20.33  0.2625331451
22.33 -0.0192421480
23.33  0.1672848367
2.34   0.1843233050
3.34   0.5235086700
4.34  -0.1688731759
5.34  -0.0532766252
7.34   0.1420208342
8.34   0.2533766280
10.34  0.2558027803
11.34  0.3454536773
13.34  0.1111036699
14.34 -0.0124412688
15.34  0.1347862273
16.34  0.4103622910
17.34  0.2009049737
18.34  0.0072616807
19.34 -0.0253078471
20.34  0.1130047831
22.34  0.0431629653
23.34 -0.1097681337
2.35   0.2232515456
3.35  -0.1320860112
4.35  -0.2504004774
5.35  -0.0823451218
7.35  -0.0079214014
8.35  -0.1699882641
10.35 -0.4802527123
11.35  0.8551500564
13.35  0.2123175303
14.35  0.7344213447
15.35  0.1296949298
16.35  0.7100334366
17.35  0.0471560282
18.35  0.0899724582
19.35 -0.0449345065
20.35 -0.0487362860
22.35  0.2738429334
23.35 -0.0455241481
2.36  -0.0333574988
3.36  -0.1906110170
4.36   0.0170862131
5.36   0.0295318120
7.36   0.1145345352
8.36  -0.2492858343
10.36 -1.2641636607
11.36  0.9326158069
13.36  0.5184325033
14.36  0.1734038858
15.36 -0.0010113806
16.36  0.4075566387
17.36  0.2658028914
18.36 -0.1602713231
19.36  0.0347478428
20.36  0.0766465054
22.36  0.2143974667
23.36  0.2569092122
2.37   0.4169800151
3.37  -0.1769880520
4.37   0.3338402747
5.37  -0.0775166804
7.37  -0.1058312965
8.37  -0.2208270028
10.37 -1.1494068925
11.37 -0.3433235694
13.37 -0.1514719324
14.37 -0.0756711874
15.37  0.0502931715
16.37 -0.0425637738
17.37  0.0788596507
18.37  0.7350281133
20.37 -0.0078510647
22.37  0.2871630791
23.37 -0.1293200306
2.38  -0.1669365813
3.38  -0.3447360008
4.38   0.2312038599
5.38  -0.2162016597
7.38  -0.0818145867
8.38   0.3295626801
10.38 -1.3934758704
11.38 -0.2291493176
13.38 -0.3113237256
14.38 -0.3274682620
15.38  0.0244815410
16.38 -0.0924249603
17.38  0.0037795113
18.38  0.1908854215
19.38  0.0270092518
20.38 -0.2458361046
22.38  0.2740344728
23.38 -0.2667060792
2.39   0.1668831440
3.39   0.3645885833
4.39   0.1483721309
5.39  -0.0192706045
7.39  -0.0661944472
8.39  -0.7126837524
10.39 -1.2149674716
11.39  0.6680741954
14.39  0.1383861716
15.39  0.2541695292
16.39 -0.1840886817
17.39  0.0361145905
18.39  0.0887873452
19.39 -0.1037737101
20.39  0.0734602574
22.39  0.0171015613
23.39 -0.6540215154
2.40   0.5286603700
3.40  -0.2730628189
4.40  -0.0416230055
5.40  -0.0222412327
7.40  -0.0069828291
8.40  -0.3368664020
10.40 -1.0139309471
13.40 -0.0363070807
14.40 -0.0212239230
15.40  0.0794362014
17.40 -0.0623984143
18.40 -0.0358859157
19.40  0.1150754624
20.40  0.2222399638
22.40 -0.1241330325
23.40 -0.5950418563
3.41  -0.4916575359
4.41   0.0119318399
5.41  -0.0526979637
7.41  -0.0065690074
10.41 -1.2665769373
11.41 -0.4416967647
13.41 -0.3789718875
14.41 -0.0687739053
16.41  0.0043039604
17.41 -0.2099120693
18.41 -0.0132940499
19.41  0.1504160729
20.41 -0.0918171364
22.41  0.1311436778
23.41 -0.5202025585
2.42  -0.3514389657
3.42   0.0331706015
4.42   0.2556542498
5.42   0.3147949056
7.42   0.0970719576
8.42  -0.5090961458
10.42 -0.0757600497
11.42 -0.4797291394
13.42 -0.3145034417
14.42 -0.0716449602
15.42 -0.0305092248
16.42  1.1178527835
17.42 -0.4285738882
18.42  0.3704394803
19.42  0.3525510010
20.42  0.1218437347
22.42 -0.0877418447
23.42  0.4167124520
2.43  -0.5810325844
3.43  -0.3204736211
4.43  -0.2219002731
5.43   0.0853249918
7.43  -0.0427503176
8.43  -0.8137324126
10.43 -0.3110309684
11.43 -0.2803971741
13.43 -0.3724355780
14.43 -0.0620535295
15.43  0.3516576566
16.43 -0.5390369285
17.43 -0.3595486968
18.43 -0.0622262575
19.43  0.0150838574
20.43  0.1129585471
22.43 -0.2722136108
23.43 -0.4027066803
3.44  -0.4857879218
4.44  -0.2623676950
5.44  -0.1701960996
7.44  -0.1471511943
8.44  -0.9257720266
10.44 -0.4264868718
11.44 -0.3964618231
13.44 -0.0134661412
14.44 -0.5048136752
16.44 -0.5829778975
17.44 -0.2738377316
18.44  0.0177265183
19.44  0.0691377071
20.44  0.0545784547
22.44 -0.3615156361
23.44 -0.3552367196
2.45  -0.3352269427
3.45  -0.8068048269
4.45  -0.2888518042
5.45   0.0405794155
7.45  -0.3940792687
8.45  -0.2004453720
10.45 -1.2720264825
11.45 -0.7754857595
13.45 -0.2298394562
14.45 -0.5404445800
15.45 -0.2138688966
16.45 -0.5030564851
17.45 -0.0257649060
18.45 -0.3308760750
20.45  0.0565218335
22.45 -0.2540892606
23.45 -0.5502021129
2.46  -0.8991020738
3.46  -0.5045688769
4.46  -0.1899633416
7.46  -0.3654387474
8.46  -0.2954884640
10.46 -1.3569454095
11.46 -0.3710593667
13.46 -0.3452901680
14.46 -0.4184417966
15.46  0.0398856730
16.46 -0.5048918337
17.46 -0.1530779846
18.46 -0.4085736304
19.46 -0.2834847131
22.46 -0.1642896102
2.47  -0.6183288965
5.47  -0.0821202178
7.47  -0.1804333374
11.47 -0.6974626078
14.47  0.1724652850
15.47  0.0895602448
18.47 -0.7367423851
19.47 -0.3189146441
20.47 -0.1544235856
22.47 -0.0505034501

$subject
   (Intercept)
2   0.30467735
3   0.20314125
4  -0.28187408
5  -0.28092875
7  -0.21491342
8   0.34189234
10  0.83157393
11  0.33401033
13 -0.26701182
14 -0.08795784
15 -0.19133591
16  0.06200322
17 -0.13354906
18  0.17498883
19 -0.32219269
20 -0.21162992
22 -0.28135904
23  0.02046528

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.7868819 -1.1650990 -1.1501612 -0.9935119 -1.0933710 -1.2482428 

=============================================================

--- Mixed - Block 4 - Axis Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step 178.76  10.515    17  8794  42.826 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.038131 0.0282 8829  -1.353  0.9971
 Step1 - Step3   -0.067648 0.0356 8821  -1.901  0.9120
 Step1 - Step4    0.020943 0.0249 8779   0.841  1.0000
 Step1 - Step5   -0.003266 0.0282 8829  -0.116  1.0000
 Step1 - Step6    0.050076 0.0355 8821   1.409  0.9954
 Step1 - Step7    0.040692 0.0282 8829   1.443  0.9940
 Step1 - Step8    0.108923 0.0281 8805   3.872  0.0131
 Step1 - Step9    0.105409 0.0282 8829   3.741  0.0213
 Step1 - Step10   0.128474 0.0282 8829   4.556  0.0007
 Step1 - Step11   0.135271 0.0281 8805   4.809  0.0002
 Step1 - Step12   0.161255 0.0282 8829   5.719  <.0001
 Step1 - Step13   0.185531 0.0355 8821   5.220  <.0001
 Step1 - Step14   0.245110 0.0282 8829   8.693  <.0001
 Step1 - Step15   0.262021 0.0249 8779  10.516  <.0001
 Step1 - Step16   0.368015 0.0356 8821  10.340  <.0001
 Step1 - Step17   0.377622 0.0282 8829  13.400  <.0001
 Step1 - Step18   0.367760 0.0249 8779  14.760  <.0001
 Step2 - Step3   -0.029517 0.0374 8798  -0.790  1.0000
 Step2 - Step4    0.059074 0.0282 8829   2.096  0.8188
 Step2 - Step5    0.034865 0.0303 8779   1.150  0.9996
 Step2 - Step6    0.088206 0.0373 8798   2.364  0.6358
 Step2 - Step7    0.078823 0.0303 8779   2.600  0.4532
 Step2 - Step8    0.147054 0.0315 8884   4.669  0.0004
 Step2 - Step9    0.143540 0.0303 8779   4.738  0.0003
 Step2 - Step10   0.166605 0.0303 8779   5.496  <.0001
 Step2 - Step11   0.173402 0.0315 8884   5.506  <.0001
 Step2 - Step12   0.199386 0.0303 8779   6.578  <.0001
 Step2 - Step13   0.223662 0.0373 8798   5.994  <.0001
 Step2 - Step14   0.283241 0.0303 8779   9.344  <.0001
 Step2 - Step15   0.300152 0.0282 8829  10.651  <.0001
 Step2 - Step16   0.406146 0.0374 8798  10.870  <.0001
 Step2 - Step17   0.415753 0.0303 8779  13.723  <.0001
 Step2 - Step18   0.405891 0.0282 8829  14.403  <.0001
 Step3 - Step4    0.088590 0.0356 8821   2.489  0.5388
 Step3 - Step5    0.064382 0.0374 8798   1.723  0.9626
 Step3 - Step6    0.117723 0.0425 8780   2.773  0.3305
 Step3 - Step7    0.108339 0.0374 8798   2.899  0.2532
 Step3 - Step8    0.176570 0.0378 8839   4.675  0.0004
 Step3 - Step9    0.173057 0.0374 8798   4.632  0.0005
 Step3 - Step10   0.196122 0.0374 8798   5.247  <.0001
 Step3 - Step11   0.202918 0.0378 8839   5.373  <.0001
 Step3 - Step12   0.228903 0.0374 8798   6.125  <.0001
 Step3 - Step13   0.253178 0.0425 8780   5.964  <.0001
 Step3 - Step14   0.312758 0.0374 8798   8.368  <.0001
 Step3 - Step15   0.329668 0.0356 8821   9.263  <.0001
 Step3 - Step16   0.435663 0.0425 8779  10.253  <.0001
 Step3 - Step17   0.445270 0.0374 8798  11.917  <.0001
 Step3 - Step18   0.435408 0.0356 8821  12.234  <.0001
 Step4 - Step5   -0.024208 0.0282 8829  -0.859  1.0000
 Step4 - Step6    0.029133 0.0355 8821   0.820  1.0000
 Step4 - Step7    0.019749 0.0282 8829   0.700  1.0000
 Step4 - Step8    0.087980 0.0281 8805   3.128  0.1448
 Step4 - Step9    0.084467 0.0282 8829   2.997  0.2014
 Step4 - Step10   0.107532 0.0282 8829   3.814  0.0163
 Step4 - Step11   0.114328 0.0281 8805   4.065  0.0062
 Step4 - Step12   0.140313 0.0282 8829   4.976  0.0001
 Step4 - Step13   0.164588 0.0355 8821   4.631  0.0005
 Step4 - Step14   0.224168 0.0282 8829   7.950  <.0001
 Step4 - Step15   0.241078 0.0249 8779   9.676  <.0001
 Step4 - Step16   0.347072 0.0356 8821   9.752  <.0001
 Step4 - Step17   0.356679 0.0282 8829  12.657  <.0001
 Step4 - Step18   0.346818 0.0249 8779  13.919  <.0001
 Step5 - Step6    0.053341 0.0373 8798   1.429  0.9946
 Step5 - Step7    0.043957 0.0303 8779   1.450  0.9937
 Step5 - Step8    0.112188 0.0315 8885   3.560  0.0397
 Step5 - Step9    0.108675 0.0303 8779   3.585  0.0365
 Step5 - Step10   0.131740 0.0303 8779   4.344  0.0019
 Step5 - Step11   0.138536 0.0315 8885   4.396  0.0015
 Step5 - Step12   0.164521 0.0303 8779   5.425  <.0001
 Step5 - Step13   0.188796 0.0373 8798   5.057  0.0001
 Step5 - Step14   0.248376 0.0303 8779   8.191  <.0001
 Step5 - Step15   0.265286 0.0282 8829   9.408  <.0001
 Step5 - Step16   0.371281 0.0374 8798   9.934  <.0001
 Step5 - Step17   0.380887 0.0303 8779  12.566  <.0001
 Step5 - Step18   0.371026 0.0282 8829  13.158  <.0001
 Step6 - Step7   -0.009384 0.0373 8798  -0.251  1.0000
 Step6 - Step8    0.058847 0.0377 8839   1.560  0.9860
 Step6 - Step9    0.055334 0.0373 8798   1.483  0.9919
 Step6 - Step10   0.078399 0.0373 8798   2.100  0.8166
 Step6 - Step11   0.085195 0.0377 8839   2.259  0.7135
 Step6 - Step12   0.111180 0.0373 8798   2.978  0.2109
 Step6 - Step13   0.135455 0.0424 8779   3.194  0.1212
 Step6 - Step14   0.195035 0.0373 8798   5.224  <.0001
 Step6 - Step15   0.211945 0.0355 8821   5.963  <.0001
 Step6 - Step16   0.317939 0.0425 8780   7.489  <.0001
 Step6 - Step17   0.327547 0.0373 8798   8.777  <.0001
 Step6 - Step18   0.317685 0.0355 8821   8.938  <.0001
 Step7 - Step8    0.068231 0.0315 8885   2.165  0.7767
 Step7 - Step9    0.064718 0.0303 8779   2.135  0.7957
 Step7 - Step10   0.087783 0.0303 8779   2.895  0.2555
 Step7 - Step11   0.094579 0.0315 8885   3.001  0.1994
 Step7 - Step12   0.120564 0.0303 8779   3.976  0.0088
 Step7 - Step13   0.144839 0.0373 8798   3.880  0.0127
 Step7 - Step14   0.204419 0.0303 8779   6.741  <.0001
 Step7 - Step15   0.221329 0.0282 8829   7.849  <.0001
 Step7 - Step16   0.327323 0.0374 8798   8.758  <.0001
 Step7 - Step17   0.336930 0.0303 8779  11.115  <.0001
 Step7 - Step18   0.327069 0.0282 8829  11.599  <.0001
 Step8 - Step9   -0.003513 0.0315 8884  -0.112  1.0000
 Step8 - Step10   0.019552 0.0315 8885   0.620  1.0000
 Step8 - Step11   0.026348 0.0305 8779   0.865  1.0000
 Step8 - Step12   0.052333 0.0315 8885   1.661  0.9736
 Step8 - Step13   0.076608 0.0377 8839   2.031  0.8545
 Step8 - Step14   0.136188 0.0315 8885   4.322  0.0021
 Step8 - Step15   0.153098 0.0281 8805   5.443  <.0001
 Step8 - Step16   0.259092 0.0378 8839   6.860  <.0001
 Step8 - Step17   0.268699 0.0315 8884   8.531  <.0001
 Step8 - Step18   0.258838 0.0281 8805   9.202  <.0001
 Step9 - Step10   0.023065 0.0303 8779   0.761  1.0000
 Step9 - Step11   0.029861 0.0315 8884   0.948  1.0000
 Step9 - Step12   0.055846 0.0303 8779   1.842  0.9319
 Step9 - Step13   0.080121 0.0373 8798   2.147  0.7883
 Step9 - Step14   0.139701 0.0303 8779   4.609  0.0006
 Step9 - Step15   0.156611 0.0282 8829   5.557  <.0001
 Step9 - Step16   0.262606 0.0374 8798   7.028  <.0001
 Step9 - Step17   0.272213 0.0303 8779   8.985  <.0001
 Step9 - Step18   0.262351 0.0282 8829   9.310  <.0001
 Step10 - Step11  0.006796 0.0315 8885   0.216  1.0000
 Step10 - Step12  0.032781 0.0303 8779   1.081  0.9998
 Step10 - Step13  0.057056 0.0373 8798   1.528  0.9887
 Step10 - Step14  0.116636 0.0303 8779   3.846  0.0144
 Step10 - Step15  0.133546 0.0282 8829   4.736  0.0003
 Step10 - Step16  0.239541 0.0374 8798   6.409  <.0001
 Step10 - Step17  0.249148 0.0303 8779   8.219  <.0001
 Step10 - Step18  0.239286 0.0282 8829   8.486  <.0001
 Step11 - Step12  0.025985 0.0315 8885   0.825  1.0000
 Step11 - Step13  0.050260 0.0377 8839   1.332  0.9976
 Step11 - Step14  0.109840 0.0315 8885   3.486  0.0507
 Step11 - Step15  0.126750 0.0281 8805   4.506  0.0009
 Step11 - Step16  0.232744 0.0378 8839   6.162  <.0001
 Step11 - Step17  0.242351 0.0315 8884   7.695  <.0001
 Step11 - Step18  0.232490 0.0281 8805   8.265  <.0001
 Step12 - Step13  0.024275 0.0373 8798   0.650  1.0000
 Step12 - Step14  0.083855 0.0303 8779   2.765  0.3356
 Step12 - Step15  0.100765 0.0282 8829   3.574  0.0380
 Step12 - Step16  0.206759 0.0374 8798   5.532  <.0001
 Step12 - Step17  0.216366 0.0303 8779   7.138  <.0001
 Step12 - Step18  0.206505 0.0282 8829   7.324  <.0001
 Step13 - Step14  0.059580 0.0373 8798   1.596  0.9822
 Step13 - Step15  0.076490 0.0355 8821   2.152  0.7851
 Step13 - Step16  0.182484 0.0425 8780   4.298  0.0023
 Step13 - Step17  0.192091 0.0373 8798   5.148  <.0001
 Step13 - Step18  0.182230 0.0355 8821   5.127  <.0001
 Step14 - Step15  0.016910 0.0282 8829   0.600  1.0000
 Step14 - Step16  0.122905 0.0374 8798   3.288  0.0927
 Step14 - Step17  0.132512 0.0303 8779   4.372  0.0017
 Step14 - Step18  0.122650 0.0282 8829   4.350  0.0019
 Step15 - Step16  0.105994 0.0356 8821   2.978  0.2109
 Step15 - Step17  0.115601 0.0282 8829   4.102  0.0053
 Step15 - Step18  0.105740 0.0249 8779   4.244  0.0030
 Step16 - Step17  0.009607 0.0374 8798   0.257  1.0000
 Step16 - Step18 -0.000255 0.0356 8821  -0.007  1.0000
 Step17 - Step18 -0.009862 0.0282 8829  -0.350  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 1.634061155  0.038130982  0.067647717 -0.020942606  0.003265586 -0.050075489 
       Step7        Step8        Step9       Step10       Step11       Step12 
-0.040691647 -0.108922721 -0.105409319 -0.128474294 -0.135270620 -0.161255439 
      Step13       Step14       Step15       Step16       Step17       Step18 
-0.185530594 -0.245110280 -0.262020646 -0.368014876 -0.377621948 -0.367760303 

Random Effects:
$trial_id
        (Intercept)
3.1    6.649688e-02
4.1   -1.794264e-01
5.1    3.092627e-01
10.1   1.501899e-01
11.1   4.219736e-01
14.1   4.716877e-01
16.1   2.070883e-01
17.1   4.896103e-02
18.1  -2.581335e-01
19.1  -5.198416e-02
20.1   4.119882e-01
22.1   4.979588e-01
23.1  -3.095162e-01
3.2   -4.248837e-01
4.2   -2.225416e-01
5.2    1.676832e-01
8.2   -6.501593e-01
10.2  -4.053554e-01
13.2   3.440621e-01
14.2   9.030892e-01
16.2   1.161119e-01
17.2   8.227111e-02
20.2   1.289941e-01
22.2  -9.410870e-03
2.3    1.300568e-01
3.3    5.174294e-02
4.3    4.618047e-02
5.3   -2.203588e-01
7.3    6.580582e-01
10.3   5.966766e-01
11.3  -7.397333e-01
13.3   1.993205e-01
14.3   5.678560e-01
15.3  -3.456600e-01
17.3  -1.352474e-01
22.3   9.230932e-02
23.3   3.265950e-01
2.4   -4.187892e-01
3.4   -2.051750e-01
4.4   -7.338545e-02
5.4    4.156510e-02
7.4    3.403689e-01
8.4   -3.633391e-01
11.4  -3.668022e-01
13.4   1.781929e-01
14.4   7.067554e-01
15.4   1.752950e-01
16.4   1.240879e-01
17.4   2.274747e-01
18.4   1.503061e-01
19.4  -8.899614e-02
20.4  -2.777897e-01
22.4   6.627817e-02
23.4  -4.999774e-01
2.5   -1.874579e-01
3.5   -5.915322e-01
4.5    2.113093e-01
5.5   -2.717731e-01
7.5    2.149122e-01
8.5   -2.096603e-01
10.5   1.993253e+00
11.5  -1.494423e-02
13.5   7.354995e-01
14.5   5.463147e-01
15.5   3.322080e-01
16.5   1.119159e-01
17.5  -1.667059e-01
18.5   1.099837e-01
20.5  -2.543796e-01
22.5   1.815883e-01
23.5  -2.962743e-01
2.6   -6.639366e-01
3.6   -1.811017e-01
4.6    1.772201e-01
5.6   -3.658359e-02
7.6    1.188753e+00
8.6    1.233392e+00
10.6   4.654715e-01
11.6   1.199178e-01
13.6   4.499286e-01
14.6   3.077286e-01
15.6   1.682428e-02
16.6  -1.797764e-01
17.6  -1.681001e-01
18.6   5.035487e-01
19.6  -5.873447e-02
20.6  -2.093033e-01
23.6   6.417615e-01
2.7   -3.480955e-01
3.7   -1.357538e-01
4.7    3.477559e-01
5.7    3.986973e-02
7.7    8.908735e-01
8.7   -1.816151e-01
10.7   3.024938e+00
11.7  -1.467370e-01
13.7   9.341641e-01
14.7   6.470777e-01
15.7   2.164358e-01
16.7   8.390946e-03
17.7  -5.214857e-02
18.7  -6.879403e-01
19.7  -9.110882e-02
20.7  -4.413691e-01
22.7  -5.116617e-02
23.7   1.714817e-01
2.8   -1.385489e-01
3.8   -3.731025e-01
4.8    1.109603e-01
5.8   -2.000350e-01
7.8    3.593210e-01
8.8   -4.189290e-01
10.8   8.154979e-02
11.8   9.262382e-02
13.8  -9.634490e-02
14.8   2.292667e-01
15.8  -1.493214e-02
16.8  -1.558541e-01
17.8   1.969258e-01
18.8  -8.597118e-02
19.8   4.222962e-01
20.8  -2.533141e-01
22.8   1.399279e-01
23.8   1.355504e-01
2.9   -3.907913e-01
3.9   -3.024887e-01
4.9   -1.285806e-01
5.9   -2.361650e-01
7.9    7.854387e-01
8.9   -9.903078e-02
10.9   1.629110e+00
11.9  -3.015622e-01
13.9   1.302658e-01
14.9   4.203701e-01
15.9   1.528124e-01
16.9  -1.555840e-01
17.9   1.349424e-01
18.9  -4.853178e-01
19.9  -9.728594e-02
20.9  -4.608637e-01
22.9   2.724601e-01
23.9  -1.100140e-01
2.10  -2.626408e-01
3.10   4.225382e-01
4.10   4.236656e-01
5.10   1.686651e-01
7.10   3.632238e-01
8.10  -4.431350e-01
10.10  1.853113e-01
11.10 -9.599217e-02
13.10 -1.817667e-01
14.10  1.968688e-01
16.10  2.713556e-01
17.10  1.079219e-01
18.10 -8.092177e-02
19.10 -2.486252e-01
20.10 -3.269483e-01
22.10  1.430185e-01
23.10 -3.519910e-01
2.11  -1.430011e-01
3.11  -1.667465e-01
4.11   8.780503e-03
5.11   9.706077e-02
7.11   1.493620e-01
8.11  -2.751768e-02
10.11  2.259782e+00
11.11 -6.241579e-01
13.11  5.053247e-02
14.11  6.166272e-01
15.11  1.399893e-01
16.11  2.777435e-01
17.11 -1.983313e-01
18.11 -2.195053e-01
19.11 -3.082203e-01
20.11  6.250231e-02
22.11  3.214420e-01
23.11 -3.961403e-02
2.12   1.676990e-01
3.12   1.075314e+00
5.12   3.420003e-01
7.12   6.376508e-01
8.12   5.379727e-01
10.12  5.167425e-01
11.12  2.474994e-01
13.12  2.288568e-01
14.12  2.604687e-01
15.12  3.578882e-02
16.12  2.661987e-01
17.12 -3.506975e-02
18.12  8.806282e-01
19.12  6.508466e-01
20.12 -5.659430e-01
22.12  2.585335e-01
23.12  5.172453e-01
2.13  -5.420496e-01
3.13   5.895573e-01
4.13  -2.587682e-01
5.13  -1.329172e-01
7.13   2.570483e-01
8.13  -1.027989e-01
10.13  4.062246e-01
11.13 -6.039253e-02
13.13  2.555135e-01
14.13  5.100565e-01
15.13 -1.097122e-01
16.13 -2.929665e-04
17.13 -5.421540e-02
18.13 -3.373815e-01
19.13 -1.622247e-01
20.13 -1.632551e-02
22.13  2.145229e-01
23.13  8.364730e-02
2.14   3.300854e-01
3.14   2.445965e-01
4.14  -3.332990e-01
5.14  -1.962867e-01
7.14   3.072432e-01
8.14   2.083490e-01
10.14  6.401151e-01
11.14  3.607107e-02
13.14  3.418764e-01
14.14  2.809959e-01
15.14 -1.734396e-01
16.14 -1.002322e-01
17.14  2.428209e-02
18.14 -5.782864e-02
19.14  6.237059e-02
20.14 -2.749903e-01
22.14  1.777209e-02
23.14  1.956361e-01
2.15   1.986138e-01
3.15  -1.173456e-01
4.15  -2.426683e-01
5.15  -6.355056e-02
7.15  -1.082753e-02
8.15   3.856795e-01
10.15  1.053337e+00
11.15 -1.212690e+00
14.15 -1.555326e-01
15.15 -4.414879e-01
16.15  1.086110e-01
17.15  4.343743e-01
18.15  2.360197e-01
19.15 -1.675092e-01
20.15  1.380558e-01
22.15  1.329587e-01
23.15  5.276670e-01
2.16  -4.205606e-01
3.16  -8.735538e-02
4.16   2.281403e-02
5.16  -3.258416e-01
7.16  -2.259680e-01
8.16   6.015595e-01
10.16  1.771548e-01
11.16 -3.649432e-01
13.16  9.275351e-03
14.16  2.905375e-02
15.16 -3.216091e-01
16.16 -1.341053e-01
18.16  3.794938e-01
19.16 -1.265189e-01
20.16 -1.674493e-01
22.16  6.982632e-02
23.16 -1.556780e-02
2.17  -1.910253e-01
3.17   2.557325e-01
4.17   2.292756e-01
7.17  -4.935710e-01
8.17   8.686354e-01
10.17  2.067948e+00
11.17 -1.575812e-01
13.17  1.142745e-01
14.17  4.622892e-03
15.17 -2.755240e-01
17.17 -9.868857e-02
18.17  1.435220e-01
19.17  1.361992e-01
20.17 -3.642017e-01
22.17  2.216444e-01
23.17  2.032781e-01
2.18   1.965966e-01
3.18  -1.792881e-01
4.18  -1.576905e-01
5.18  -1.280382e-01
7.18  -2.441822e-01
8.18  -3.547939e-01
10.18  1.583955e+00
11.18 -6.662715e-01
13.18 -8.714903e-02
14.18 -6.006591e-02
15.18 -3.865148e-01
16.18  1.807053e-01
17.18  6.190174e-02
18.18  2.514425e-02
19.18  8.288928e-02
20.18  2.227073e-01
22.18  4.217493e-01
23.18  3.314536e-01
2.19   2.536484e-01
3.19  -1.436023e-01
4.19   3.590887e-01
5.19  -1.102411e-03
7.19   4.752135e-01
8.19   8.105420e-01
10.19  1.611252e+00
11.19 -3.957014e-01
13.19  5.011061e-01
14.19 -2.585255e-01
15.19 -3.178375e-02
16.19 -8.144600e-01
17.19  1.961243e-02
18.19  1.259491e-01
19.19  5.745309e-02
20.19  3.576905e-02
22.19  1.158617e-01
23.19 -6.912956e-03
2.20   7.306612e-03
3.20  -5.327672e-02
4.20   2.111957e-02
5.20   1.336743e-01
7.20  -1.325460e-01
8.20  -2.695632e-01
10.20  7.902016e-01
11.20 -3.478849e-01
13.20  3.048240e-01
14.20  3.164487e-01
15.20 -6.837047e-02
16.20 -4.328481e-01
17.20  2.302716e-01
18.20 -2.932651e-01
19.20  6.459433e-01
20.20  8.608949e-02
22.20  9.919956e-02
23.20  6.183426e-01
2.21   3.967220e-01
3.21   3.560317e-01
4.21   2.233102e-01
5.21  -1.790333e-01
7.21   4.495961e-01
8.21   6.957941e-01
10.21  1.677002e+00
11.21  1.742425e-01
13.21  4.221226e-01
14.21  2.571362e-01
15.21  3.818521e-02
16.21 -8.809781e-01
17.21  7.709859e-02
18.21  2.153112e-02
19.21  4.112846e-01
20.21  1.314728e-01
23.21  2.759568e-01
2.22   6.577642e-01
3.22   1.052348e-01
4.22   3.250076e-01
5.22   1.750109e-01
7.22   1.058893e+00
8.22   2.092197e-01
10.22  2.875224e+00
11.22  3.439811e-01
13.22 -1.323214e-01
14.22 -1.408436e-01
15.22 -9.304063e-03
16.22 -5.422087e-01
17.22  2.327910e-01
18.22  3.002425e-01
19.22 -1.192951e-02
20.22  2.528365e-01
22.22 -8.857363e-02
23.22  1.424360e+00
2.23  -5.400186e-02
3.23   3.422830e-01
4.23  -2.997765e-02
5.23   2.499487e-02
7.23   1.054143e-01
8.23   1.468765e+00
10.23  3.692164e-01
11.23 -4.966599e-01
13.23  6.680685e-05
14.23 -5.466351e-01
15.23  7.412714e-02
16.23  6.048262e-01
17.23  3.536884e-01
18.23  1.921268e-01
19.23  2.777758e-01
20.23  2.230871e-01
22.23  4.478350e-02
23.23  6.147635e-03
2.24   8.576775e-02
3.24  -8.585620e-02
4.24   4.968942e-01
5.24   2.613547e-01
7.24   4.931969e-02
8.24   1.631700e-01
10.24  1.612760e+00
11.24 -9.168266e-01
13.24  1.659631e-01
15.24 -3.237183e-01
16.24  2.329857e+00
17.24 -2.663226e-02
18.24  4.714102e-01
19.24  9.525542e-02
20.24  2.822963e-01
22.24 -4.580814e-02
2.25   3.723946e-01
3.25  -1.819894e-01
4.25   5.347696e-02
5.25   1.197815e-01
7.25   5.797663e-02
8.25  -7.798693e-01
10.25  2.459685e-01
11.25  3.082818e-01
14.25 -3.439875e-01
15.25  1.978182e-01
16.25  1.773503e+00
17.25  2.024901e-01
18.25 -2.143058e-03
19.25  1.053564e-01
20.25  5.391479e-02
22.25  7.748638e-04
23.25  5.251377e-01
2.26   5.180672e-01
3.26  -1.225202e-01
4.26  -3.154343e-01
5.26  -3.713833e-02
7.26   1.131056e-01
8.26   8.649926e-01
10.26  1.242023e+00
11.26  1.551067e+00
15.26  3.267341e-02
16.26  1.656860e-01
17.26 -6.327951e-02
18.26  1.834241e-01
19.26  2.677287e-01
20.26  3.718764e-01
22.26  1.832099e-01
23.26 -1.896234e-01
2.27   1.847312e-01
3.27   4.307156e-01
4.27  -3.524204e-02
5.27  -2.086483e-02
7.27   2.453012e-01
8.27   2.108453e+00
10.27  5.784280e-01
11.27 -1.125918e-01
13.27  6.855898e-02
14.27  6.578551e-02
15.27  1.365634e-01
16.27  2.757207e+00
17.27 -4.928568e-02
18.27  2.890736e-01
19.27  5.815493e-02
20.27  1.494644e-01
22.27 -2.655920e-01
23.27  2.957452e-01
2.28  -7.947089e-02
3.28  -2.697752e-01
4.28  -9.788284e-02
5.28  -9.499890e-02
7.28   5.827997e-01
8.28   1.634997e+00
10.28  1.979664e+00
11.28 -2.556853e-01
13.28  4.537229e-01
14.28 -1.048785e-01
15.28 -1.467792e-01
16.28  6.498535e-02
19.28 -3.201975e-02
20.28  2.943786e-01
22.28 -2.030664e-01
23.28  2.378594e-01
2.29   1.765313e-01
3.29   2.468067e+00
4.29  -4.023559e-02
5.29   1.137454e-01
7.29   6.422706e-01
8.29   4.657129e-04
10.29 -2.433755e-01
11.29  2.402671e+00
13.29  3.311982e-02
14.29  7.483318e-01
15.29  4.640635e-02
16.29  1.039954e+00
17.29  7.183354e-01
18.29 -3.812033e-01
19.29  1.210544e-01
20.29  8.659024e-02
22.29  4.923551e-02
23.29  1.000682e+00
2.30  -9.564542e-02
3.30   2.925521e-01
4.30   3.420123e-01
5.30   1.606349e-01
7.30   1.267504e-01
8.30   6.970248e-01
10.30 -8.254565e-01
11.30  1.432219e+00
13.30  4.096126e-01
14.30  6.377931e-01
15.30  2.071786e-01
16.30 -1.029989e-01
17.30  2.172547e-01
18.30  2.070488e-01
19.30 -1.274043e-01
20.30 -3.915474e-01
22.30 -2.379942e-01
23.30  1.467803e+00
2.31   9.230442e-01
3.31   9.617089e-01
4.31   4.518800e-01
5.31  -2.672713e-01
7.31   5.839957e-01
8.31  -3.128861e-01
10.31 -1.083959e+00
11.31  1.647537e+00
13.31 -3.144203e-01
14.31 -1.786941e-01
15.31 -7.742959e-02
16.31 -1.736862e-01
17.31  5.818749e-04
18.31  4.480879e-01
19.31  3.532643e-01
20.31 -2.957750e-01
22.31  3.743965e-02
23.31  3.290035e-01
2.32   4.841997e-01
3.32  -2.241184e-01
4.32   2.662246e-01
5.32   7.568137e-02
7.32  -9.655827e-02
8.32  -2.180572e-01
10.32 -2.756011e-01
11.32  3.642102e+00
13.32 -4.185685e-01
14.32 -6.334892e-01
15.32 -1.035006e-01
16.32 -3.007858e-01
17.32  7.801189e-01
18.32  2.289548e-01
19.32 -1.617760e-01
20.32 -2.011113e-02
22.32  2.616935e-01
23.32  1.652371e-01
2.33   4.149576e-01
3.33   8.402469e-01
4.33   2.548205e-01
5.33  -6.167382e-02
7.33  -6.772800e-02
8.33   2.546449e-01
10.33 -1.109037e+00
11.33  1.124823e+00
13.33  7.062560e-01
14.33 -3.332131e-02
15.33  1.768745e-02
16.33 -2.092587e-01
17.33  1.077133e-02
18.33  1.062988e+00
19.33 -1.015973e-01
20.33  2.273709e-01
22.33  2.339447e-01
23.33  5.005165e-01
2.34   2.571818e-01
3.34  -4.338550e-01
4.34  -1.098769e-01
5.34   4.081709e-02
7.34  -2.867808e-01
8.34   8.607674e-01
10.34 -8.405128e-01
11.34  1.111541e+00
13.34  2.904423e-02
14.34 -8.486014e-02
15.34  3.100620e-01
16.34 -5.147728e-01
17.34 -9.714371e-02
18.34  6.377359e-01
19.34  3.700495e-01
20.34  2.264278e-02
22.34  2.464668e-01
23.34 -4.756895e-02
2.35   7.298307e-01
3.35  -5.359684e-01
4.35  -3.809150e-01
5.35   2.323275e-02
7.35  -8.219831e-01
8.35  -3.391173e-01
10.35 -5.162309e-01
11.35  3.112163e-01
13.35  2.190202e-01
14.35  9.023382e-01
15.35 -2.021985e-01
16.35 -5.421526e-02
17.35 -1.024831e-01
18.35  6.153610e-01
19.35  1.851686e-01
20.35  3.510076e-01
22.35  6.280581e-02
23.35 -5.617402e-01
2.36   1.694570e-01
3.36   1.277960e-02
4.36   1.073675e-01
5.36  -1.491985e-02
7.36  -1.972413e-01
8.36  -1.086240e+00
10.36 -2.628456e+00
11.36  6.441611e-01
13.36  5.166547e-01
14.36 -3.799198e-01
15.36  3.471562e-01
16.36  1.607207e-01
17.36 -3.866924e-01
18.36  8.315529e-02
19.36 -3.583384e-01
20.36  5.068719e-01
22.36 -3.415060e-01
23.36  1.044491e-01
2.37  -2.312620e-01
3.37   5.550032e-01
4.37   2.348593e-01
5.37  -3.579966e-01
7.37  -2.751250e-01
8.37   6.609885e-01
10.37 -2.070417e+00
11.37 -5.287867e-01
13.37 -8.403688e-01
14.37 -1.174867e-01
15.37 -1.879522e-01
16.37 -4.793504e-01
17.37  2.579216e-01
18.37  6.678317e-02
20.37 -4.289742e-02
22.37  5.470599e-02
23.37  1.166396e-01
2.38   7.434145e-01
3.38   8.138774e-02
4.38  -1.289407e-01
5.38   7.047359e-02
7.38  -3.499093e-01
8.38   1.330768e-01
10.38 -2.761641e+00
11.38 -1.028584e+00
13.38 -8.490001e-01
14.38 -8.106730e-01
15.38  7.606028e-03
16.38  4.588586e-02
17.38  2.220956e-01
18.38  6.897755e-01
19.38  2.374147e-03
20.38  4.771614e-02
22.38 -1.935075e-01
23.38 -9.810532e-01
2.39   6.583581e-01
3.39   5.718631e-01
4.39   4.551873e-02
5.39   1.698898e-01
7.39   2.161819e-01
8.39  -1.284937e+00
10.39 -2.282574e+00
11.39  6.056899e-01
14.39 -6.306166e-02
15.39  4.681108e-02
16.39 -4.092055e-02
17.39 -8.884965e-02
18.39 -6.219994e-02
19.39 -3.318649e-01
20.39  4.159083e-01
22.39  2.710940e-01
23.39 -1.697830e+00
2.40  -6.823599e-02
3.40  -7.081715e-02
4.40  -2.999765e-01
5.40   1.059044e-02
7.40  -8.182382e-01
8.40  -3.263709e-01
10.40 -2.012371e+00
13.40 -5.227856e-01
14.40 -3.639133e-01
15.40 -1.962683e-01
17.40 -2.611189e-01
18.40 -1.131017e-01
19.40 -1.929404e-01
20.40 -6.777545e-02
22.40 -1.594270e-01
23.40 -1.633666e+00
3.41  -6.664285e-01
4.41  -2.822162e-01
5.41   2.707917e-01
7.41  -4.883351e-01
10.41 -2.587195e+00
11.41 -1.011707e+00
13.41 -9.737583e-01
14.41 -5.969473e-01
16.41 -3.019221e-01
17.41 -5.710200e-01
18.41  1.926900e+00
19.41 -3.756081e-01
20.41 -1.067503e-01
22.41  6.220591e-02
23.41 -6.161055e-01
2.42  -5.370888e-01
3.42  -5.822179e-01
4.42  -2.347136e-02
5.42   4.235116e-02
7.42  -2.363059e-01
8.42  -4.253755e-01
10.42 -8.260810e-01
11.42 -1.062037e+00
13.42 -8.777848e-01
14.42  1.376297e-01
15.42 -1.791270e-01
16.42 -9.790471e-01
17.42 -9.171857e-01
18.42 -1.082045e+00
19.42 -1.595821e-01
20.42  1.181895e-01
22.42 -3.113483e-01
23.42 -5.417156e-01
2.43  -7.508514e-01
3.43  -6.076369e-01
4.43  -5.958863e-01
5.43  -5.528891e-02
7.43  -9.887363e-01
8.43  -1.915336e+00
10.43 -1.633373e-01
11.43 -9.948728e-01
13.43 -9.645290e-01
14.43 -5.572363e-01
15.43  1.546597e+00
16.43 -3.430582e-01
17.43 -8.384876e-01
18.43 -3.131296e-01
19.43 -2.384985e-01
20.43  1.872013e-01
22.43 -7.828864e-01
23.43 -4.120641e-01
3.44  -4.978565e-01
4.44  -5.011333e-01
5.44  -1.354029e-01
7.44  -1.401858e+00
8.44  -1.975043e+00
10.44 -1.981624e+00
11.44 -1.063501e+00
13.44 -3.113562e-01
14.44 -1.262003e+00
16.44 -1.474263e+00
17.44 -7.566043e-01
18.44  5.745371e-01
19.44 -3.558347e-01
20.44 -5.271339e-01
22.44 -7.775055e-01
23.44 -3.929250e-01
2.45  -5.390877e-01
3.45  -1.452349e+00
4.45  -6.728953e-01
5.45  -3.562821e-01
7.45  -1.607348e+00
8.45  -6.987001e-01
10.45 -2.673132e+00
11.45 -1.734791e+00
13.45 -8.029467e-01
14.45 -1.283594e+00
15.45 -5.033530e-01
16.45 -8.917725e-01
17.45 -2.170249e-01
18.45 -1.152811e+00
20.45  1.071394e-01
22.45 -7.995185e-01
23.45 -1.100712e+00
2.46  -1.267193e+00
3.46  -8.900292e-01
4.46  -4.108348e-01
7.46  -1.435197e+00
8.46  -1.055985e+00
10.46 -2.669664e+00
11.46  6.159935e-01
13.46 -9.576368e-01
14.46 -1.107583e+00
15.46 -4.254195e-02
16.46 -1.155271e+00
17.46  9.107736e-02
18.46 -1.958683e+00
19.46 -5.743551e-01
22.46 -6.665421e-01
2.47  -8.385538e-01
5.47  -3.856708e-01
7.47  -3.179505e-01
11.47 -1.366401e+00
14.47 -7.650381e-01
15.47 -4.454095e-01
18.47 -2.017225e+00
19.47 -7.287485e-01
20.47 -3.412955e-01
22.47 -5.853094e-01

$subject
   (Intercept)
2  -0.08744244
3   0.11005212
4  -0.59546570
5  -0.71923183
7   0.28351700
8   0.67230377
10  1.45203095
11  0.59862100
13 -0.41345397
14 -0.06565358
15 -0.39741961
16  0.15413401
17 -0.43084598
18  0.75430134
19 -0.66152366
20 -0.38311542
22 -0.58140526
23  0.31059725

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
1.0917119 1.3440337 0.8723332 1.0387849 0.6172025 0.5908217 

=============================================================

--- Mixed - Block 5 - Axis X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
Step 5.0285 0.29579    17 8785.5  6.2651 6.92e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.009146 0.0123 8833  -0.741  1.0000
 Step1 - Step3   -0.025092 0.0158 8820  -1.584  0.9836
 Step1 - Step4   -0.003653 0.0108 8760  -0.338  1.0000
 Step1 - Step5    0.000900 0.0123 8833   0.073  1.0000
 Step1 - Step6    0.005297 0.0158 8820   0.334  1.0000
 Step1 - Step7    0.010789 0.0123 8833   0.874  1.0000
 Step1 - Step8    0.012855 0.0122 8797   1.050  0.9999
 Step1 - Step9    0.023289 0.0123 8833   1.886  0.9172
 Step1 - Step10   0.031182 0.0123 8833   2.526  0.5103
 Step1 - Step11   0.025230 0.0122 8797   2.060  0.8392
 Step1 - Step12   0.013618 0.0123 8833   1.103  0.9998
 Step1 - Step13   0.021546 0.0158 8820   1.360  0.9970
 Step1 - Step14   0.030816 0.0123 8833   2.496  0.5333
 Step1 - Step15   0.049277 0.0108 8760   4.553  0.0008
 Step1 - Step16   0.049699 0.0158 8820   3.137  0.1413
 Step1 - Step17   0.050760 0.0123 8833   4.112  0.0051
 Step1 - Step18   0.061632 0.0108 8760   5.694  <.0001
 Step2 - Step3   -0.015946 0.0167 8787  -0.957  1.0000
 Step2 - Step4    0.005493 0.0123 8833   0.445  1.0000
 Step2 - Step5    0.010046 0.0133 8760   0.753  1.0000
 Step2 - Step6    0.014443 0.0167 8787   0.867  1.0000
 Step2 - Step7    0.019935 0.0133 8760   1.495  0.9911
 Step2 - Step8    0.022001 0.0138 8913   1.593  0.9826
 Step2 - Step9    0.032435 0.0133 8760   2.432  0.5829
 Step2 - Step10   0.040328 0.0133 8760   3.024  0.1886
 Step2 - Step11   0.034376 0.0138 8913   2.488  0.5393
 Step2 - Step12   0.022764 0.0133 8760   1.707  0.9656
 Step2 - Step13   0.030691 0.0167 8787   1.842  0.9320
 Step2 - Step14   0.039962 0.0133 8760   2.997  0.2017
 Step2 - Step15   0.058422 0.0123 8833   4.732  0.0003
 Step2 - Step16   0.058845 0.0167 8787   3.532  0.0436
 Step2 - Step17   0.059906 0.0133 8760   4.492  0.0010
 Step2 - Step18   0.070778 0.0123 8833   5.733  <.0001
 Step3 - Step4    0.021438 0.0158 8820   1.353  0.9971
 Step3 - Step5    0.025992 0.0167 8787   1.560  0.9860
 Step3 - Step6    0.030389 0.0191 8760   1.595  0.9824
 Step3 - Step7    0.035881 0.0167 8787   2.154  0.7841
 Step3 - Step8    0.037947 0.0168 8846   2.260  0.7126
 Step3 - Step9    0.048381 0.0167 8787   2.904  0.2502
 Step3 - Step10   0.056274 0.0167 8787   3.378  0.0710
 Step3 - Step11   0.050322 0.0168 8846   2.997  0.2017
 Step3 - Step12   0.038709 0.0167 8787   2.324  0.6661
 Step3 - Step13   0.046637 0.0191 8760   2.447  0.5714
 Step3 - Step14   0.055908 0.0167 8787   3.356  0.0759
 Step3 - Step15   0.074368 0.0158 8820   4.694  0.0004
 Step3 - Step16   0.074790 0.0191 8760   3.925  0.0107
 Step3 - Step17   0.075852 0.0167 8787   4.553  0.0008
 Step3 - Step18   0.086724 0.0158 8820   5.474  <.0001
 Step4 - Step5    0.004554 0.0123 8833   0.369  1.0000
 Step4 - Step6    0.008951 0.0158 8820   0.565  1.0000
 Step4 - Step7    0.014442 0.0123 8833   1.170  0.9995
 Step4 - Step8    0.016509 0.0122 8797   1.348  0.9973
 Step4 - Step9    0.026943 0.0123 8833   2.182  0.7656
 Step4 - Step10   0.034836 0.0123 8833   2.822  0.2991
 Step4 - Step11   0.028883 0.0122 8797   2.358  0.6401
 Step4 - Step12   0.017271 0.0123 8833   1.399  0.9958
 Step4 - Step13   0.025199 0.0158 8820   1.591  0.9828
 Step4 - Step14   0.034469 0.0123 8833   2.792  0.3180
 Step4 - Step15   0.052930 0.0108 8760   4.890  0.0001
 Step4 - Step16   0.053352 0.0158 8820   3.368  0.0733
 Step4 - Step17   0.054413 0.0123 8833   4.408  0.0015
 Step4 - Step18   0.065285 0.0108 8760   6.032  <.0001
 Step5 - Step6    0.004397 0.0167 8787   0.264  1.0000
 Step5 - Step7    0.009889 0.0133 8760   0.742  1.0000
 Step5 - Step8    0.011955 0.0138 8913   0.865  1.0000
 Step5 - Step9    0.022389 0.0133 8760   1.679  0.9706
 Step5 - Step10   0.030282 0.0133 8760   2.271  0.7047
 Step5 - Step11   0.024330 0.0138 8913   1.761  0.9541
 Step5 - Step12   0.012717 0.0133 8760   0.954  1.0000
 Step5 - Step13   0.020645 0.0167 8787   1.239  0.9990
 Step5 - Step14   0.029916 0.0133 8760   2.243  0.7242
 Step5 - Step15   0.048376 0.0123 8833   3.919  0.0110
 Step5 - Step16   0.048798 0.0167 8787   2.929  0.2364
 Step5 - Step17   0.049860 0.0133 8760   3.739  0.0214
 Step5 - Step18   0.060731 0.0123 8833   4.919  0.0001
 Step6 - Step7    0.005492 0.0167 8787   0.330  1.0000
 Step6 - Step8    0.007558 0.0168 8846   0.450  1.0000
 Step6 - Step9    0.017992 0.0167 8787   1.080  0.9998
 Step6 - Step10   0.025885 0.0167 8787   1.554  0.9865
 Step6 - Step11   0.019933 0.0168 8846   1.187  0.9994
 Step6 - Step12   0.008320 0.0167 8787   0.499  1.0000
 Step6 - Step13   0.016248 0.0191 8760   0.853  1.0000
 Step6 - Step14   0.025519 0.0167 8787   1.532  0.9884
 Step6 - Step15   0.043979 0.0158 8820   2.776  0.3285
 Step6 - Step16   0.044401 0.0191 8760   2.330  0.6613
 Step6 - Step17   0.045463 0.0167 8787   2.729  0.3602
 Step6 - Step18   0.056335 0.0158 8820   3.556  0.0403
 Step7 - Step8    0.002066 0.0138 8913   0.150  1.0000
 Step7 - Step9    0.012500 0.0133 8760   0.937  1.0000
 Step7 - Step10   0.020393 0.0133 8760   1.529  0.9886
 Step7 - Step11   0.014441 0.0138 8913   1.045  0.9999
 Step7 - Step12   0.002829 0.0133 8760   0.212  1.0000
 Step7 - Step13   0.010756 0.0167 8787   0.646  1.0000
 Step7 - Step14   0.020027 0.0133 8760   1.502  0.9906
 Step7 - Step15   0.038487 0.0123 8833   3.118  0.1488
 Step7 - Step16   0.038909 0.0167 8787   2.336  0.6571
 Step7 - Step17   0.039971 0.0133 8760   2.997  0.2013
 Step7 - Step18   0.050843 0.0123 8833   4.118  0.0050
 Step8 - Step9    0.010434 0.0138 8913   0.755  1.0000
 Step8 - Step10   0.018327 0.0138 8913   1.327  0.9977
 Step8 - Step11   0.012375 0.0133 8760   0.931  1.0000
 Step8 - Step12   0.000762 0.0138 8913   0.055  1.0000
 Step8 - Step13   0.008690 0.0168 8846   0.518  1.0000
 Step8 - Step14   0.017961 0.0138 8913   1.300  0.9982
 Step8 - Step15   0.036421 0.0122 8797   2.973  0.2132
 Step8 - Step16   0.036843 0.0168 8846   2.194  0.7579
 Step8 - Step17   0.037905 0.0138 8913   2.744  0.3499
 Step8 - Step18   0.048777 0.0122 8797   3.982  0.0086
 Step9 - Step10   0.007893 0.0133 8760   0.592  1.0000
 Step9 - Step11   0.001941 0.0138 8913   0.140  1.0000
 Step9 - Step12  -0.009672 0.0133 8760  -0.725  1.0000
 Step9 - Step13  -0.001744 0.0167 8787  -0.105  1.0000
 Step9 - Step14   0.007527 0.0133 8760   0.564  1.0000
 Step9 - Step15   0.025987 0.0123 8833   2.105  0.8138
 Step9 - Step16   0.026409 0.0167 8787   1.585  0.9834
 Step9 - Step17   0.027471 0.0133 8760   2.060  0.8391
 Step9 - Step18   0.038342 0.0123 8833   3.106  0.1534
 Step10 - Step11 -0.005952 0.0138 8913  -0.431  1.0000
 Step10 - Step12 -0.017565 0.0133 8760  -1.317  0.9979
 Step10 - Step13 -0.009637 0.0167 8787  -0.578  1.0000
 Step10 - Step14 -0.000366 0.0133 8760  -0.027  1.0000
 Step10 - Step15  0.018094 0.0123 8833   1.466  0.9928
 Step10 - Step16  0.018516 0.0167 8787   1.111  0.9998
 Step10 - Step17  0.019578 0.0133 8760   1.468  0.9927
 Step10 - Step18  0.030449 0.0123 8833   2.466  0.5564
 Step11 - Step12 -0.011612 0.0138 8913  -0.841  1.0000
 Step11 - Step13 -0.003684 0.0168 8846  -0.219  1.0000
 Step11 - Step14  0.005586 0.0138 8913   0.404  1.0000
 Step11 - Step15  0.024046 0.0122 8797   1.963  0.8866
 Step11 - Step16  0.024469 0.0168 8846   1.457  0.9933
 Step11 - Step17  0.025530 0.0138 8913   1.848  0.9301
 Step11 - Step18  0.036402 0.0122 8797   2.972  0.2140
 Step12 - Step13  0.007928 0.0167 8787   0.476  1.0000
 Step12 - Step14  0.017198 0.0133 8760   1.290  0.9984
 Step12 - Step15  0.035659 0.0123 8833   2.888  0.2591
 Step12 - Step16  0.036081 0.0167 8787   2.166  0.7764
 Step12 - Step17  0.037142 0.0133 8760   2.785  0.3223
 Step12 - Step18  0.048014 0.0123 8833   3.889  0.0123
 Step13 - Step14  0.009271 0.0167 8787   0.556  1.0000
 Step13 - Step15  0.027731 0.0158 8820   1.750  0.9566
 Step13 - Step16  0.028153 0.0191 8760   1.477  0.9922
 Step13 - Step17  0.029215 0.0167 8787   1.754  0.9559
 Step13 - Step18  0.040086 0.0158 8820   2.530  0.5068
 Step14 - Step15  0.018460 0.0123 8833   1.495  0.9911
 Step14 - Step16  0.018882 0.0167 8787   1.133  0.9997
 Step14 - Step17  0.019944 0.0133 8760   1.496  0.9911
 Step14 - Step18  0.030816 0.0123 8833   2.496  0.5333
 Step15 - Step16  0.000422 0.0158 8820   0.027  1.0000
 Step15 - Step17  0.001484 0.0123 8833   0.120  1.0000
 Step15 - Step18  0.012355 0.0108 8760   1.142  0.9997
 Step16 - Step17  0.001062 0.0167 8787   0.064  1.0000
 Step16 - Step18  0.011933 0.0158 8820   0.753  1.0000
 Step17 - Step18  0.010872 0.0123 8833   0.881  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
  (Intercept)         Step2         Step3         Step4         Step5 
 0.5980705625  0.0091459673  0.0250916759  0.0036531961 -0.0009004748 
        Step6         Step7         Step8         Step9        Step10 
-0.0052973793 -0.0107891506 -0.0128553888 -0.0232894873 -0.0311824198 
       Step11        Step12        Step13        Step14        Step15 
-0.0252300197 -0.0136177881 -0.0215455200 -0.0308162875 -0.0492765080 
       Step16        Step17        Step18 
-0.0496985660 -0.0507600754 -0.0616318880 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.0287539542
4.1    0.2463641090
7.1    0.1992907673
8.1   -0.2045945448
10.1  -0.0503935199
11.1  -0.4207903715
13.1   0.0275004454
15.1   0.0014765254
18.1  -0.0203189478
19.1  -0.0354188907
20.1   0.0212764874
22.1  -0.0938323205
2.2    0.0426641631
3.2   -0.0439393622
4.2    0.1855733626
7.2   -0.1076081242
11.2   0.2156256120
13.2  -0.0179803890
14.2  -0.1414334134
15.2   0.3092954028
16.2   0.0805121689
19.2  -0.0321604245
22.2  -0.0946005770
23.2   1.8309123065
2.3    0.2937846139
3.3    0.0467345456
4.3   -0.0969256408
7.3   -0.0966690314
11.3   0.1647663081
13.3   0.0616100937
14.3  -0.1260527991
15.3   0.0942098823
16.3   0.0346761342
17.3   0.0424239151
18.3  -0.0684676981
19.3  -0.0267971305
22.3  -0.0948970753
23.3   0.3520493702
2.4   -0.2785701355
3.4    0.1578938333
4.4   -0.0970853042
5.4   -0.0725688891
7.4   -0.0020764648
8.4   -0.2778863012
10.4  -0.5356753500
11.4  -0.1088587876
13.4   0.0485123445
14.4  -0.2868037764
15.4   0.0219590533
16.4  -0.1347454616
17.4  -0.0684734831
18.4  -0.0075103893
19.4   0.1246213700
20.4  -0.1386598822
22.4   0.0071270436
23.4   0.0009170076
2.5    0.0571692087
3.5    0.0233434832
4.5    0.1056762054
5.5   -0.0649712809
7.5   -0.0853611513
8.5   -0.3907507080
10.5  -0.3184521476
11.5  -0.2561851662
13.5  -0.0381724960
14.5  -0.1144681165
15.5   0.1719602332
16.5  -0.1368470895
17.5   0.0718300384
18.5  -0.0529848920
19.5  -0.1371237554
20.5  -0.0860311357
22.5   0.0793815794
23.5   0.0917559276
2.6   -0.1214468891
4.6   -0.1075379570
5.6    0.0065522875
7.6   -0.1129811221
8.6   -0.1763818340
10.6   0.0074274394
11.6   0.3697784638
13.6  -0.0139218744
14.6   0.1022724146
15.6   0.0320551576
18.6   0.0298315514
19.6  -0.0033790417
20.6  -0.0959553259
22.6   0.0067917556
23.6   0.4345684717
2.7   -0.1541261804
3.7    0.1232695765
4.7   -0.0454036742
5.7    0.0011960658
7.7   -0.0421810306
8.7    0.0476511263
10.7  -0.0464926827
13.7   0.0438475342
14.7   0.0964174658
15.7  -0.2567891819
16.7  -0.1360157688
17.7  -0.0631637195
18.7   0.0322625400
19.7  -0.0178827223
20.7  -0.0001412558
22.7   0.0994578553
23.7  -0.2650599343
2.8   -0.0844745314
3.8    0.0249558276
4.8    0.1403972257
5.8   -0.0379272244
7.8   -0.0900312913
8.8   -0.2157057874
10.8  -0.0788220196
11.8  -0.1150899814
13.8   0.0659569650
14.8  -0.2091524876
15.8  -0.2179837050
16.8   0.0394534087
17.8  -0.0889351394
18.8  -0.0727681560
19.8   0.1154257570
20.8   0.0112527798
22.8  -0.0806242761
23.8  -0.0278876823
2.9   -0.0274672275
3.9    0.1953848568
4.9   -0.2387148124
5.9   -0.0013381881
7.9   -0.1679814647
8.9   -0.2043679228
10.9   0.0599180874
11.9  -0.2233956035
13.9  -0.1015387867
14.9  -0.1005024025
15.9   0.1131169534
16.9  -0.0808654377
17.9  -0.2146457207
18.9  -0.2067205240
19.9  -0.0221286663
20.9  -0.0843382644
22.9  -0.0141741600
23.9  -0.0926085716
2.10  -0.1183489253
3.10  -0.1332192704
4.10  -0.0212214993
5.10  -0.0309409754
7.10  -0.1640530476
8.10  -0.1448558152
10.10 -0.1358497782
11.10 -0.0361495225
13.10 -0.0515088589
14.10  0.0556863819
15.10 -0.2108798790
16.10  0.0105959343
17.10 -0.1718319705
18.10 -0.0242228088
19.10  0.0425403964
20.10 -0.0077084161
22.10  0.0750945932
23.10 -0.2374905706
2.11   0.3160332453
3.11   0.0239172961
4.11   0.0011713405
5.11  -0.0300834081
7.11  -0.0975080441
8.11  -0.1337218302
10.11  0.2276736220
11.11 -0.2096624130
13.11  0.0155558201
14.11 -0.1996848221
15.11 -0.0350240810
16.11 -0.1424818428
17.11 -0.0580524908
18.11 -0.1819075535
19.11  0.0801827259
20.11  0.1498200944
22.11  0.0321659026
23.11 -0.2084386817
2.12  -0.0677448193
3.12   0.2036147939
4.12   0.0759869164
7.12  -0.0512570258
8.12   0.1259332447
10.12 -0.3970019535
11.12 -0.1306138593
13.12  0.0740842675
14.12 -0.2067102827
15.12  0.3105762328
16.12 -0.1545665271
17.12 -0.1357701144
18.12 -0.1560442513
19.12  0.1686512228
20.12 -0.0557455833
22.12 -0.0300239764
23.12 -0.2956564473
2.13  -0.1151835036
3.13  -0.1209975707
4.13  -0.0437839811
5.13   0.0311757059
7.13  -0.1479204439
8.13  -0.1885976924
10.13  0.0002560870
11.13  0.1223058508
13.13  0.1814346042
14.13  0.0623371412
15.13 -0.1344108837
16.13 -0.1892876018
17.13 -0.1252749796
18.13  0.0130002815
19.13  0.0629294158
20.13  0.0044765775
22.13  0.0335567673
23.13 -0.2240466361
2.14  -0.0203599552
3.14   0.0960840720
4.14   0.0910918656
5.14  -0.0851538451
7.14   0.0231127288
8.14   0.6918241626
10.14 -0.0209188686
11.14 -0.1574188726
13.14 -0.1311054302
14.14  0.0289061586
15.14 -0.0867019324
16.14 -0.2974232891
17.14  0.1677152177
18.14 -0.1887479851
19.14  0.0271447194
20.14  0.0087948383
22.14 -0.0257902388
23.14 -0.0327255969
2.15   0.0063751128
3.15   0.0041680797
4.15  -0.1194975950
5.15   0.0460077108
7.15  -0.0557011872
8.15  -0.1379493191
10.15 -0.0160425740
11.15  0.2755474175
13.15  0.0885055897
15.15 -0.0457011774
16.15 -0.0557205700
17.15  0.1473444175
18.15 -0.0007365889
19.15 -0.0949459267
20.15 -0.1433872983
22.15  0.0956793810
23.15 -0.2201746714
2.16  -0.0003737360
3.16   0.1912772321
4.16  -0.2110072801
5.16   0.0822034851
7.16   0.0375568864
8.16   0.0415084613
10.16 -0.0469651419
11.16  0.2300067302
14.16 -0.0616040021
15.16  0.0391632906
16.16 -0.1301284512
17.16 -0.1447414667
18.16  0.0523862419
19.16 -0.0137645494
20.16  0.0339017673
22.16  0.3019489534
23.16 -0.2326740299
2.17  -0.1301480271
3.17  -0.0366149046
4.17  -0.1335634668
5.17   0.0310518944
7.17  -0.1642759466
8.17   0.3337771873
10.17 -0.2229658530
11.17  0.1882153487
13.17  0.1723308983
14.17  0.0406820350
15.17  0.1019617989
16.17 -0.1315924992
17.17 -0.2756534507
18.17  0.0983028342
19.17 -0.0920070083
20.17 -0.0550176120
22.17 -0.0828532353
23.17 -0.3136316983
2.18  -0.1037063124
3.18  -0.0292733094
4.18   0.1017976150
5.18   0.0156143433
7.18  -0.0406031661
8.18   0.2679085186
10.18  0.3677631800
11.18  0.0333662371
13.18  0.0302669020
14.18 -0.1732442528
15.18  0.1028400581
16.18 -0.0508684129
17.18 -0.0256879974
18.18  0.2495012677
19.18 -0.0736800887
20.18  0.2164398997
22.18  0.0303298150
23.18 -0.1302484116
2.19  -0.1511778797
3.19  -0.1805912039
4.19  -0.0155788168
5.19   0.2110464710
7.19  -0.0919163192
8.19  -0.1729355545
10.19  0.3312224229
11.19 -0.0043789697
13.19  0.0225693434
14.19 -0.0025537323
15.19 -0.0496657334
16.19  0.1034925686
17.19 -0.0102467622
18.19 -0.0914515951
19.19 -0.0283692472
20.19 -0.0159595087
22.19  0.1546261846
23.19 -0.1288538439
2.20  -0.2112424998
3.20  -0.0773830331
4.20   0.0374319166
5.20  -0.0804305884
7.20  -0.0378892006
8.20  -0.2239184492
10.20  0.2175790728
11.20 -0.0852915991
13.20 -0.0058112035
14.20 -0.0854498370
15.20 -0.0635859124
16.20 -0.2020140452
17.20 -0.2378836905
18.20  0.0861044958
19.20 -0.0057762010
20.20  0.1130087897
22.20  0.0143318095
23.20 -0.2886610391
2.21  -0.0976850414
3.21   0.1527323828
4.21  -0.0342732605
5.21  -0.0607554169
7.21  -0.0973454390
8.21  -0.1741701337
10.21  0.1260175668
11.21  0.0637147946
13.21  0.0805426600
14.21 -0.1157832649
15.21 -0.0830387222
16.21  0.0402089757
17.21  0.0610873113
18.21  0.0963429418
19.21 -0.1202715868
20.21  0.0168732227
22.21  0.1829210048
23.21 -0.2412368675
2.22  -0.0576850938
3.22  -0.1960398411
4.22  -0.0742299515
5.22   0.0602505008
7.22  -0.1008239036
8.22   0.3139380045
10.22  0.0350771597
11.22 -0.0937591266
13.22  0.2011677825
14.22  0.0054885333
15.22 -0.1456760405
16.22 -0.0222131485
17.22  0.0101793599
18.22 -0.0054592552
19.22 -0.0508516743
20.22 -0.1616601975
22.22 -0.0654368721
23.22 -0.2918126191
2.23   0.1410750774
3.23  -0.0410636442
4.23   0.2026396811
5.23  -0.0693298588
7.23  -0.0149751432
8.23  -0.0822648832
10.23  0.0486076933
11.23 -0.0206984407
13.23  0.0359875725
14.23  0.0065478675
15.23 -0.0108467440
16.23 -0.1130560417
17.23  0.0385978135
18.23 -0.2252677030
19.23 -0.1228816556
20.23  0.0426691069
22.23  0.1261342941
2.24  -0.0278314833
3.24  -0.0467515503
4.24   0.0233119214
5.24  -0.1107239136
7.24  -0.1353622656
8.24  -0.2160625777
10.24 -0.2040032363
11.24 -0.0824354920
13.24  0.0083048187
14.24 -0.1849951462
15.24 -0.1390597301
16.24  0.0102292457
17.24  0.1971954344
18.24 -0.0414593134
19.24 -0.0551458318
20.24  0.0019146449
22.24  0.0229104493
23.24 -0.1918364365
2.25  -0.0823998281
3.25  -0.1336043156
4.25  -0.1431353745
5.25  -0.0589429056
7.25  -0.1062849394
8.25   0.3262652601
10.25  0.6250634490
11.25 -0.0896620142
13.25  0.1406761568
14.25  0.1983416805
16.25 -0.0216779869
17.25 -0.0377891454
18.25  0.1475530622
19.25 -0.0479756828
20.25 -0.0111631856
22.25  0.0419065801
23.25  0.0739234805
2.26   0.0471966557
3.26  -0.1521908818
4.26  -0.2165157632
5.26   0.1148602087
7.26  -0.0484644499
8.26   0.2959632150
10.26  0.8441427054
11.26  0.4335242982
13.26  0.1308119546
14.26 -0.1721897744
15.26  0.0507882599
16.26 -0.0498147392
17.26 -0.2042839788
18.26  0.1991443408
19.26 -0.0874000129
20.26 -0.0742691990
22.26  0.1055926883
23.26 -0.1341190439
2.27   0.5323078866
3.27  -0.1063330975
4.27  -0.1416240448
5.27   0.0289590911
7.27  -0.1575870553
8.27   0.9945566306
10.27  0.4161643348
11.27  0.0613093848
13.27  0.2732536802
14.27  0.0797781101
15.27 -0.1496023042
16.27  0.2212674575
17.27  0.0526912514
18.27  0.1843516587
19.27 -0.0588710557
20.27 -0.0923729398
22.27  0.0639389001
23.27 -0.2515357233
2.28   0.1614678273
3.28  -0.1179814797
4.28  -0.1955740889
5.28   0.0761507119
7.28  -0.1513483036
8.28   0.8512699326
10.28  0.0687700055
11.28 -0.0051964668
13.28  0.3840756723
14.28 -0.1231208096
15.28 -0.0158820621
16.28 -0.3027994257
17.28 -0.0695089775
18.28  0.0650231070
19.28  0.0132611489
20.28  0.0556312627
22.28 -0.0733985814
23.28  0.2719710876
2.29  -0.0778528232
3.29   0.0677995611
4.29   0.0786967970
5.29  -0.0076918754
7.29  -0.0522724382
8.29  -0.1705263389
10.29  0.4231125580
11.29  0.0180383372
13.29  0.5008833472
14.29 -0.1541892114
15.29  0.0009229771
16.29 -0.0566060814
17.29 -0.0413715989
18.29 -0.1253940245
19.29 -0.0538519143
20.29  0.1410954266
22.29  0.0239063137
23.29 -0.2552417591
2.30  -0.0759182281
3.30   0.1700672399
4.30  -0.1025226338
5.30   0.0225175153
7.30  -0.0901169003
8.30   0.2027638623
10.30  0.7089878950
11.30  0.3601873723
13.30  0.2229687075
14.30 -0.1970158112
15.30 -0.0172549397
16.30 -0.2149391051
17.30 -0.0029304475
18.30  0.1462534800
19.30  0.0931051005
20.30 -0.0898313506
22.30  0.0491402599
23.30 -0.2970084781
2.31  -0.1644345850
3.31   0.0509615699
4.31  -0.1080977972
5.31  -0.0290752635
7.31   0.0656033437
8.31   0.1242582409
10.31  0.5077332071
11.31  0.6991337768
13.31  0.0554358518
14.31  0.2641731994
15.31  0.2439097928
16.31 -0.0222610282
17.31  0.0975423527
18.31  0.0468172247
19.31  0.0831106517
20.31  0.1584441341
23.31  0.2063342452
2.32   0.3489206762
3.32  -0.0131879321
4.32   0.1114590390
7.32   0.2922315752
8.32   0.5046071158
10.32  0.3677141558
11.32  0.5704497502
13.32  0.2427721636
14.32 -0.1511533808
15.32  0.5785939805
16.32 -0.1679766714
17.32  0.1744767570
18.32 -0.0220605075
19.32 -0.1315912154
20.32  0.1654293534
22.32  0.0116965445
23.32  0.8193020817
2.33  -0.0966732362
3.33  -0.0771846681
4.33  -0.0987481842
5.33  -0.0373093935
7.33   0.0286406474
8.33  -0.5661339843
10.33  0.2504122098
11.33  0.0428135828
13.33  0.0437299910
14.33 -0.1770081489
15.33  0.0473875817
17.33 -0.0412340421
18.33 -0.0167718130
19.33 -0.0336313983
20.33  0.0494670705
22.33  0.2945296911
23.33  0.5122443831
2.34   0.0829995877
3.34   0.0997912748
4.34   0.5934241385
5.34  -0.0592825165
7.34   0.0764685765
8.34  -0.1321968237
11.34  0.3396566484
13.34  0.5095183044
14.34 -0.2302481766
15.34  0.0966487170
17.34  0.0045699359
18.34 -0.0515410718
19.34 -0.1324638706
20.34  0.3989642636
22.34  0.1100932355
23.34 -0.0707036740
2.35   0.3602534129
4.35  -0.1752053289
5.35   0.0228314793
7.35   0.4402027679
8.35  -0.3524292641
10.35 -0.0326081799
14.35  0.1185600836
15.35 -0.0189781979
16.35  0.3773627415
17.35  0.3315076141
18.35 -0.2296446189
19.35  0.1660264273
20.35  0.1963913850
22.35 -0.0274865539
23.35 -0.0319872617
2.36   0.1920197561
3.36   0.1704905313
4.36   0.0264107436
5.36  -0.1176554092
7.36   0.3610949528
10.36 -0.1276531869
11.36  0.0020609078
13.36  0.2305302005
14.36  0.3948838256
15.36  0.2585293938
16.36  0.3088437715
17.36  0.4507949346
18.36  0.2155061494
19.36  0.0230538042
20.36  0.0344413371
22.36  0.0672013615
23.36  0.4479029564
2.37   0.0901913670
3.37   0.1674633792
4.37   0.0022208608
5.37  -0.0801714302
7.37   0.2925129733
8.37   0.3897971986
10.37  0.9590308511
11.37 -0.0408512240
13.37 -0.3725139343
14.37  0.3019890968
15.37 -0.1363658724
16.37  0.4770474869
17.37  0.0538819323
18.37  0.0405513997
19.37  0.0016929439
20.37 -0.1022769311
22.37  0.0628552262
23.37  0.0925325592
2.38   0.1918978301
3.38  -0.1321865515
4.38   0.0457242846
5.38  -0.1539691862
7.38   0.2382693079
8.38  -0.2132451235
10.38  0.1931568821
11.38 -0.1826849897
13.38 -0.3756008876
14.38  0.4390029104
15.38 -0.0469490717
16.38  0.1041285129
17.38  0.2925683616
18.38 -0.0975381794
19.38  0.0232111902
20.38 -0.1386526695
22.38  0.0092812821
23.38  0.0632652813
2.39   0.5441685177
3.39  -0.0508783166
4.39  -0.0562538621
5.39  -0.0254773784
7.39   0.3050904652
8.39  -0.4971541861
10.39 -0.1378591468
11.39 -0.3030093016
13.39 -0.3448337533
14.39  0.2623875096
15.39  0.2622089103
16.39  0.4759801900
18.39 -0.1271625671
19.39 -0.0132703014
20.39  0.0408789161
22.39 -0.1637576954
23.39  0.2206996323
2.40   0.3317437318
3.40  -0.0597274419
4.40   0.1643182132
5.40   0.0322730287
7.40   0.1851690091
8.40   0.5089283698
10.40  0.4944780286
11.40 -0.2886917732
13.40 -0.3957844116
14.40  0.9285488867
15.40  0.0016681969
16.40  0.2741291799
17.40  0.0859602575
18.40 -0.1070303929
19.40 -0.0512234538
20.40 -0.1435299232
22.40  0.0473867353
23.40  0.0507806998
2.41   0.2097522978
3.41  -0.1632016580
4.41   0.1756895648
5.41  -0.0265689808
7.41  -0.0266482081
8.41  -0.4463228273
10.41 -0.9044844344
11.41 -0.1173771103
13.41 -0.3526169989
14.41 -0.0873656107
15.41 -0.1758388859
16.41  0.4762773414
17.41  0.1141825803
18.41 -0.0336468777
19.41  0.0456553556
20.41 -0.0557611128
22.41  0.0055623956
23.41  0.4379824698
2.42   0.0576564642
3.42   0.0344347401
5.42   0.2689997260
7.42  -0.0472684675
8.42  -0.4468642971
10.42 -0.3100715431
11.42 -0.0811508534
13.42 -0.3953257775
14.42  0.4916393207
15.42 -0.2993913386
16.42  0.0719362510
17.42 -0.0988151143
18.42  0.2664421486
19.42  0.0194627905
20.42 -0.0508372051
22.42 -0.1482968915
23.42  0.0603029288
2.43  -0.2261178969
3.43  -0.1719881047
4.43  -0.0170695199
5.43  -0.0541694634
7.43   0.0964718726
8.43  -0.5662581044
10.43 -0.7591768861
11.43 -0.2780332393
13.43 -0.3755389933
14.43  0.1436064618
15.43  0.1427844723
16.43 -0.0476659754
17.43 -0.1116666990
18.43 -0.2763789528
19.43 -0.0262389826
20.43 -0.0144100736
22.43 -0.4388463063
23.43 -0.1234602412
2.44  -0.4827147831
3.44   0.0585357354
4.44   0.1634692837
5.44  -0.0257647134
7.44   0.0869232582
8.44   0.1248754283
10.44 -0.1295203851
11.44 -0.0201925572
13.44 -0.3287565867
14.44  0.0243181227
15.44 -0.0036080127
16.44  0.1729694392
17.44  0.0600146132
18.44 -0.1234134816
19.44  0.2641321281
22.44 -0.4063021513
23.44 -0.2917202597
3.45   0.5895450761
4.45  -0.2585959081
5.45   0.0831462826
7.45  -0.1206872156
8.45   2.0049221511
10.45 -0.3949500404
11.45  0.0347212801
13.45 -0.2275523567
14.45 -0.0775460860
15.45  0.1062737466
16.45 -0.0509262869
17.45 -0.0960778577
18.45  0.7637856190
19.45  0.0611890240
20.45  0.0324237918
22.45 -0.4277943933
23.45 -0.4687997135
2.46  -0.3134914776
3.46  -0.2737707418
4.46   0.0763301326
5.46  -0.0749818840
7.46  -0.1838118383
8.46  -0.7662696465
10.46 -0.6751466834
11.46 -0.3823024124
13.46 -0.2267020881
14.46 -0.2383073582
15.46 -0.1963539787
16.46 -0.0917028520
17.46 -0.2260658406
19.46 -0.1158977053
20.46 -0.2764588433
22.46  0.1147560377
23.46 -0.4942580884
2.47  -0.1381996483
3.47  -0.3228608108
4.47  -0.0927636783
5.47  -0.1145088365
7.47  -0.1791608478
8.47  -0.4814516153
10.47 -0.9303899886
11.47 -0.4109476767
13.47 -0.3287479939
14.47 -0.4689249882
15.47 -0.2535117931
16.47 -0.3951473835
17.47 -0.0733716442
18.47 -0.1482720172
19.47 -0.0246605133
20.47 -0.1948755161
2.48  -0.5110505563

$subject
    (Intercept)
2   0.046131737
3  -0.037071688
4  -0.126733339
5  -0.242763078
7  -0.219828053
8   0.367574818
10  0.521104724
11  0.052050762
13 -0.123777722
14 -0.025859213
15  0.191145065
16 -0.077844035
17 -0.109361149
18  0.019577516
19 -0.190519569
20 -0.126541744
22  0.001417471
23  0.081297494

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.1472849 -0.5075371 -0.5098736 -0.6479743  0.8708004  0.9327042 

=============================================================

--- Mixed - Block 5 - Axis Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step  15.67 0.92174    17  8799  12.146 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.012113 0.0157 8806  -0.773  1.0000
 Step1 - Step3   -0.005411 0.0201 8797  -0.269  1.0000
 Step1 - Step4    0.020049 0.0137 8759   1.461  0.9931
 Step1 - Step5    0.020367 0.0157 8806   1.300  0.9982
 Step1 - Step6    0.036533 0.0201 8797   1.818  0.9394
 Step1 - Step7    0.045993 0.0157 8806   2.936  0.2327
 Step1 - Step8    0.044658 0.0155 8783   2.875  0.2672
 Step1 - Step9    0.063012 0.0157 8806   4.022  0.0073
 Step1 - Step10   0.066358 0.0157 8806   4.236  0.0031
 Step1 - Step11   0.047716 0.0155 8783   3.071  0.1676
 Step1 - Step12   0.066172 0.0157 8806   4.224  0.0032
 Step1 - Step13   0.064536 0.0201 8797   3.211  0.1156
 Step1 - Step14   0.088290 0.0157 8806   5.636  <.0001
 Step1 - Step15   0.093962 0.0137 8759   6.847  <.0001
 Step1 - Step16   0.126133 0.0201 8797   6.276  <.0001
 Step1 - Step17   0.112662 0.0157 8806   7.192  <.0001
 Step1 - Step18   0.115790 0.0137 8759   8.438  <.0001
 Step2 - Step3    0.006701 0.0211 8776   0.317  1.0000
 Step2 - Step4    0.032162 0.0157 8806   2.053  0.8428
 Step2 - Step5    0.032480 0.0169 8759   1.921  0.9041
 Step2 - Step6    0.048646 0.0211 8776   2.302  0.6817
 Step2 - Step7    0.058106 0.0169 8759   3.437  0.0592
 Step2 - Step8    0.056770 0.0175 8858   3.236  0.1078
 Step2 - Step9    0.075124 0.0169 8759   4.443  0.0012
 Step2 - Step10   0.078471 0.0169 8759   4.641  0.0005
 Step2 - Step11   0.059828 0.0175 8858   3.410  0.0643
 Step2 - Step12   0.078285 0.0169 8759   4.630  0.0005
 Step2 - Step13   0.076648 0.0211 8776   3.628  0.0316
 Step2 - Step14   0.100402 0.0169 8759   5.939  <.0001
 Step2 - Step15   0.106075 0.0157 8806   6.771  <.0001
 Step2 - Step16   0.138246 0.0211 8776   6.543  <.0001
 Step2 - Step17   0.124775 0.0169 8759   7.380  <.0001
 Step2 - Step18   0.127902 0.0157 8806   8.165  <.0001
 Step3 - Step4    0.025461 0.0201 8797   1.267  0.9987
 Step3 - Step5    0.025779 0.0211 8776   1.220  0.9992
 Step3 - Step6    0.041944 0.0242 8759   1.736  0.9598
 Step3 - Step7    0.051404 0.0211 8776   2.433  0.5824
 Step3 - Step8    0.050069 0.0213 8814   2.349  0.6466
 Step3 - Step9    0.068423 0.0211 8776   3.238  0.1070
 Step3 - Step10   0.071770 0.0211 8776   3.397  0.0670
 Step3 - Step11   0.053127 0.0213 8814   2.493  0.5358
 Step3 - Step12   0.071584 0.0211 8776   3.388  0.0688
 Step3 - Step13   0.069947 0.0242 8759   2.895  0.2553
 Step3 - Step14   0.093701 0.0211 8776   4.435  0.0013
 Step3 - Step15   0.099374 0.0201 8797   4.944  0.0001
 Step3 - Step16   0.131545 0.0242 8759   5.445  <.0001
 Step3 - Step17   0.118073 0.0211 8776   5.588  <.0001
 Step3 - Step18   0.121201 0.0201 8797   6.030  <.0001
 Step4 - Step5    0.000318 0.0157 8806   0.020  1.0000
 Step4 - Step6    0.016484 0.0201 8797   0.820  1.0000
 Step4 - Step7    0.025943 0.0157 8806   1.656  0.9743
 Step4 - Step8    0.024608 0.0155 8783   1.584  0.9836
 Step4 - Step9    0.042962 0.0157 8806   2.743  0.3508
 Step4 - Step10   0.046309 0.0157 8806   2.956  0.2220
 Step4 - Step11   0.027666 0.0155 8783   1.781  0.9493
 Step4 - Step12   0.046123 0.0157 8806   2.944  0.2283
 Step4 - Step13   0.044486 0.0201 8797   2.213  0.7450
 Step4 - Step14   0.068240 0.0157 8806   4.356  0.0018
 Step4 - Step15   0.073913 0.0137 8759   5.386  <.0001
 Step4 - Step16   0.106084 0.0201 8797   5.278  <.0001
 Step4 - Step17   0.092613 0.0157 8806   5.912  <.0001
 Step4 - Step18   0.095740 0.0137 8759   6.977  <.0001
 Step5 - Step6    0.016166 0.0211 8776   0.765  1.0000
 Step5 - Step7    0.025626 0.0169 8759   1.516  0.9897
 Step5 - Step8    0.024291 0.0175 8858   1.384  0.9963
 Step5 - Step9    0.042644 0.0169 8759   2.522  0.5130
 Step5 - Step10   0.045991 0.0169 8759   2.720  0.3661
 Step5 - Step11   0.027348 0.0175 8858   1.559  0.9861
 Step5 - Step12   0.045805 0.0169 8759   2.709  0.3738
 Step5 - Step13   0.044168 0.0211 8776   2.091  0.8221
 Step5 - Step14   0.067922 0.0169 8759   4.018  0.0075
 Step5 - Step15   0.073595 0.0157 8806   4.698  0.0004
 Step5 - Step16   0.105766 0.0211 8776   5.006  0.0001
 Step5 - Step17   0.092295 0.0169 8759   5.459  <.0001
 Step5 - Step18   0.095422 0.0157 8806   6.091  <.0001
 Step6 - Step7    0.009460 0.0211 8776   0.448  1.0000
 Step6 - Step8    0.008125 0.0213 8814   0.381  1.0000
 Step6 - Step9    0.026478 0.0211 8776   1.253  0.9989
 Step6 - Step10   0.029825 0.0211 8776   1.412  0.9953
 Step6 - Step11   0.011183 0.0213 8814   0.525  1.0000
 Step6 - Step12   0.029639 0.0211 8776   1.403  0.9956
 Step6 - Step13   0.028003 0.0242 8759   1.159  0.9996
 Step6 - Step14   0.051757 0.0211 8776   2.450  0.5695
 Step6 - Step15   0.057429 0.0201 8797   2.857  0.2774
 Step6 - Step16   0.089600 0.0242 8759   3.708  0.0238
 Step6 - Step17   0.076129 0.0211 8776   3.603  0.0344
 Step6 - Step18   0.079256 0.0201 8797   3.943  0.0100
 Step7 - Step8   -0.001335 0.0175 8858  -0.076  1.0000
 Step7 - Step9    0.017019 0.0169 8759   1.007  0.9999
 Step7 - Step10   0.020365 0.0169 8759   1.205  0.9993
 Step7 - Step11   0.001723 0.0175 8858   0.098  1.0000
 Step7 - Step12   0.020179 0.0169 8759   1.194  0.9994
 Step7 - Step13   0.018543 0.0211 8776   0.878  1.0000
 Step7 - Step14   0.042297 0.0169 8759   2.502  0.5289
 Step7 - Step15   0.047969 0.0157 8806   3.062  0.1716
 Step7 - Step16   0.080140 0.0211 8776   3.793  0.0176
 Step7 - Step17   0.066669 0.0169 8759   3.943  0.0100
 Step7 - Step18   0.069797 0.0157 8806   4.456  0.0012
 Step8 - Step9    0.018354 0.0175 8858   1.046  0.9999
 Step8 - Step10   0.021701 0.0175 8858   1.237  0.9991
 Step8 - Step11   0.003058 0.0168 8759   0.182  1.0000
 Step8 - Step12   0.021514 0.0175 8858   1.226  0.9991
 Step8 - Step13   0.019878 0.0213 8814   0.933  1.0000
 Step8 - Step14   0.043632 0.0175 8858   2.487  0.5405
 Step8 - Step15   0.049304 0.0155 8783   3.174  0.1281
 Step8 - Step16   0.081475 0.0213 8814   3.823  0.0157
 Step8 - Step17   0.068004 0.0175 8858   3.876  0.0129
 Step8 - Step18   0.071132 0.0155 8783   4.579  0.0007
 Step9 - Step10   0.003347 0.0169 8759   0.198  1.0000
 Step9 - Step11  -0.015296 0.0175 8858  -0.872  1.0000
 Step9 - Step12   0.003161 0.0169 8759   0.187  1.0000
 Step9 - Step13   0.001524 0.0211 8776   0.072  1.0000
 Step9 - Step14   0.025278 0.0169 8759   1.495  0.9911
 Step9 - Step15   0.030951 0.0157 8806   1.976  0.8810
 Step9 - Step16   0.063122 0.0211 8776   2.988  0.2062
 Step9 - Step17   0.049651 0.0169 8759   2.937  0.2323
 Step9 - Step18   0.052778 0.0157 8806   3.369  0.0729
 Step10 - Step11 -0.018643 0.0175 8858  -1.063  0.9999
 Step10 - Step12 -0.000186 0.0169 8759  -0.011  1.0000
 Step10 - Step13 -0.001823 0.0211 8776  -0.086  1.0000
 Step10 - Step14  0.021931 0.0169 8759   1.297  0.9983
 Step10 - Step15  0.027604 0.0157 8806   1.762  0.9539
 Step10 - Step16  0.059775 0.0211 8776   2.829  0.2945
 Step10 - Step17  0.046304 0.0169 8759   2.739  0.3534
 Step10 - Step18  0.049431 0.0157 8806   3.156  0.1345
 Step11 - Step12  0.018457 0.0175 8858   1.052  0.9999
 Step11 - Step13  0.016820 0.0213 8814   0.789  1.0000
 Step11 - Step14  0.040574 0.0175 8858   2.313  0.6743
 Step11 - Step15  0.046247 0.0155 8783   2.977  0.2115
 Step11 - Step16  0.078418 0.0213 8814   3.680  0.0264
 Step11 - Step17  0.064946 0.0175 8858   3.702  0.0244
 Step11 - Step18  0.068074 0.0155 8783   4.382  0.0016
 Step12 - Step13 -0.001636 0.0211 8776  -0.077  1.0000
 Step12 - Step14  0.022117 0.0169 8759   1.308  0.9981
 Step12 - Step15  0.027790 0.0157 8806   1.774  0.9510
 Step12 - Step16  0.059961 0.0211 8776   2.838  0.2890
 Step12 - Step17  0.046490 0.0169 8759   2.750  0.3459
 Step12 - Step18  0.049617 0.0157 8806   3.167  0.1303
 Step13 - Step14  0.023754 0.0211 8776   1.124  0.9997
 Step13 - Step15  0.029427 0.0201 8797   1.464  0.9929
 Step13 - Step16  0.061598 0.0242 8759   2.549  0.4920
 Step13 - Step17  0.048126 0.0211 8776   2.278  0.6997
 Step13 - Step18  0.051254 0.0201 8797   2.550  0.4916
 Step14 - Step15  0.005673 0.0157 8806   0.362  1.0000
 Step14 - Step16  0.037844 0.0211 8776   1.791  0.9467
 Step14 - Step17  0.024372 0.0169 8759   1.442  0.9941
 Step14 - Step18  0.027500 0.0157 8806   1.756  0.9554
 Step15 - Step16  0.032171 0.0201 8797   1.601  0.9817
 Step15 - Step17  0.018700 0.0157 8806   1.194  0.9994
 Step15 - Step18  0.021827 0.0137 8759   1.591  0.9828
 Step16 - Step17 -0.013471 0.0211 8776  -0.638  1.0000
 Step16 - Step18 -0.010344 0.0201 8797  -0.515  1.0000
 Step17 - Step18  0.003127 0.0157 8806   0.200  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
 (Intercept)        Step2        Step3        Step4        Step5        Step6 
 0.669178115  0.012112588  0.005411322 -0.020049485 -0.020367345 -0.036533120 
       Step7        Step8        Step9       Step10       Step11       Step12 
-0.045992948 -0.044657892 -0.063011578 -0.066358420 -0.047715769 -0.066172302 
      Step13       Step14       Step15       Step16       Step17       Step18 
-0.064535811 -0.088289712 -0.093962368 -0.126133367 -0.112662134 -0.115789547 

Random Effects:
$trial_id
       (Intercept)
3.1   -0.109095693
4.1    0.089141669
7.1    0.125556156
8.1   -0.034731156
10.1   0.214904331
11.1  -0.124235229
13.1  -0.157681239
15.1  -0.131875575
18.1   0.190137426
19.1  -0.092284707
20.1  -0.013661483
22.1  -0.115892154
2.2   -0.141654023
3.2   -0.242445707
4.2    0.135094890
7.2   -0.185841882
11.2  -0.023479398
13.2   0.060392382
14.2  -0.190198190
15.2  -0.011408420
16.2  -0.046788963
19.2   0.063559093
22.2  -0.022035461
23.2   8.783239537
2.3   -0.418783277
3.3   -0.097936498
4.3    0.015066481
7.3   -0.136109782
11.3   1.115367496
13.3  -0.139113004
14.3  -0.158002995
15.3  -0.176731918
16.3   0.115431513
17.3  -0.179560712
18.3   0.214663941
19.3  -0.123977549
22.3  -0.092937973
23.3   0.053014099
2.4   -0.072350432
3.4    0.019034627
4.4   -0.150857695
5.4   -0.090166378
7.4    0.010371408
8.4   -0.140497422
10.4  -0.247891099
11.4  -0.217616193
13.4  -0.031006316
14.4  -0.217255505
15.4  -0.120919683
16.4  -0.043269433
17.4  -0.308719543
18.4   0.047598790
19.4  -0.041825094
20.4   0.033868280
22.4   0.005622806
23.4  -0.232824295
2.5    0.045593812
3.5    0.095911168
4.5    0.061501620
5.5   -0.054846021
7.5   -0.185372559
8.5   -0.014256541
10.5  -0.006719465
11.5  -0.272756456
13.5  -0.009913315
14.5   0.040177847
15.5   0.052181430
16.5  -0.107212188
17.5   0.092521453
18.5   0.010323718
19.5  -0.208354931
20.5  -0.063216258
22.5   0.030487162
23.5  -0.314999130
2.6    0.219096505
4.6    0.125069754
5.6    0.020658828
7.6   -0.040750031
8.6    0.181298622
10.6  -0.033780898
11.6   0.013190272
13.6  -0.018532086
14.6   0.085342147
15.6  -0.237393309
18.6   0.198622466
19.6  -0.206081546
20.6   0.029950125
22.6   0.037326665
23.6  -0.243174587
2.7   -0.162732727
3.7    0.262498253
4.7   -0.115570758
5.7    0.043625684
7.7   -0.106668578
8.7   -0.040285447
10.7   0.147871904
13.7   0.016328309
14.7   0.081042451
15.7  -0.171735712
16.7   0.768659727
17.7  -0.092513042
18.7   0.095063749
19.7   0.016886289
20.7   0.190613094
22.7   0.040900653
23.7  -0.013503830
2.8    0.210410823
3.8    0.082333964
4.8   -0.084242960
5.8   -0.087225620
7.8   -0.165918153
8.8   -0.182495832
10.8  -0.204512539
11.8  -0.306097930
13.8   0.232955019
14.8   0.048372505
15.8  -0.243303013
16.8  -0.056108927
17.8  -0.078171340
18.8  -0.059241241
19.8  -0.050932191
20.8   0.033211895
22.8   0.022742436
23.8  -0.203205475
2.9    0.083107778
3.9    0.012643236
4.9   -0.117906807
5.9    0.110125227
7.9   -0.202935848
8.9   -0.134642811
10.9  -0.083068454
11.9   0.143976949
13.9  -0.030770306
14.9  -0.024794142
15.9   0.051970914
16.9   0.004932747
17.9  -0.102309434
18.9  -0.079134303
19.9  -0.094663115
20.9   0.016838944
22.9  -0.116383015
23.9  -0.210172122
2.10  -0.067173338
3.10  -0.042895870
4.10  -0.090200545
5.10  -0.100579591
7.10   0.024188694
8.10  -0.424203970
10.10  0.144160485
11.10 -0.069957115
13.10  0.038778951
14.10  0.043172293
15.10 -0.190532275
16.10 -0.067190689
17.10 -0.026793250
18.10  0.166546066
19.10  0.037681769
20.10  0.056377339
22.10 -0.062820696
23.10 -0.320799923
2.11  -0.081758145
3.11   0.180906556
4.11  -0.221842362
5.11   0.076644187
7.11  -0.124021263
8.11  -0.095413535
10.11 -0.234055218
11.11 -0.157460695
13.11  0.166973394
14.11 -0.130253799
15.11  0.145133377
16.11 -0.092662604
17.11 -0.221076449
18.11  0.133541541
19.11 -0.053055980
20.11  0.110740121
22.11  0.038639348
23.11 -0.471995894
2.12   0.187566043
3.12   0.426015687
4.12   0.166750196
7.12  -0.148089691
8.12   0.061092356
10.12 -0.246432110
11.12 -0.095488969
13.12 -0.017587238
14.12 -0.210494975
15.12 -0.058648911
16.12  0.024157573
17.12  0.011206621
18.12 -0.057877346
19.12 -0.033722292
20.12 -0.020417047
22.12 -0.012252320
23.12 -0.385547763
2.13   0.045520164
3.13  -0.038618360
4.13  -0.101369141
5.13  -0.056617278
7.13  -0.097369273
8.13  -0.164210815
10.13 -0.256529309
11.13 -0.252237929
13.13  0.037511812
14.13 -0.113836382
15.13  0.027576053
16.13 -0.153154933
17.13 -0.065286655
18.13  0.123916861
19.13 -0.055429895
20.13  0.059031009
22.13 -0.145620478
23.13 -0.120529832
2.14   0.077213200
3.14   0.259867660
4.14  -0.204686028
5.14  -0.054958988
7.14  -0.121427465
8.14   1.149870293
10.14  0.077624056
11.14 -0.036867623
13.14 -0.085301102
14.14  0.010585437
15.14  0.339373263
16.14  0.095342020
17.14 -0.153720876
18.14  0.274492337
19.14  0.162572988
20.14 -0.046849685
22.14  0.050844068
23.14 -0.322218606
2.15   0.038451245
3.15  -0.192124295
4.15  -0.008788386
5.15   0.020682692
7.15  -0.177700759
8.15  -0.266137182
10.15 -0.212250385
11.15  0.014608086
13.15 -0.034399602
15.15  0.159286146
16.15  0.060600041
17.15  0.011522887
18.15  0.154857455
19.15  0.060831809
20.15  0.010748135
22.15 -0.104687281
23.15 -0.024678462
2.16  -0.032762713
3.16   0.138573235
4.16  -0.109964763
5.16   0.196357331
7.16  -0.167015618
8.16   0.110776012
10.16 -0.199841064
11.16  0.130389183
14.16 -0.095355487
15.16  0.160899920
16.16 -0.023387353
17.16 -0.026391445
18.16  0.107031691
19.16 -0.102676720
20.16 -0.043515300
22.16  0.084544648
23.16 -0.377904889
2.17  -0.182299736
3.17   0.061198880
4.17   0.052730335
5.17  -0.073451238
7.17  -0.341311035
8.17   0.436367052
10.17  0.111610822
11.17 -0.056665933
13.17 -0.070667192
14.17 -0.103676400
15.17  0.130922000
16.17 -0.155024076
17.17 -0.130589358
18.17 -0.019671219
19.17 -0.091198100
20.17 -0.147594884
22.17 -0.077961300
23.17 -0.346499104
2.18  -0.138126191
3.18  -0.082891248
4.18  -0.077914678
5.18  -0.064584827
7.18   0.165609948
8.18  -0.028996128
10.18 -0.078681057
11.18 -0.078991712
13.18 -0.046461620
14.18 -0.186125468
15.18  0.211585292
16.18 -0.004685130
17.18 -0.111027010
18.18  0.068944319
19.18 -0.089208081
20.18 -0.092008571
22.18  0.010003112
23.18 -0.387255364
2.19   0.010211605
3.19   0.097009240
4.19  -0.041367958
5.19  -0.111437502
7.19  -0.088811171
8.19  -0.137257552
10.19  0.032446500
11.19 -0.005141559
13.19  0.027041627
14.19 -0.037022704
15.19 -0.035134155
16.19  0.394151905
17.19 -0.114826517
18.19 -0.056210779
19.19  0.034928841
20.19 -0.027305581
22.19 -0.053085656
23.19 -0.385617202
2.20   0.031200398
3.20   0.131762904
4.20  -0.061545453
5.20  -0.042117032
7.20  -0.057677074
8.20  -0.205001044
10.20  0.577531171
11.20 -0.160931356
13.20  0.029098467
14.20 -0.219996416
15.20 -0.174758879
16.20 -0.294399539
17.20  0.101687381
18.20 -0.120557252
19.20 -0.024247106
20.20  0.066812408
22.20 -0.039660086
23.20 -0.389616259
2.21   0.065163182
3.21   0.068213399
4.21  -0.052940692
5.21  -0.055897965
7.21  -0.030719240
8.21  -0.277980579
10.21  0.272957328
11.21 -0.070543231
13.21  0.188140792
14.21 -0.018429219
15.21 -0.052172655
16.21 -0.153368267
17.21 -0.221071932
18.21 -0.008682420
19.21 -0.086255757
20.21 -0.056848814
22.21 -0.103097031
23.21 -0.021410195
2.22   0.276922074
3.22  -0.187797478
4.22   0.206686365
5.22   0.063773349
7.22  -0.205296170
8.22   0.226382190
10.22  0.336086846
11.22 -0.091298005
13.22 -0.019215582
14.22  0.003742597
15.22 -0.217253596
16.22 -0.109441545
17.22 -0.106791169
18.22 -0.022016050
19.22 -0.121658957
20.22  0.007541735
22.22 -0.031690991
23.22 -0.516854195
2.23   0.048945340
3.23   0.080407357
4.23  -0.129587669
5.23  -0.061263114
7.23  -0.029654776
8.23  -0.023412538
10.23 -0.073376949
11.23  0.119151939
13.23 -0.061931628
14.23 -0.053937472
15.23 -0.128066160
16.23 -0.088681241
17.23 -0.151161998
18.23  0.109982032
19.23 -0.031788148
20.23 -0.087203513
22.23  0.473032649
2.24  -0.192925566
3.24  -0.035301067
4.24   0.004876340
5.24   0.058627102
7.24   0.005557642
8.24   0.222465276
10.24 -0.019637730
11.24 -0.255883443
13.24 -0.038712903
14.24 -0.062141134
15.24 -0.321400034
16.24 -0.123704383
17.24 -0.039869829
18.24 -0.083771090
19.24  0.034272223
20.24  0.052479095
22.24 -0.002073728
23.24  0.109342877
2.25   0.343032818
3.25  -0.143375921
4.25   0.021476648
5.25   0.053665787
7.25  -0.208231755
8.25   0.156390527
10.25  0.516390655
11.25 -0.037131875
13.25  0.232650544
14.25  0.062695846
16.25 -0.072639913
17.25 -0.105691659
18.25  0.114503496
19.25 -0.116517614
20.25 -0.050385843
22.25 -0.104268461
23.25 -0.349661264
2.26  -0.022067440
3.26  -0.067874036
4.26  -0.039582785
5.26  -0.188541096
7.26  -0.110266762
8.26   1.081556063
10.26  1.421872899
11.26  0.149689888
13.26  0.085727988
14.26 -0.017173327
15.26 -0.036282605
16.26 -0.230551810
17.26 -0.137671386
18.26  0.040375737
19.26 -0.073227357
20.26 -0.135743265
22.26  0.006549985
23.26 -0.289873985
2.27   0.577761692
3.27  -0.109702096
4.27  -0.102003503
5.27   0.041135401
7.27  -0.304978102
8.27   0.084065048
10.27  0.586470344
11.27  0.071397069
13.27  0.176403764
14.27 -0.056611548
15.27 -0.115463396
16.27  0.054105876
17.27  0.032514303
18.27  0.013844969
19.27 -0.082615351
20.27  0.053671345
22.27  0.066141806
23.27  0.054431948
2.28  -0.171953806
3.28  -0.062372345
4.28  -0.246634369
5.28  -0.037866547
7.28  -0.260692485
8.28   1.168770408
10.28 -0.211005314
11.28 -0.089535249
13.28  0.550860047
14.28 -0.064193309
15.28  0.096962281
16.28 -0.193387271
17.28  0.001839669
18.28 -0.248060209
19.28 -0.092026246
20.28 -0.010218665
22.28  0.096369124
23.28  0.061044827
2.29   0.465652692
3.29   0.342153553
4.29  -0.002903567
5.29  -0.011199150
7.29  -0.298280500
8.29   0.193947048
10.29  0.075084314
11.29 -0.149360961
13.29  0.322611110
14.29  0.074825234
15.29  0.223197906
16.29 -0.106285420
17.29  0.098852421
18.29 -0.192279965
19.29  0.077260954
20.29 -0.068788553
22.29 -0.007335215
23.29 -0.249434050
2.30   0.687826542
3.30  -0.139583392
4.30   0.035454941
5.30   0.008628506
7.30  -0.152138749
8.30   0.421861309
10.30 -0.290885537
11.30 -0.058241439
13.30  0.066636137
14.30 -0.052191516
15.30  0.114334278
16.30 -0.024506249
17.30 -0.110475195
18.30 -0.143048381
19.30  0.241731827
20.30 -0.018191334
22.30 -0.089542981
23.30 -0.280213115
2.31   0.231583040
3.31   0.570335569
4.31  -0.059280310
5.31   0.030794159
7.31   0.041242829
8.31   0.096693069
10.31  0.277885570
11.31  0.418352011
13.31  0.767660424
14.31  0.287364156
15.31 -0.025689934
16.31 -0.129129170
17.31  0.382048553
18.31  0.038917590
19.31 -0.069076078
20.31 -0.053535404
23.31 -0.074535465
2.32   0.403924733
3.32  -0.046212774
4.32   0.361786201
7.32   0.677751244
8.32   0.465729990
10.32  0.517462989
11.32  0.079930911
13.32 -0.186751924
14.32  0.046343069
15.32  0.210209548
16.32  0.147311005
17.32  0.106345706
18.32  0.071270301
19.32 -0.082878246
20.32  0.062552202
22.32  0.120677433
23.32  0.534497245
2.33  -0.171209187
3.33  -0.210208556
4.33  -0.269428884
5.33  -0.034207541
7.33   0.168637703
8.33   0.543302661
10.33  0.378569047
11.33  0.319578042
13.33  0.093506561
14.33  0.189802206
15.33 -0.080850528
17.33  0.066446473
18.33 -0.058882457
19.33  0.005139802
20.33 -0.020018339
22.33  0.026145039
23.33  0.234792962
2.34   0.597079874
3.34   0.209324059
4.34  -0.135662214
5.34  -0.063740417
7.34   0.798580352
8.34  -0.215131535
11.34  0.595776997
13.34  1.097071138
14.34 -0.186917595
15.34  0.213468209
17.34  0.176830740
18.34 -0.102836922
19.34  0.066123547
20.34  0.057169382
22.34 -0.027258144
23.34 -0.369959416
2.35   0.455563279
4.35   0.179065101
5.35  -0.035158365
7.35   0.117299310
8.35  -0.548765683
10.35 -0.297415409
14.35  0.035937337
15.35  0.580941539
16.35  0.164052574
17.35  0.235805881
18.35  0.001175392
19.35  0.015552870
20.35  0.048009742
22.35  0.108344793
23.35  0.362328544
2.36   0.503928556
3.36   0.443037640
4.36  -0.032470083
5.36  -0.181901313
7.36   0.321114465
10.36  0.201735639
11.36 -0.020867346
13.36 -0.015041938
14.36  0.339270693
15.36  0.069160321
16.36  0.262109913
17.36  0.450482616
18.36 -0.129614997
19.36 -0.030419342
20.36 -0.085177582
22.36  0.215817384
23.36  0.202334086
2.37   0.259722531
3.37   0.323459617
4.37   0.090640826
5.37  -0.129218443
7.37   0.615342756
8.37   0.115601707
10.37 -0.143134174
11.37 -0.132992427
13.37 -0.371116430
14.37  0.319289739
15.37 -0.205076890
16.37 -0.259274317
17.37  0.435326261
18.37 -0.029214491
19.37 -0.024206492
20.37 -0.047126143
22.37 -0.161274849
23.37 -0.288336073
2.38   0.078329842
3.38   0.050284871
4.38   0.251906400
5.38   0.056798019
7.38   0.280479728
8.38  -0.378268355
10.38  0.099026694
11.38  0.121922552
13.38 -0.392638941
14.38  0.249149358
15.38  0.141095626
16.38  0.973147071
17.38  0.337040459
18.38 -0.196298943
19.38 -0.026543674
20.38 -0.094788801
22.38 -0.233517080
23.38 -0.202769375
2.39  -0.308753034
3.39  -0.010527058
4.39  -0.140273451
5.39  -0.094453158
7.39   0.047655004
8.39  -0.163796975
10.39  1.173569895
11.39 -0.216368306
13.39 -0.304943809
14.39  0.442000954
15.39 -0.100526176
16.39  0.349706587
18.39 -0.112225809
19.39 -0.021215612
20.39  0.003106501
22.39  0.220174537
23.39 -0.128193880
2.40  -0.013902530
3.40   0.161073689
4.40   0.020752625
5.40  -0.154296137
7.40   0.536125365
8.40   0.670184813
10.40  0.202964069
11.40 -0.209041513
13.40 -0.407024023
14.40  0.121001013
15.40  0.048059563
16.40  0.695441112
17.40 -0.168933610
18.40  0.074630792
19.40 -0.064490666
20.40  0.008944822
22.40 -0.007082891
23.40  0.220656441
2.41  -0.174714111
3.41  -0.131555410
4.41   0.105951723
5.41   0.087698452
7.41  -0.036184044
8.41  -0.582182729
10.41 -0.813211481
11.41 -0.042002898
13.41 -0.334651525
14.41  0.172431769
15.41 -0.214292301
16.41  0.651296878
17.41  0.435726685
18.41 -0.229890202
19.41  0.202105049
20.41 -0.110647153
22.41  0.125230713
23.41 -0.278561186
2.42   0.410280862
3.42   0.016720585
5.42   0.233939331
7.42   0.116030164
8.42  -0.384637065
10.42  0.018717029
11.42 -0.150703205
13.42 -0.412497951
14.42  0.201759810
15.42 -0.311576310
16.42  0.142015335
17.42 -0.071453965
18.42  0.216994928
19.42  0.030445234
20.42 -0.125854147
22.42  0.077680718
23.42 -0.137245985
2.43   0.178477413
3.43  -0.154352365
4.43  -0.121887819
5.43  -0.082597137
7.43   0.182719230
8.43  -0.621975642
10.43 -0.683403622
11.43 -0.179135916
13.43 -0.402160929
14.43  0.121479308
15.43  0.090899230
16.43 -0.217146789
17.43  0.092529195
18.43 -0.016154519
19.43 -0.008158504
20.43 -0.023119361
22.43 -0.306070244
23.43 -0.232061001
2.44  -0.815747619
3.44  -0.249168923
4.44  -0.001531582
5.44  -0.071600937
7.44   0.253504534
8.44  -0.169027098
10.44 -0.524063690
11.44  0.045857405
13.44 -0.376086784
14.44  0.050987635
15.44  0.229974926
16.44 -0.308320971
17.44 -0.070310158
18.44 -0.338305189
19.44  0.244609181
22.44 -0.126602500
23.44 -0.442038619
3.45   0.213804974
4.45   0.397053540
5.45  -0.001485982
7.45  -0.169541905
8.45  -0.027519961
10.45  0.120645793
11.45  0.350362408
13.45 -0.170583709
14.45 -0.276378171
15.45  0.001345022
16.45 -0.248230032
17.45  0.193388311
18.45 -0.080477891
19.45 -0.031660760
20.45 -0.061154620
22.45 -0.233343823
23.45 -0.627286031
2.46  -0.553577669
3.46  -0.619667524
4.46   0.085749365
5.46  -0.051207515
7.46  -0.308530609
8.46  -0.783626686
10.46 -0.618543154
11.46 -0.323218969
13.46 -0.283475124
14.46 -0.262621189
15.46 -0.043605431
16.46 -0.489992452
17.46 -0.343012756
19.46  0.241846944
20.46 -0.142105995
22.46 -0.293376992
23.46 -0.713672787
2.47  -0.448562609
3.47  -0.635122108
4.47  -0.171239616
5.47  -0.010584754
7.47  -0.294301570
8.47  -0.308503276
10.47 -0.838820160
11.47 -0.253284897
13.47 -0.302765369
14.47 -0.457856926
15.47  0.130241903
16.47 -0.650184604
17.47 -0.312001443
18.47 -0.163635914
19.47 -0.098767469
20.47 -0.125720976
2.48  -0.919748827

$subject
   (Intercept)
2   0.41969076
3   0.18564384
4  -0.14116067
5  -0.26141832
7  -0.07803407
8   0.30081720
10  0.34591740
11 -0.13040688
13 -0.15447948
14 -0.04910504
15  0.00702148
16  0.13207982
17 -0.05452659
18 -0.02347743
19 -0.23101781
20 -0.25311661
22 -0.20743358
23  0.19300599

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.3457690 -0.6940378 -0.4944567 -0.4220265 -0.3277490  0.2953130 

=============================================================

--- Mixed - Block 5 - Axis Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Step 56.095  3.2997    17 8781.5  19.843 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.01630 0.0232 8807  -0.703  1.0000
 Step1 - Step3   -0.01774 0.0298 8798  -0.596  1.0000
 Step1 - Step4    0.02164 0.0203 8759   1.065  0.9999
 Step1 - Step5    0.01017 0.0232 8807   0.439  1.0000
 Step1 - Step6    0.06255 0.0298 8798   2.102  0.8152
 Step1 - Step7    0.06040 0.0232 8807   2.605  0.4497
 Step1 - Step8    0.10560 0.0230 8784   4.592  0.0006
 Step1 - Step9    0.11656 0.0232 8807   5.027  0.0001
 Step1 - Step10   0.12949 0.0232 8807   5.584  <.0001
 Step1 - Step11   0.12334 0.0230 8784   5.363  <.0001
 Step1 - Step12   0.13500 0.0232 8807   5.822  <.0001
 Step1 - Step13   0.12182 0.0298 8798   4.095  0.0055
 Step1 - Step14   0.15977 0.0232 8807   6.890  <.0001
 Step1 - Step15   0.16317 0.0203 8759   8.032  <.0001
 Step1 - Step16   0.17180 0.0298 8798   5.774  <.0001
 Step1 - Step17   0.20635 0.0232 8807   8.899  <.0001
 Step1 - Step18   0.22575 0.0203 8759  11.114  <.0001
 Step2 - Step3   -0.00144 0.0313 8777  -0.046  1.0000
 Step2 - Step4    0.03794 0.0232 8807   1.636  0.9772
 Step2 - Step5    0.02647 0.0250 8759   1.058  0.9999
 Step2 - Step6    0.07885 0.0313 8777   2.521  0.5138
 Step2 - Step7    0.07671 0.0250 8759   3.065  0.1703
 Step2 - Step8    0.12190 0.0260 8861   4.694  0.0004
 Step2 - Step9    0.13287 0.0250 8759   5.309  <.0001
 Step2 - Step10   0.14579 0.0250 8759   5.825  <.0001
 Step2 - Step11   0.13964 0.0260 8861   5.377  <.0001
 Step2 - Step12   0.15130 0.0250 8759   6.046  <.0001
 Step2 - Step13   0.13813 0.0313 8777   4.416  0.0014
 Step2 - Step14   0.17607 0.0250 8759   7.036  <.0001
 Step2 - Step15   0.17947 0.0232 8807   7.740  <.0001
 Step2 - Step16   0.18810 0.0313 8777   6.014  <.0001
 Step2 - Step17   0.22265 0.0250 8759   8.896  <.0001
 Step2 - Step18   0.24206 0.0232 8807  10.439  <.0001
 Step3 - Step4    0.03938 0.0298 8798   1.324  0.9978
 Step3 - Step5    0.02791 0.0313 8777   0.892  1.0000
 Step3 - Step6    0.08029 0.0358 8759   2.245  0.7231
 Step3 - Step7    0.07815 0.0313 8777   2.499  0.5313
 Step3 - Step8    0.12334 0.0315 8816   3.910  0.0114
 Step3 - Step9    0.13431 0.0313 8777   4.294  0.0024
 Step3 - Step10   0.14723 0.0313 8777   4.707  0.0004
 Step3 - Step11   0.14108 0.0315 8816   4.472  0.0011
 Step3 - Step12   0.15274 0.0313 8777   4.884  0.0002
 Step3 - Step13   0.13956 0.0358 8759   3.902  0.0117
 Step3 - Step14   0.17751 0.0313 8777   5.676  <.0001
 Step3 - Step15   0.18091 0.0298 8798   6.081  <.0001
 Step3 - Step16   0.18954 0.0358 8759   5.300  <.0001
 Step3 - Step17   0.22409 0.0313 8777   7.165  <.0001
 Step3 - Step18   0.24349 0.0298 8798   8.184  <.0001
 Step4 - Step5   -0.01147 0.0232 8807  -0.495  1.0000
 Step4 - Step6    0.04091 0.0298 8798   1.375  0.9965
 Step4 - Step7    0.03876 0.0232 8807   1.672  0.9718
 Step4 - Step8    0.08395 0.0230 8784   3.651  0.0292
 Step4 - Step9    0.09492 0.0232 8807   4.094  0.0055
 Step4 - Step10   0.10784 0.0232 8807   4.651  0.0005
 Step4 - Step11   0.10169 0.0230 8784   4.422  0.0014
 Step4 - Step12   0.11335 0.0232 8807   4.889  0.0002
 Step4 - Step13   0.10018 0.0298 8798   3.367  0.0734
 Step4 - Step14   0.13813 0.0232 8807   5.957  <.0001
 Step4 - Step15   0.14152 0.0203 8759   6.967  <.0001
 Step4 - Step16   0.15016 0.0298 8798   5.047  0.0001
 Step4 - Step17   0.18470 0.0232 8807   7.966  <.0001
 Step4 - Step18   0.20411 0.0203 8759  10.048  <.0001
 Step5 - Step6    0.05238 0.0313 8777   1.675  0.9713
 Step5 - Step7    0.05023 0.0250 8759   2.007  0.8663
 Step5 - Step8    0.09542 0.0260 8861   3.674  0.0269
 Step5 - Step9    0.10639 0.0250 8759   4.251  0.0029
 Step5 - Step10   0.11931 0.0250 8759   4.768  0.0003
 Step5 - Step11   0.11316 0.0260 8861   4.358  0.0018
 Step5 - Step12   0.12482 0.0250 8759   4.988  0.0001
 Step5 - Step13   0.11165 0.0313 8777   3.570  0.0384
 Step5 - Step14   0.14960 0.0250 8759   5.978  <.0001
 Step5 - Step15   0.15299 0.0232 8807   6.598  <.0001
 Step5 - Step16   0.16163 0.0313 8777   5.168  <.0001
 Step5 - Step17   0.19617 0.0250 8759   7.839  <.0001
 Step5 - Step18   0.21558 0.0232 8807   9.297  <.0001
 Step6 - Step7   -0.00215 0.0313 8777  -0.069  1.0000
 Step6 - Step8    0.04304 0.0315 8816   1.365  0.9968
 Step6 - Step9    0.05401 0.0313 8777   1.727  0.9617
 Step6 - Step10   0.06693 0.0313 8777   2.140  0.7926
 Step6 - Step11   0.06078 0.0315 8816   1.927  0.9018
 Step6 - Step12   0.07244 0.0313 8777   2.316  0.6714
 Step6 - Step13   0.05927 0.0358 8759   1.657  0.9741
 Step6 - Step14   0.09722 0.0313 8777   3.109  0.1523
 Step6 - Step15   0.10061 0.0298 8798   3.382  0.0702
 Step6 - Step16   0.10925 0.0358 8759   3.055  0.1749
 Step6 - Step17   0.14379 0.0313 8777   4.598  0.0006
 Step6 - Step18   0.16320 0.0298 8798   5.485  <.0001
 Step7 - Step8    0.04519 0.0260 8861   1.740  0.9589
 Step7 - Step9    0.05616 0.0250 8759   2.244  0.7238
 Step7 - Step10   0.06908 0.0250 8759   2.760  0.3388
 Step7 - Step11   0.06293 0.0260 8861   2.423  0.5900
 Step7 - Step12   0.07459 0.0250 8759   2.981  0.2097
 Step7 - Step13   0.06142 0.0313 8777   1.964  0.8864
 Step7 - Step14   0.09937 0.0250 8759   3.971  0.0090
 Step7 - Step15   0.10276 0.0232 8807   4.432  0.0013
 Step7 - Step16   0.11140 0.0313 8777   3.562  0.0395
 Step7 - Step17   0.14594 0.0250 8759   5.831  <.0001
 Step7 - Step18   0.16535 0.0232 8807   7.131  <.0001
 Step8 - Step9    0.01097 0.0260 8861   0.422  1.0000
 Step8 - Step10   0.02389 0.0260 8861   0.920  1.0000
 Step8 - Step11   0.01774 0.0249 8759   0.712  1.0000
 Step8 - Step12   0.02940 0.0260 8861   1.132  0.9997
 Step8 - Step13   0.01623 0.0315 8816   0.514  1.0000
 Step8 - Step14   0.05418 0.0260 8861   2.086  0.8246
 Step8 - Step15   0.05757 0.0230 8784   2.503  0.5277
 Step8 - Step16   0.06620 0.0315 8816   2.099  0.8174
 Step8 - Step17   0.10075 0.0260 8861   3.879  0.0128
 Step8 - Step18   0.12016 0.0230 8784   5.225  <.0001
 Step9 - Step10   0.01292 0.0250 8759   0.516  1.0000
 Step9 - Step11   0.00677 0.0260 8861   0.261  1.0000
 Step9 - Step12   0.01843 0.0250 8759   0.736  1.0000
 Step9 - Step13   0.00526 0.0313 8777   0.168  1.0000
 Step9 - Step14   0.04321 0.0250 8759   1.726  0.9618
 Step9 - Step15   0.04660 0.0232 8807   2.010  0.8650
 Step9 - Step16   0.05524 0.0313 8777   1.766  0.9530
 Step9 - Step17   0.08978 0.0250 8759   3.587  0.0362
 Step9 - Step18   0.10919 0.0232 8807   4.709  0.0004
 Step10 - Step11 -0.00615 0.0260 8861  -0.237  1.0000
 Step10 - Step12  0.00551 0.0250 8759   0.220  1.0000
 Step10 - Step13 -0.00766 0.0313 8777  -0.245  1.0000
 Step10 - Step14  0.03029 0.0250 8759   1.210  0.9993
 Step10 - Step15  0.03368 0.0232 8807   1.452  0.9935
 Step10 - Step16  0.04231 0.0313 8777   1.353  0.9971
 Step10 - Step17  0.07686 0.0250 8759   3.071  0.1677
 Step10 - Step18  0.09627 0.0232 8807   4.152  0.0043
 Step11 - Step12  0.01166 0.0260 8861   0.449  1.0000
 Step11 - Step13 -0.00151 0.0315 8816  -0.048  1.0000
 Step11 - Step14  0.03644 0.0260 8861   1.403  0.9956
 Step11 - Step15  0.03983 0.0230 8784   1.732  0.9606
 Step11 - Step16  0.04846 0.0315 8816   1.536  0.9881
 Step11 - Step17  0.08301 0.0260 8861   3.196  0.1204
 Step11 - Step18  0.10242 0.0230 8784   4.454  0.0012
 Step12 - Step13 -0.01317 0.0313 8777  -0.421  1.0000
 Step12 - Step14  0.02478 0.0250 8759   0.990  1.0000
 Step12 - Step15  0.02817 0.0232 8807   1.215  0.9992
 Step12 - Step16  0.03680 0.0313 8777   1.177  0.9995
 Step12 - Step17  0.07135 0.0250 8759   2.851  0.2811
 Step12 - Step18  0.09076 0.0232 8807   3.914  0.0112
 Step13 - Step14  0.03795 0.0313 8777   1.213  0.9993
 Step13 - Step15  0.04134 0.0298 8798   1.390  0.9961
 Step13 - Step16  0.04998 0.0358 8759   1.397  0.9958
 Step13 - Step17  0.08452 0.0313 8777   2.703  0.3786
 Step13 - Step18  0.10393 0.0298 8798   3.493  0.0494
 Step14 - Step15  0.00339 0.0232 8807   0.146  1.0000
 Step14 - Step16  0.01203 0.0313 8777   0.385  1.0000
 Step14 - Step17  0.04657 0.0250 8759   1.861  0.9260
 Step14 - Step18  0.06598 0.0232 8807   2.846  0.2844
 Step15 - Step16  0.00863 0.0298 8798   0.290  1.0000
 Step15 - Step17  0.04318 0.0232 8807   1.862  0.9256
 Step15 - Step18  0.06259 0.0203 8759   3.081  0.1635
 Step16 - Step17  0.03455 0.0313 8777   1.105  0.9998
 Step16 - Step18  0.05395 0.0298 8798   1.813  0.9406
 Step17 - Step18  0.01941 0.0232 8807   0.837  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Fixed Effects:
(Intercept)       Step2       Step3       Step4       Step5       Step6 
 1.37070549  0.01630225  0.01774092 -0.02164139 -0.01017177 -0.06255194 
      Step7       Step8       Step9      Step10      Step11      Step12 
-0.06040450 -0.10559566 -0.11656455 -0.12948579 -0.12333639 -0.13499599 
     Step13      Step14      Step15      Step16      Step17      Step18 
-0.12182327 -0.15977194 -0.16316541 -0.17180002 -0.20634521 -0.22575395 

Random Effects:
$trial_id
       (Intercept)
3.1   -0.220426794
4.1    0.043893046
7.1    0.380571927
8.1   -0.288813752
10.1   0.574773484
11.1  -0.406079307
13.1  -0.434724084
15.1  -0.169374994
18.1   1.037244905
19.1  -0.200851387
20.1  -0.258285085
22.1  -0.190067587
2.2    0.195090742
3.2   -0.523368070
4.2    0.209701776
7.2   -0.029166174
11.2  -0.006445543
13.2  -0.208434284
14.2  -0.312914676
15.2  -0.263326866
16.2   0.167917019
19.2  -0.162862972
22.2  -0.091016638
23.2   3.570359491
2.3   -0.225995123
3.3    0.547790507
4.3    0.191637828
7.3    0.146296854
11.3   0.404381630
13.3   0.473492363
14.3  -0.408374651
15.3   1.097267094
16.3   1.300099508
17.3   0.107825214
18.3   0.572819980
19.3   0.143975940
22.3  -0.220418882
23.3  -0.723657540
2.4   -0.316802094
3.4   -0.132830427
4.4   -0.179530015
5.4   -0.143030303
7.4   -0.096829201
8.4   -0.718553038
10.4   0.692187160
11.4  -0.274865741
13.4  -0.095513976
14.4  -0.252338467
15.4  -0.461419154
16.4   0.155968232
17.4  -0.029363915
18.4   1.123715441
19.4  -0.067393841
20.4  -0.388608100
22.4   0.117109558
23.4  -0.687303061
2.5   -0.134228659
3.5    0.030731795
4.5   -0.110076678
5.5   -0.248702254
7.5   -0.203859830
8.5   -0.476587053
10.5   1.161525473
11.5  -0.283238245
13.5   0.293613674
14.5  -0.089966880
15.5   0.086730049
16.5   0.463472546
17.5  -0.105517082
18.5   0.727008508
19.5  -0.181606920
20.5  -0.458007249
22.5   0.228393079
23.5  -0.347576989
2.6   -0.179425390
4.6   -0.170109605
5.6    0.029677256
7.6    0.211104213
8.6    1.107369263
10.6   0.540586302
11.6   0.158592162
13.6   0.327711453
14.6   0.019215903
15.6  -0.328146394
18.6   1.173580544
19.6  -0.123151142
20.6  -0.139188567
22.6  -0.069601095
23.6  -0.274290483
2.7   -0.492368286
3.7   -0.204631885
4.7   -0.142673830
5.7    0.087676875
7.7    0.165403823
8.7   -0.486351964
10.7   0.477387259
13.7   0.792463838
14.7  -0.051906554
15.7  -0.611953050
16.7   1.165240806
17.7  -0.164744533
18.7   0.993061663
19.7  -0.240868563
20.7   0.035699662
22.7  -0.065003294
23.7  -0.371083422
2.8   -0.063850314
3.8    0.064630344
4.8   -0.144038158
5.8   -0.198173933
7.8    0.227257026
8.8   -0.561443739
10.8   0.803407899
11.8  -0.232887742
13.8   1.318765539
14.8  -0.350100603
15.8  -0.732574266
16.8   0.225278829
17.8  -0.220034999
18.8   0.659452558
19.8  -0.023111955
20.8   0.114410316
22.8  -0.216818536
23.8  -0.432781188
2.9   -0.275538767
3.9    0.282924245
4.9   -0.065876384
5.9    0.181231420
7.9    0.354168321
8.9   -0.612644770
10.9   0.784806382
11.9   0.311156123
13.9   0.251212125
14.9  -0.174590774
15.9  -0.169137761
16.9  -0.127110722
17.9  -0.209562978
18.9   0.228988647
19.9   0.113655107
20.9   0.056713924
22.9  -0.047921478
23.9  -0.274455691
2.10   0.139035622
3.10   0.144025576
4.10  -0.161633994
5.10  -0.042037300
7.10  -0.184562975
8.10  -0.523120216
10.10  0.789351087
11.10  0.364098531
13.10  0.587851850
14.10 -0.238585897
15.10 -0.367258048
16.10  0.135775531
17.10  0.103593934
18.10  0.830554617
19.10  0.167360022
20.10  0.566304993
22.10 -0.010748786
23.10 -0.532017593
2.11  -0.454464123
3.11  -0.075256972
4.11   0.254438261
5.11  -0.118074558
7.11  -0.244460134
8.11  -0.089248863
10.11  0.350166611
11.11  0.230929237
13.11  0.524881910
14.11 -0.215077957
15.11  0.096345325
16.11 -0.371178097
17.11 -0.210988445
18.11  0.555166244
19.11 -0.225248176
20.11  0.627928662
22.11  0.070004607
23.11 -0.320871839
2.12   0.146233826
3.12   0.694079579
4.12  -0.038930544
7.12  -0.120768536
8.12   0.583938385
10.12  0.235877033
11.12 -0.219435376
13.12  0.114117661
14.12 -0.437084967
15.12  0.170033458
16.12 -0.400682576
17.12 -0.038610790
18.12  0.182473159
19.12  0.177615100
20.12  0.498413039
22.12  0.152040360
23.12 -0.469763697
2.13  -0.318891772
3.13  -0.189018301
4.13  -0.086056465
5.13  -0.098275432
7.13  -0.292062076
8.13  -0.187461235
10.13  0.436955805
11.13 -0.427580856
13.13  0.172348415
14.13  0.993864072
15.13  0.481116696
16.13 -0.412774085
17.13 -0.128682270
18.13  0.456764565
19.13 -0.052439793
20.13  0.231151044
22.13 -0.067093931
23.13 -0.283477369
2.14  -0.327398359
3.14   0.217470066
4.14  -0.046814124
5.14  -0.189066748
7.14   0.756012085
8.14   0.739921683
10.14 -0.263706425
11.14 -0.113396749
13.14  0.326556610
14.14 -0.045709373
15.14  0.313566347
16.14  0.222878338
17.14  0.031824753
18.14  0.175225753
19.14 -0.134254875
20.14  0.287158747
22.14  0.207538014
23.14 -0.392960253
2.15  -0.609816246
3.15  -0.233812311
4.15  -0.377499497
5.15  -0.089026480
7.15   0.134385923
8.15   0.034558170
10.15 -0.048766325
11.15  0.346840342
13.15  0.150356257
15.15  0.233895421
16.15  0.350650968
17.15  0.080137036
18.15  0.363706010
19.15  0.224667563
20.15 -0.226692549
22.15  0.142298628
23.15  0.195179985
2.16   0.009417257
3.16   0.171941316
4.16  -0.225148410
5.16   0.495708731
7.16   0.027755661
8.16   0.480522025
10.16 -0.661683580
11.16  0.077089281
14.16 -0.059146598
15.16  1.523550219
16.16 -0.027940156
17.16 -0.150356051
18.16  0.173808683
19.16 -0.276856974
20.16  0.118386293
22.16  0.135775071
23.16 -0.495573187
2.17  -0.526472113
3.17   0.113996634
4.17  -0.480811846
5.17   0.428889096
7.17  -0.393084967
8.17   0.935340918
10.17 -0.004089431
11.17 -0.057813936
13.17  0.387541901
14.17  0.143526043
15.17 -0.080859126
16.17 -0.333733942
17.17 -0.202445482
18.17 -0.512969630
19.17 -0.173542621
20.17  0.187428098
22.17  0.157897811
23.17 -0.530313502
2.18  -0.621788760
3.18   0.024887007
4.18   0.250255072
5.18   0.138948070
7.18  -0.062937375
8.18  -0.020019328
10.18  0.484661055
11.18  0.772945886
13.18 -0.091145699
14.18 -0.301832793
15.18  1.062102953
16.18 -0.383516328
17.18  0.037924186
18.18 -0.139672231
19.18 -0.438441404
20.18  0.078693847
22.18  0.125464735
23.18 -0.333922384
2.19  -0.391800584
3.19   0.234633077
4.19  -0.184589938
5.19   0.196561154
7.19   0.007296737
8.19  -0.026149339
10.19  0.642273614
11.19  0.118480824
13.19  0.532059186
14.19 -0.244012774
15.19  1.161067921
16.19  1.266390219
17.19 -0.283464057
18.19 -0.630293825
19.19 -0.115045095
20.19  0.092722673
22.19  0.222763128
23.19 -0.031054547
2.20  -0.421270886
3.20   0.209477264
4.20   0.072230685
5.20  -0.176161413
7.20  -0.085825456
8.20  -0.123206028
10.20  1.968924624
11.20  0.215873820
13.20  0.451506936
14.20 -0.008939750
15.20  0.654757760
16.20 -0.546141615
17.20 -0.150849686
18.20 -0.361550265
19.20 -0.108432663
20.20 -0.045893315
22.20  0.064181466
23.20 -0.311638361
2.21  -0.433366734
3.21   0.115042427
4.21  -0.204549160
5.21  -0.219527447
7.21   0.332061173
8.21  -0.247794072
10.21  3.093979408
11.21  0.043334540
13.21  0.482738906
14.21 -0.268750380
15.21 -0.554870982
16.21 -0.519985844
17.21 -0.060844166
18.21 -0.261009874
19.21  0.089367196
20.21 -0.020164590
22.21  0.084529563
23.21  0.994553886
2.22  -0.580401962
3.22  -0.173357237
4.22   0.499616988
5.22   0.190082325
7.22   0.482960433
8.22   0.263529968
10.22  0.997984875
11.22 -0.194531890
13.22  0.533488030
14.22 -0.113248536
15.22 -0.035667765
16.22 -0.329052436
17.22 -0.169537659
18.22 -0.469431701
19.22 -0.284783529
20.22 -0.048746691
22.22  0.016581509
23.22 -0.435733675
2.23  -0.044581842
3.23  -0.115518869
4.23  -0.161786695
5.23  -0.108747566
7.23   0.231393910
8.23   0.106954575
10.23  1.949816560
11.23  0.068944581
13.23  0.229023606
14.23 -0.239480753
15.23 -0.359891745
16.23 -0.389157575
17.23 -0.195102131
18.23 -0.287081457
19.23 -0.021111462
20.23 -0.153470723
22.23  0.358015686
2.24  -0.314078441
3.24  -0.018170840
4.24   0.148988653
5.24   0.060262093
7.24   0.099727473
8.24   0.367992031
10.24  1.010693143
11.24  0.192280663
13.24  0.158300560
14.24  0.028896565
15.24 -0.457745710
16.24 -0.088450593
17.24  0.026672425
18.24 -0.373269977
19.24 -0.022151719
20.24 -0.036856380
22.24  0.213582926
23.24  0.005381008
2.25  -0.034008924
3.25   0.262671488
4.25   0.175830563
5.25   0.523920019
7.25  -0.010816578
8.25   0.746065778
10.25  0.636632980
11.25 -0.402190023
13.25  1.420906145
14.25  0.305702050
16.25 -0.265767739
17.25 -0.011958147
18.25 -0.350451742
19.25 -0.021316109
20.25  0.108748707
22.25  0.183660424
23.25 -0.111528096
2.26  -0.248027777
3.26  -0.045401632
4.26  -0.219664727
5.26  -0.060222197
7.26   0.096818982
8.26   1.065126984
10.26  0.767455448
11.26  0.545086516
13.26  0.633275007
14.26 -0.296903516
15.26  0.924899447
16.26 -0.208170925
17.26 -0.275531608
18.26 -0.182270478
19.26  0.023408335
20.26 -0.055740373
22.26  0.223400281
23.26 -0.035774418
2.27   0.899340775
3.27  -0.200868762
4.27  -0.189584406
5.27   0.054499379
7.27   0.269988439
8.27   0.773877396
10.27  0.135078038
11.27  0.843098473
13.27  0.741760013
14.27  0.273497292
15.27  0.007873188
16.27 -0.223488804
17.27  0.121957097
18.27 -0.351286924
19.27  0.061187198
20.27 -0.016995885
22.27  0.432441946
23.27  0.056879480
2.28   1.474179835
3.28   0.154131901
4.28  -0.217383851
5.28  -0.054743709
7.28   0.494155256
8.28   1.459757372
10.28  1.392634027
11.28 -0.070401238
13.28  1.345561599
14.28  0.108804709
15.28 -0.074029580
16.28 -0.358949492
17.28 -0.077647411
18.28  0.008291862
19.28 -0.040174562
20.28 -0.257272297
22.28  0.184652929
23.28  0.522891220
2.29   0.073959998
3.29   0.323290623
4.29  -0.059945370
5.29  -0.111657613
7.29   0.475513385
8.29   0.284381269
10.29  0.341505930
11.29 -0.097151706
13.29  0.514646859
14.29 -0.228774858
15.29  0.221039916
16.29 -0.008336674
17.29 -0.029352485
18.29 -0.452996338
19.29  0.139825549
20.29 -0.055479779
22.29  0.142435851
23.29  0.165436257
2.30   0.243616391
3.30   0.110517559
4.30  -0.268560084
5.30  -0.082405087
7.30   0.241740868
8.30   0.425999959
10.30  1.147851206
11.30  0.038085987
13.30 -0.095139831
14.30  0.080274027
15.30  0.323427085
16.30  0.429759775
17.30 -0.167892717
18.30  0.403004050
19.30  0.027872061
20.30 -0.015693347
22.30  0.054580437
23.30  0.174211850
2.31  -0.101607761
3.31   0.522826612
4.31   0.126174806
5.31   0.019025648
7.31   0.023119439
8.31   0.581356434
10.31  0.049837684
11.31  0.530739099
13.31  0.333720256
14.31  0.118030301
15.31  0.795532453
16.31  0.023434105
17.31 -0.112544410
18.31 -0.380723200
19.31  0.081213118
20.31 -0.052148643
23.31  1.199028926
2.32   0.268348883
3.32  -0.063588024
4.32   0.484411559
7.32   0.425879304
8.32   0.581222374
10.32  0.606958912
11.32  0.541719648
13.32  0.315133497
14.32  0.062404174
15.32  0.729643077
16.32  0.183168102
17.32 -0.286001759
18.32  0.021918506
19.32 -0.023235487
20.32  0.256515391
22.32  0.248191667
23.32  1.520279721
2.33  -0.058213002
3.33   0.346456871
4.33  -0.250401350
5.33  -0.186931283
7.33  -0.059269403
8.33  -0.064304673
10.33 -0.934217296
11.33  0.063431853
13.33 -0.187488715
14.33  0.279444671
15.33  0.642293827
17.33  0.320561804
18.33 -0.501993266
19.33  0.076028006
20.33  0.232214323
22.33  0.076580929
23.33  0.633474529
2.34   2.585493538
3.34   0.257196629
4.34   0.095536102
5.34  -0.139498938
7.34  -0.404890279
8.34  -0.025024846
11.34  1.008932658
13.34  1.924872506
14.34 -0.114757008
15.34 -0.181527464
17.34 -0.016001897
18.34 -0.285005902
19.34 -0.043810883
20.34  0.045340195
22.34 -0.012948458
23.34 -0.557925515
2.35   1.317546424
4.35  -0.316158993
5.35  -0.049876655
7.35   0.026395748
8.35   0.025725916
10.35  0.906830330
14.35  0.106472266
15.35  0.817184192
16.35  0.014627075
17.35  0.425405444
18.35 -0.618182881
19.35  0.165727857
20.35  0.117662271
22.35  0.024884818
23.35  1.060532873
2.36  -0.067070596
3.36   0.142150974
4.36  -0.122362972
5.36  -0.210845222
7.36   0.009927089
10.36 -0.603605940
11.36  0.279183113
13.36 -0.133669450
14.36  0.692293793
15.36  0.398349822
16.36  0.145818165
17.36  0.277697517
18.36 -0.474099540
19.36 -0.137107097
20.36 -0.177745904
22.36 -0.276594134
23.36  0.084051393
2.37   0.541248112
3.37   0.306017665
4.37   0.387449002
5.37  -0.104720949
7.37   0.840465872
8.37   0.622603236
10.37  0.031211381
11.37 -0.422874995
13.37 -1.321470653
14.37  0.436041750
15.37 -0.015780723
16.37 -0.219395340
17.37  0.692494716
18.37 -0.061354126
19.37  0.179432184
20.37 -0.216914154
22.37 -0.098119090
23.37  0.043217288
2.38   1.167098946
3.38   0.003798746
4.38   0.110350592
5.38  -0.126340291
7.38  -0.482930796
8.38  -0.514290536
10.38 -0.851559927
11.38 -0.115221154
13.38 -1.325458560
14.38  0.370740290
15.38 -0.009022789
16.38  4.125154427
17.38  0.487081803
18.38 -0.210289365
19.38 -0.151007941
20.38 -0.247207360
22.38  0.177541979
23.38 -0.358203979
2.39   0.586291034
3.39  -0.322249847
4.39  -0.037934181
5.39   0.067305754
7.39  -0.529230250
8.39   0.163450896
10.39 -1.139616711
11.39 -0.085662075
13.39 -1.314931101
14.39  0.651435447
15.39 -0.416581796
16.39  0.507830153
18.39 -0.489277515
19.39  0.045974645
20.39  0.049557033
22.39 -0.205311370
23.39  0.849493311
2.40  -0.037043617
3.40  -0.067793970
4.40   0.167195453
5.40  -0.191576787
7.40   0.153051037
8.40  -0.301171132
10.40 -1.327074701
11.40 -0.583367010
13.40 -1.379721702
14.40  0.187109997
15.40  0.556892258
16.40 -1.089633241
17.40  0.279531922
18.40  0.113661351
19.40  0.517038719
20.40 -0.088918233
22.40 -0.007154665
23.40  1.022686182
2.41   0.377827916
3.41   0.042930368
4.41   0.230577869
5.41  -0.133551037
7.41  -0.354397542
8.41  -1.115142687
10.41 -2.855029677
11.41  0.219648312
13.41 -1.346091958
14.41  0.259472679
15.41 -0.427116296
16.41  0.246837433
17.41  0.085639693
18.41 -0.290632887
19.41  0.260411775
20.41 -0.157055303
22.41 -0.299810373
23.41  0.026552819
2.42   0.595809531
3.42  -0.358832448
5.42   0.496455456
7.42   0.049792589
8.42  -0.523554582
10.42 -1.845366435
11.42 -0.323472380
13.42 -1.366639746
14.42  0.557986211
15.42 -1.117252463
16.42  0.715820048
17.42 -0.052786611
18.42 -0.021273588
19.42  0.073214949
20.42 -0.097736991
22.42 -0.312600404
23.42 -0.464767631
2.43  -0.256613209
3.43  -0.242197516
4.43  -0.126065831
5.43  -0.130358402
7.43  -0.228684072
8.43  -1.422134076
10.43 -2.515439395
11.43 -0.653181018
13.43 -1.321937501
14.43 -0.076908095
15.43 -0.468232774
16.43 -0.647610916
17.43  0.358660183
18.43 -0.836714563
19.43 -0.129237512
20.43  0.128488270
22.43 -0.707033360
23.43 -0.170699423
2.44  -1.107466128
3.44  -0.243956763
4.44   0.404618379
5.44  -0.153945164
7.44  -0.516117102
8.44  -0.450071690
10.44 -2.047452532
11.44 -0.224854265
13.44 -1.261134001
14.44 -0.035320816
15.44 -1.299374842
16.44 -0.705050778
17.44  0.125147196
18.44 -0.918773200
19.44 -0.047896363
22.44 -0.628947739
23.44 -0.596693061
3.45  -0.248713286
4.45   0.377343151
5.45   0.219411827
7.45  -0.748242043
8.45   0.391728354
10.45 -1.187144789
11.45 -0.746076736
13.45 -1.078273683
14.45 -0.339952496
15.45 -1.124109864
16.45 -0.852338479
17.45  0.282831958
18.45 -0.096873152
19.45  0.383011245
20.45 -0.401359155
22.45 -0.650163913
23.45 -1.080889719
2.46  -0.326564715
3.46  -0.814515202
4.46   0.102958560
5.46  -0.206981684
7.46  -0.679398795
8.46  -1.539279178
10.46 -2.046301347
11.46 -0.972091889
13.46 -1.045257627
14.46 -0.512049252
15.46 -0.804693175
16.46 -1.370643836
17.46 -0.528810659
19.46 -0.065579650
20.46 -0.295692585
22.46 -0.235010425
23.46 -1.292799362
2.47  -0.466057859
3.47  -0.774937172
4.47  -0.214561780
5.47  -0.261562626
7.47  -0.903785975
8.47  -1.026973656
10.47 -2.864968533
11.47 -0.592982445
13.47 -1.155584358
14.47 -0.674781410
15.47 -1.188086270
16.47 -1.554512124
17.47 -0.537534254
18.47 -0.349069717
19.47 -0.025263996
20.47 -0.325967011
2.48  -1.160242079

$subject
   (Intercept)
2   0.02582024
3   0.05576585
4  -0.48334695
5  -0.66539236
7   0.03286270
8   0.40978779
10  1.86870879
11 -0.13477889
13  0.18044401
14 -0.42853845
15  0.59657529
16  0.42462811
17 -0.58797433
18 -0.10922008
19 -0.60302298
20 -0.41619093
22 -0.37865266
23  0.21252483

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-1.6806686 -0.8158509  0.8663228  0.9826814  1.0118361  1.1474065 

=============================================================

4. Additional models

4.1 SD of Acceleration - changes over time

# --- Compute SD per trial and assign trial index ---
compute_sd <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      sd_x = sd(CoM.acc.x, na.rm = TRUE),
      sd_y = sd(CoM.acc.y, na.rm = TRUE),
      sd_z = sd(CoM.acc.z, na.rm = TRUE),
      .groups = "drop"
    ) %>%
    group_by(subject, Block, phase) %>%
    arrange(trial) %>%
    mutate(TrialInBlock = row_number()) %>%
    ungroup()
}

# --- Run LMMs for SD and extract ANOVA p-values ---
run_sd_model_analysis <- function(tagged_df, label) {
  sd_df <- compute_sd(tagged_df) %>%
    mutate(
      Block = factor(Block),
      subject = factor(subject),
      phase = factor(phase)
    )

  get_anova <- function(axis) {
    model <- lmer(as.formula(paste0("sd_", axis, " ~ TrialInBlock * Block * phase + (1 + Block | subject)")),
                  data = sd_df)
    anova(model)
  }

  an_x <- get_anova("x")
  an_y <- get_anova("y")
  an_z <- get_anova("z")

  tibble(
    Dataset = label,
    Axis = c("X", "Y", "Z"),
    `TrialInBlock p-value` = c(an_x["TrialInBlock", "Pr(>F)"], an_y["TrialInBlock", "Pr(>F)"], an_z["TrialInBlock", "Pr(>F)"]),
    `Block p-value`         = c(an_x["Block", "Pr(>F)"], an_y["Block", "Pr(>F)"], an_z["Block", "Pr(>F)"]),
    `Phase p-value`         = c(an_x["phase", "Pr(>F)"], an_y["phase", "Pr(>F)"], an_z["phase", "Pr(>F)"]),
    `TrialInBlock:Block p`  = c(an_x["TrialInBlock:Block", "Pr(>F)"], an_y["TrialInBlock:Block", "Pr(>F)"], an_z["TrialInBlock:Block", "Pr(>F)"]),
    `TrialInBlock:Phase p`  = c(an_x["TrialInBlock:phase", "Pr(>F)"], an_y["TrialInBlock:phase", "Pr(>F)"], an_z["TrialInBlock:phase", "Pr(>F)"]),
    `Block:Phase p`         = c(an_x["Block:phase", "Pr(>F)"], an_y["Block:phase", "Pr(>F)"], an_z["Block:phase", "Pr(>F)"]),
    `3-way p-value`         = c(an_x["TrialInBlock:Block:phase", "Pr(>F)"],
                                an_y["TrialInBlock:Block:phase", "Pr(>F)"],
                                an_z["TrialInBlock:Block:phase", "Pr(>F)"])
  )
}


# Use already-tagged data if available
sd_mixed_pvals <- run_sd_model_analysis(tagged_data, "Mixed")
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00251375 (tol = 0.002, component 1)
print(sd_mixed_pvals)
# A tibble: 3 × 9
  Dataset Axis  `TrialInBlock p-value` `Block p-value` `Phase p-value`
  <chr>   <chr>                  <dbl>           <dbl>           <dbl>
1 Mixed   X                   0.125          0.0000460               0
2 Mixed   Y                   0.0904         0.00158                 0
3 Mixed   Z                   0.000567       0.00182                 0
# ℹ 4 more variables: `TrialInBlock:Block p` <dbl>,
#   `TrialInBlock:Phase p` <dbl>, `Block:Phase p` <dbl>, `3-way p-value` <dbl>
# --- Suppress emmeans/pbkrtest warnings globally ---
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# --- Compute SD per trial and assign trial index ---
compute_sd <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      sd_x = sd(CoM.acc.x, na.rm = TRUE),
      sd_y = sd(CoM.acc.y, na.rm = TRUE),
      sd_z = sd(CoM.acc.z, na.rm = TRUE),
      .groups = "drop"
    ) %>%
    group_by(subject, Block, phase) %>%
    arrange(trial) %>%
    mutate(TrialInBlock = row_number()) %>%
    ungroup()
}

# --- Extended: Run SD LMM with Full Output per Axis ---
run_sd_model_diagnostics <- function(tagged_df, label) {
  sd_df <- compute_sd(tagged_df) %>%
    mutate(
      Block = factor(Block),
      subject = factor(subject),
      phase = factor(phase)
    )

  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    model <- lmer(
      as.formula(paste0("sd_", axis, " ~ TrialInBlock * Block * phase + (1 + Block | subject)")),
      data = sd_df
    )

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      ANOVA = anova(model),
      Emmeans = emmeans(model, ~ Block * phase),
      FixedEffects = fixef(model),
      RandomEffects = ranef(model),
      ScaledResiduals = resid(model, scaled = TRUE),
      Model = model
    )
  }

  return(results)
}

# --- Run Extended SD Diagnostics ---
sd_mixed_diagnostics <- run_sd_model_diagnostics(tagged_data, "Mixed")
NOTE: Results may be misleading due to involvement in interactions
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00251375 (tol = 0.002, component 1)
NOTE: Results may be misleading due to involvement in interactions
NOTE: Results may be misleading due to involvement in interactions
# --- Print Diagnostics Example (Axis X) ---
cat("\n=== SD LMM: Axis X ===\n")

=== SD LMM: Axis X ===
print(sd_mixed_diagnostics$Mixed_X$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                          Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               0.135   0.135     1 5746.5    2.3590    0.1246    
Block                      1.972   0.493     4   38.6    8.5982 4.597e-05 ***
phase                    249.104 249.104     1 6434.0 4345.2038 < 2.2e-16 ***
TrialInBlock:Block         1.553   0.388     4 4790.3    6.7711 1.975e-05 ***
TrialInBlock:phase        17.954  17.954     1 6434.8  313.1832 < 2.2e-16 ***
Block:phase                6.784   1.696     4 6434.0   29.5819 < 2.2e-16 ***
TrialInBlock:Block:phase   7.883   1.971     4 6434.8   34.3752 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(sd_mixed_diagnostics$Mixed_X$Emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.8589 0.0463 17.8   0.7616    0.956
 2     Execution   0.7722 0.0460 18.1   0.6757    0.869
 3     Execution   0.5958 0.0348 21.3   0.5235    0.668
 4     Execution   0.7512 0.0372 18.0   0.6730    0.829
 5     Execution   0.5829 0.0234 19.8   0.5341    0.632
 1     Preparation 0.0665 0.0462 17.7  -0.0307    0.164
 2     Preparation 0.1416 0.0459 18.0   0.0451    0.238
 3     Preparation 0.2170 0.0346 20.9   0.1450    0.289
 4     Preparation 0.1057 0.0372 18.0   0.0275    0.184
 5     Preparation 0.1058 0.0233 19.8   0.0570    0.154

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(sd_mixed_diagnostics$Mixed_X$FixedEffects)
                         (Intercept)                         TrialInBlock 
                        0.8670157681                        -0.0004070869 
                              Block2                               Block3 
                        0.0559088391                        -0.0360016658 
                              Block4                               Block5 
                       -0.0267292326                        -0.2966271553 
                    phasePreparation                  TrialInBlock:Block2 
                       -0.8045860884                        -0.0071820838 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                       -0.0114413892                        -0.0040774891 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                        0.0010358221                         0.0006132538 
             Block2:phasePreparation              Block3:phasePreparation 
                       -0.1321684047                        -0.0065997845 
             Block4:phasePreparation              Block5:phasePreparation 
                       -0.0350077883                         0.2389905765 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                        0.0148035495                         0.0211674507 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                        0.0091604473                         0.0038433568 
print(sd_mixed_diagnostics$Mixed_X$RandomEffects)
$subject
    (Intercept)      Block2        Block3      Block4       Block5
2  -0.002988795  0.14156712  0.1581594223  0.08769465  0.059652684
3   0.212609300 -0.20029327 -0.2619025889 -0.27899585 -0.250960985
4  -0.085181378 -0.05349970 -0.0210815156 -0.01082793  0.060289294
5  -0.114621143 -0.06346916 -0.0538648037 -0.09673877 -0.035267752
7  -0.082730012  0.03177071  0.0723551492  0.06539204  0.005344579
8   0.023389807  0.04016877 -0.0008738165  0.05538312  0.048245656
10  0.320251535  0.17728157  0.0556958401  0.09787794 -0.082884933
11  0.420755543 -0.04364919 -0.2389522326 -0.17238057 -0.343794765
13 -0.105300030 -0.01409427  0.0304672747  0.08532433  0.075952557
14  0.121575104 -0.04358855 -0.0843247333 -0.08775479 -0.063264006
15 -0.120445885  0.01060097  0.0514848796  0.01798462  0.187721830
16 -0.103117330  0.06730267  0.1317134148  0.17176740  0.072982024
17 -0.192825214  0.04684707  0.1279847332  0.09152784  0.153400768
18 -0.097032137  0.05689834  0.1338593646  0.13412624  0.065676588
19 -0.199767968  0.01788578  0.0733258041  0.05520932  0.084107052
20 -0.126808714 -0.00562211  0.0126196789 -0.02084153  0.061604516
22 -0.156404295  0.02848354  0.0755602517  0.05215784  0.130604689
23  0.288641611 -0.19459030 -0.2622261227 -0.24690591 -0.229409796

with conditional variances for "subject" 
print(head(sd_mixed_diagnostics$Mixed_X$ScaledResiduals))
         1          2          3          4          5          6 
-0.2362797 -0.1681371  0.1413259 -1.0167938  0.3667212 -0.5659619 
# --- Print Diagnostics Example (Axis X) ---
cat("\n=== SD LMM: Axis Y ===\n")

=== SD LMM: Axis Y ===
print(sd_mixed_diagnostics$Mixed_Y$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                          Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               0.232   0.232     1 5188.0    2.8680  0.090415 .  
Block                      1.718   0.430     4   39.9    5.3171  0.001578 ** 
phase                    279.561 279.561     1 6435.5 3460.2860 < 2.2e-16 ***
TrialInBlock:Block         0.663   0.166     4 5224.0    2.0511  0.084541 .  
TrialInBlock:phase        20.396  20.396     1 6436.2  252.4581 < 2.2e-16 ***
Block:phase                5.904   1.476     4 6435.5   18.2685 6.184e-15 ***
TrialInBlock:Block:phase   9.118   2.279     4 6436.2   28.2133 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(sd_mixed_diagnostics$Mixed_Y$Emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   0.9118 0.0586 17.7   0.7885    1.035
 2     Execution   0.8268 0.0548 18.1   0.7116    0.942
 3     Execution   0.6162 0.0367 22.7   0.5402    0.692
 4     Execution   0.7805 0.0422 18.1   0.6918    0.869
 5     Execution   0.6118 0.0242 20.8   0.5614    0.662
 1     Preparation 0.0672 0.0585 17.6  -0.0560    0.190
 2     Preparation 0.1630 0.0548 18.0   0.0479    0.278
 3     Preparation 0.2246 0.0364 22.1   0.1490    0.300
 4     Preparation 0.1009 0.0422 18.1   0.0123    0.190
 5     Preparation 0.1000 0.0242 20.7   0.0496    0.150

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(sd_mixed_diagnostics$Mixed_Y$FixedEffects)
                         (Intercept)                         TrialInBlock 
                        0.8897810297                         0.0011082715 
                              Block2                               Block3 
                        0.0822160265                        -0.0101378448 
                              Block4                               Block5 
                       -0.0282883665                        -0.2550414971 
                    phasePreparation                  TrialInBlock:Block2 
                       -0.8348514013                        -0.0084211023 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                       -0.0143766421                        -0.0051883951 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                       -0.0022635025                        -0.0004895652 
             Block2:phasePreparation              Block3:phasePreparation 
                       -0.1570715557                        -0.0244418559 
             Block4:phasePreparation              Block5:phasePreparation 
                       -0.0371109447                         0.2002025356 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                        0.0170130632                         0.0240441539 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                        0.0101794347                         0.0066785128 
print(sd_mixed_diagnostics$Mixed_Y$RandomEffects)
$subject
   (Intercept)       Block2      Block3      Block4      Block5
2  -0.08234594  0.185087259  0.21785201  0.17962949  0.17679332
3   0.04611270  0.030726485  0.03928753  0.02114883 -0.01357963
4  -0.18744612 -0.017242124  0.08289313  0.04887136  0.15646520
5  -0.22431229 -0.007321099  0.06374761  0.02113200  0.08861165
7  -0.11122260  0.029650181  0.06720228  0.03336942  0.12308974
8   0.14526321  0.086655267 -0.05307747  0.01753172 -0.09464450
10  0.45010656  0.015506627 -0.07733778 -0.01851272 -0.22497245
11  0.50219223  0.052184107 -0.38386833 -0.19761004 -0.53817922
13  0.08345246 -0.174887857 -0.19853261 -0.17321943 -0.11352360
14  0.13354972 -0.095393264 -0.13814968 -0.12584080 -0.13187409
15 -0.12732127 -0.048888855  0.07609548  0.03206445  0.16208994
16 -0.12626597  0.073484805  0.15052722  0.13297897  0.16768904
17 -0.25109265  0.127282488  0.21870252  0.16863979  0.23151458
18 -0.09146300  0.015964763  0.13349575  0.08206185  0.06999104
19 -0.21066210  0.020881983  0.03255722  0.01429839  0.06453651
20 -0.15620016  0.052418546  0.04419543  0.01924245  0.03648449
22 -0.20574993  0.010400748  0.08228253  0.04755815  0.15636494
23  0.41340515 -0.356510062 -0.35787284 -0.30334390 -0.31685696

with conditional variances for "subject" 
print(head(sd_mixed_diagnostics$Mixed_Y$ScaledResiduals))
         1          2          3          4          5          6 
-0.1962739 -0.2278271  0.4396876 -0.6653148 -0.1065930 -0.6182290 
# --- Print Diagnostics Example (Axis X) ---
cat("\n=== SD LMM: Axis Z ===\n")

=== SD LMM: Axis Z ===
print(sd_mixed_diagnostics$Mixed_Z$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                         Sum Sq Mean Sq NumDF  DenDF   F value    Pr(>F)    
TrialInBlock               2.52    2.52     1 5510.2   11.8939 0.0005674 ***
Block                      4.44    1.11     4   38.5    5.2332 0.0018246 ** 
phase                    782.80  782.80     1 6435.6 3691.2368 < 2.2e-16 ***
TrialInBlock:Block         3.26    0.81     4 5576.1    3.8377 0.0040594 ** 
TrialInBlock:phase        50.32   50.32     1 6436.2  237.2811 < 2.2e-16 ***
Block:phase               16.84    4.21     4 6435.7   19.8532 2.922e-16 ***
TrialInBlock:Block:phase  26.47    6.62     4 6436.3   31.1994 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(sd_mixed_diagnostics$Mixed_Z$Emmeans))
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Execution   1.4196 0.0878 17.8   1.2351    1.604
 2     Execution   1.3741 0.0888 18.1   1.1877    1.561
 3     Execution   1.0528 0.0687 21.1   0.9100    1.196
 4     Execution   1.3081 0.0666 18.2   1.1682    1.448
 5     Execution   1.0221 0.0508 19.1   0.9158    1.128
 1     Preparation 0.0748 0.0876 17.7  -0.1095    0.259
 2     Preparation 0.2279 0.0887 18.0   0.0415    0.414
 3     Preparation 0.3327 0.0684 20.7   0.1904    0.475
 4     Preparation 0.1288 0.0666 18.2  -0.0111    0.269
 5     Preparation 0.1267 0.0508 19.1   0.0204    0.233

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(sd_mixed_diagnostics$Mixed_Z$FixedEffects)
                         (Intercept)                         TrialInBlock 
                         1.341741268                          0.003922163 
                              Block2                               Block3 
                         0.185823520                          0.149101971 
                              Block4                               Block5 
                         0.120401517                         -0.321050371 
                    phasePreparation                  TrialInBlock:Block2 
                        -1.298535171                         -0.011649781 
                 TrialInBlock:Block3                  TrialInBlock:Block4 
                        -0.025982147                         -0.011679048 
                 TrialInBlock:Block5        TrialInBlock:phasePreparation 
                        -0.003849036                         -0.002329397 
             Block2:phasePreparation              Block3:phasePreparation 
                        -0.307614345                         -0.216104710 
             Block4:phasePreparation              Block5:phasePreparation 
                        -0.226894068                          0.227467258 
TrialInBlock:Block2:phasePreparation TrialInBlock:Block3:phasePreparation 
                         0.025491280                          0.042344641 
TrialInBlock:Block4:phasePreparation TrialInBlock:Block5:phasePreparation 
                         0.019758505                          0.011175646 
print(sd_mixed_diagnostics$Mixed_Z$RandomEffects)
$subject
   (Intercept)        Block2       Block3      Block4      Block5
2  -0.30814638  0.2294529029  0.355770427  0.26626784  0.32513676
3   0.33931050 -0.2224618321 -0.274188557 -0.26835375 -0.34185102
4  -0.16498059 -0.1098020214 -0.044309010 -0.03275700  0.12512196
5  -0.32110439 -0.0249757532  0.007379763 -0.01210276 -0.01133951
7  -0.01433727  0.0191648020  0.113187192  0.10448933 -0.01003884
8   0.23908248  0.1732785798 -0.045565883  0.04541524 -0.04813707
10  0.48215997  0.1960701192  0.173182408  0.10486479  0.03346474
11  0.86180585  0.0216850999 -0.638736567 -0.45985346 -0.84410570
13  0.12409308 -0.2496958168 -0.280339405 -0.22561690  0.01598564
14 -0.03086219 -0.0048061321  0.090539945  0.05475269 -0.03247776
15 -0.13856395 -0.1082509979 -0.045030319 -0.06627008  0.31934134
16 -0.08506709  0.2409337594  0.259708867  0.22973424  0.19159645
17 -0.45334855  0.0935573501  0.313503133  0.24907473  0.31135975
18 -0.08421651  0.0808597662  0.349342671  0.25776675  0.04866049
19 -0.31123439 -0.0307044060 -0.024431129 -0.02492679  0.03281403
20 -0.25232766  0.0136265854  0.020800977  0.01380094  0.07789839
22 -0.39354146 -0.0009274911  0.047353663  0.03946954  0.19078152
23  0.51127856 -0.3170045144 -0.378168178 -0.27575534 -0.38421115

with conditional variances for "subject" 
print(head(sd_mixed_diagnostics$Mixed_Z$ScaledResiduals))
           1            2            3            4            5            6 
 0.405538236  0.082510827 -0.253608734 -1.000084912  0.003132928 -0.709006436 

4.2 LMM step level

# Extract Step-Level RMS with ±3 Line Buffer Around Markers 
extract_step_rms <- function(df, label) {
  buffer <- 3
  step_markers <- c(14, 15, 16, 17)

  step_data <- df %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  # Extract ±3 rows around each marker
  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  # Compute RMS over buffered region
  window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = gsub("rms_", "", Axis),
      Dataset = label,
      Step = factor(Step),         # ✅ Now a factor
      subject = factor(subject),
      Block = factor(Block)
    )
}


# --- Run Step-Level LMMs and Extract ANOVA p-values ---
run_step_model <- function(df, label) {
  get_anova <- function(axis_label) {
    model <- lmer(RMS ~ Step * Block + (1 | subject), data = filter(df, Axis == axis_label))
    anova(model)
  }

  ax <- get_anova("x")
  ay <- get_anova("y")
  az <- get_anova("z")

  tibble(
    Dataset = label,
    Axis = c("X", "Y", "Z"),
    `Step p-value` = c(ax["Step", "Pr(>F)"], ay["Step", "Pr(>F)"], az["Step", "Pr(>F)"]),
    `Block p-value` = c(ax["Block", "Pr(>F)"], ay["Block", "Pr(>F)"], az["Block", "Pr(>F)"]),
    `Interaction p-value` = c(ax["Step:Block", "Pr(>F)"], ay["Step:Block", "Pr(>F)"], az["Step:Block", "Pr(>F)"])
  )
}


# --- Execute Updated Step-Level RMS Analysis ---
step_rms_data <- extract_step_rms(tagged_data, "Mixed")
step_model_results <- run_step_model(step_rms_data, "Mixed")
fixed-effect model matrix is rank deficient so dropping 18 columns / coefficients
Missing cells for: Step7:Block1, Step8:Block1, Step9:Block1, Step10:Block1, Step11:Block1, Step12:Block1, Step13:Block1, Step14:Block1, Step15:Block1, Step16:Block1, Step17:Block1, Step18:Block1, Step13:Block2, Step14:Block2, Step15:Block2, Step16:Block2, Step17:Block2, Step18:Block2.  
Interpret type III hypotheses with care.
fixed-effect model matrix is rank deficient so dropping 18 columns / coefficients
Missing cells for: Step7:Block1, Step8:Block1, Step9:Block1, Step10:Block1, Step11:Block1, Step12:Block1, Step13:Block1, Step14:Block1, Step15:Block1, Step16:Block1, Step17:Block1, Step18:Block1, Step13:Block2, Step14:Block2, Step15:Block2, Step16:Block2, Step17:Block2, Step18:Block2.  
Interpret type III hypotheses with care.
fixed-effect model matrix is rank deficient so dropping 18 columns / coefficients
Missing cells for: Step7:Block1, Step8:Block1, Step9:Block1, Step10:Block1, Step11:Block1, Step12:Block1, Step13:Block1, Step14:Block1, Step15:Block1, Step16:Block1, Step17:Block1, Step18:Block1, Step13:Block2, Step14:Block2, Step15:Block2, Step16:Block2, Step17:Block2, Step18:Block2.  
Interpret type III hypotheses with care.
# --- Output ---
print(step_model_results)
# A tibble: 3 × 5
  Dataset Axis  `Step p-value` `Block p-value` `Interaction p-value`
  <chr>   <chr>          <dbl>           <dbl>                 <dbl>
1 Mixed   X            0.0125         5.77e-36                  1.00
2 Mixed   Y            0.00339        7.44e-15                  1.00
3 Mixed   Z            0.0537         2.89e-28                  1.00
# -------- Suppress Emmeans Warnings Globally --------
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# --- Extract Step-Level RMS with ±3 Row Buffer Around Markers ---
extract_step_rms <- function(df, label) {
  buffer <- 3
  step_markers <- c(14, 15, 16, 17)

  step_data <- df %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = gsub("rms_", "", Axis),
      Dataset = label,
      Step = as.numeric(Step),
      subject = factor(subject),
      Block = factor(Block)
    )
}

# --- Run Step-Level LMMs with Full Diagnostics ---
run_step_model_diagnostics <- function(df, label) {
  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    data_sub <- df %>% filter(Axis == axis)
    model <- lmer(RMS ~ Step * Block + (1 | subject), data = data_sub)

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      ANOVA = anova(model),
      Emmeans = emmeans(model, ~ Step * Block),
      FixedEffects = fixef(model),
      RandomEffects = ranef(model),
      ScaledResiduals = resid(model, scaled = TRUE),
      Model = model
    )
  }

  return(results)
}

# --- Run Analysis and Extract Diagnostics ---
step_rms_data <- extract_step_rms(tagged_data, "Mixed")
step_model_diag_results <- run_step_model_diagnostics(step_rms_data, "Mixed")

# --- Print Diagnostics Example for Axis X ---
cat("\n=== STEP-LEVEL RMS LMM: Axis X ===\n")

=== STEP-LEVEL RMS LMM: Axis X ===
print(step_model_diag_results$Mixed_X$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step       0.23877 0.23877     1  1269  6.9077  0.008686 ** 
Block      2.41418 0.60355     4  1269 17.4610 5.874e-14 ***
Step:Block 0.31355 0.07839     4  1269  2.2678  0.059955 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(step_model_diag_results$Mixed_X$Emmeans))
 Step Block emmean     SE   df lower.CL upper.CL
  8.5 1      0.926 0.0896 43.8    0.745    1.106
  8.5 2      0.780 0.0720 18.3    0.629    0.931
  8.5 3      0.655 0.0713 17.6    0.505    0.805
  8.5 4      0.759 0.0713 17.6    0.609    0.909
  8.5 5      0.654 0.0713 17.6    0.504    0.804

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(step_model_diag_results$Mixed_X$FixedEffects)
 (Intercept)         Step       Block2       Block3       Block4       Block5 
 0.915119362  0.001237707 -0.001022194 -0.210534955 -0.100201149 -0.229933792 
 Step:Block2  Step:Block3  Step:Block4  Step:Block5 
-0.017027599 -0.007057896 -0.007769410 -0.004876759 
print(step_model_diag_results$Mixed_X$RandomEffects)
$subject
   (Intercept)
2   0.11002898
3   0.03724100
4  -0.24933085
5  -0.34342046
7  -0.15999779
8   0.31398331
10  0.81534049
11  0.52169432
13 -0.18853320
14  0.03463009
15 -0.06972254
16 -0.06112373
17 -0.18563684
18 -0.03037388
19 -0.28291659
20 -0.24510198
22 -0.14256874
23  0.12580842

with conditional variances for "subject" 
print(head(step_model_diag_results$Mixed_X$ScaledResiduals))
        1         2         3         4         5         6 
-2.407074 -2.365733 -2.359757 -2.366414 -2.201504 -2.278840 
# --- Print Diagnostics Example for Axis Y ---
cat("\n=== STEP-LEVEL RMS LMM: Axis Y ===\n")

=== STEP-LEVEL RMS LMM: Axis Y ===
print(step_model_diag_results$Mixed_Y$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step       0.44036 0.44036     1  1269  6.1963   0.01293 *  
Block      2.38367 0.59592     4  1269  8.3853 1.123e-06 ***
Step:Block 0.36458 0.09115     4  1269  1.2825   0.27483    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(step_model_diag_results$Mixed_Y$Emmeans))
 Step Block emmean     SE   df lower.CL upper.CL
  8.5 1      0.920 0.1120 67.1    0.697    1.143
  8.5 2      0.852 0.0814 19.2    0.682    1.022
  8.5 3      0.676 0.0801 17.9    0.507    0.844
  8.5 4      0.812 0.0801 17.9    0.644    0.980
  8.5 5      0.750 0.0801 17.9    0.582    0.918

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(step_model_diag_results$Mixed_Y$FixedEffects)
 (Intercept)         Step       Block2       Block3       Block4       Block5 
 0.935720192 -0.001859348  0.011416990 -0.219819184 -0.009199095 -0.098823885 
 Step:Block2  Step:Block3  Step:Block4  Step:Block5 
-0.009354914 -0.002880084 -0.011599384 -0.008347937 
print(step_model_diag_results$Mixed_Y$RandomEffects)
$subject
    (Intercept)
2   0.215930304
3   0.181924219
4  -0.295210899
5  -0.351153879
7  -0.199510787
8   0.404200990
10  0.767464280
11  0.428233663
13 -0.188243262
14  0.005818085
15 -0.130100848
16 -0.078256254
17 -0.160586355
18 -0.075812111
19 -0.347035341
20 -0.274834330
22 -0.351687924
23  0.448860452

with conditional variances for "subject" 
print(head(step_model_diag_results$Mixed_Y$ScaledResiduals))
        1         2         3         4         5         6 
-2.024183 -2.162425 -2.129534 -2.122559 -2.028701 -1.911946 
# --- Print Diagnostics Example for Axis Z ---
cat("\n=== STEP-LEVEL RMS LMM: Axis Z ===\n")

=== STEP-LEVEL RMS LMM: Axis Z ===
print(step_model_diag_results$Mixed_Z$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Step       0.5721 0.57209     1  1269  3.6005   0.05799 .  
Block      9.0610 2.26524     4  1269 14.2565 2.181e-11 ***
Step:Block 1.4199 0.35499     4  1269  2.2341   0.06333 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(step_model_diag_results$Mixed_Z$Emmeans))
 Step Block emmean    SE   df lower.CL upper.CL
  8.5 1       1.94 0.201 39.4     1.54     2.35
  8.5 2       1.72 0.166 18.1     1.37     2.06
  8.5 3       1.44 0.164 17.5     1.09     1.78
  8.5 4       1.65 0.164 17.5     1.30     2.00
  8.5 5       1.43 0.164 17.5     1.09     1.78

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(step_model_diag_results$Mixed_Z$FixedEffects)
 (Intercept)         Step       Block2       Block3       Block4       Block5 
 1.907241742  0.004300091 -0.062824207 -0.428918866 -0.072468609 -0.387961951 
 Step:Block2  Step:Block3  Step:Block4  Step:Block5 
-0.019328358 -0.009085057 -0.026036291 -0.014328949 
print(step_model_diag_results$Mixed_Z$RandomEffects)
$subject
   (Intercept)
2  -0.09776719
3   0.29920593
4  -0.65956180
5  -0.81472718
7   0.13898391
8   0.55945688
10  1.96205535
11  0.83171422
13 -0.13930132
14 -0.26992210
15 -0.04939117
16  0.15528059
17 -0.64051400
18  0.33940562
19 -0.73185992
20 -0.59496903
22 -0.59578675
23  0.30769796

with conditional variances for "subject" 
print(head(step_model_diag_results$Mixed_Z$ScaledResiduals))
        1         2         3         4         5         6 
-1.707922 -1.851905 -2.013106 -2.023894 -2.268428 -2.198652 

#4.3 Model: Does Sequence Length Influence RMS?

# --- Compute RMS with Sequence Length per Trial ---
compute_step_rms_with_sequence_length <- function(df, label) {
  df %>%
    filter(phase == "Execution", Marker.Text %in% c(14, 15, 16, 17)) %>%
    group_by(subject, Block, trial) %>%
    mutate(SequenceLength = n()) %>%
    group_by(subject, Block, trial, Marker.Text, SequenceLength) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = gsub("rms_", "", Axis),
      Dataset = label,
      subject = factor(subject),
      SequenceLength = factor(SequenceLength)
    )
}

# --- LMM per Axis for Sequence Length Effect ---
run_sequence_length_model <- function(df, label) {
  get_anova <- function(axis_label) {
    model <- lmer(RMS ~ SequenceLength + (1 | subject), data = filter(df, Axis == axis_label))
    anova(model)
  }

  ax <- get_anova("x")
  ay <- get_anova("y")
  az <- get_anova("z")

  tibble(
    Dataset = label,
    Axis = c("X", "Y", "Z"),
    `SequenceLength p-value` = c(ax["SequenceLength", "Pr(>F)"],
                                 ay["SequenceLength", "Pr(>F)"],
                                 az["SequenceLength", "Pr(>F)"])
  )
}

# --- Run Sequence Length Analysis on Mixed Data ---
step_rms_seq_mixed <- compute_step_rms_with_sequence_length(tagged_data, "Mixed")
seq_length_pvals <- run_sequence_length_model(step_rms_seq_mixed, "Mixed")

# --- Display Results ---
print(seq_length_pvals)
# A tibble: 3 × 3
  Dataset Axis  `SequenceLength p-value`
  <chr>   <chr>                    <dbl>
1 Mixed   X                0.00000000547
2 Mixed   Y                0.0000863    
3 Mixed   Z                0.000000826  
# --- Suppress lmerTest/pbkrtest warnings globally ---
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# --- Compute RMS with Sequence Length per Trial ---
compute_step_rms_with_sequence_length <- function(df, label) {
  df %>%
    filter(phase == "Execution", Marker.Text %in% c(14, 15, 16, 17)) %>%
    group_by(subject, Block, trial) %>%
    mutate(SequenceLength = n()) %>%
    group_by(subject, Block, trial, Marker.Text, SequenceLength) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = gsub("rms_", "", Axis),
      Dataset = label,
      subject = factor(subject),
      SequenceLength = factor(SequenceLength)
    )
}

# --- Extended: LMM per Axis for Sequence Length Effect + Diagnostics ---
run_sequence_length_model_diagnostics <- function(df, label) {
  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    model <- lmer(RMS ~ SequenceLength + (1 | subject), data = filter(df, Axis == axis))

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      ANOVA = anova(model),
      Emmeans = emmeans(model, ~ SequenceLength),
      FixedEffects = fixef(model),
      RandomEffects = ranef(model),
      ScaledResiduals = resid(model, scaled = TRUE),
      Model = model
    )
  }

  return(results)
}

# --- Run Model and Extract Diagnostics ---
step_rms_seq_mixed <- compute_step_rms_with_sequence_length(tagged_data, "Mixed")
seq_length_diag <- run_sequence_length_model_diagnostics(step_rms_seq_mixed, "Mixed")

# --- Display Diagnostics for Axis X ---
cat("\n=== SEQUENCE LENGTH RMS MODEL: Axis X ===\n")

=== SEQUENCE LENGTH RMS MODEL: Axis X ===
print(seq_length_diag$Mixed_X$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
SequenceLength 12.509  2.5017     5 12832  9.4326 5.467e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_diag$Mixed_X$Emmeans))
 SequenceLength  emmean     SE     df lower.CL upper.CL
 4               0.7637 0.1930 1641.3    0.386    1.141
 5               0.8554 0.1360  445.2    0.588    1.123
 6               0.6433 0.0600   17.4    0.517    0.770
 11             -0.0672 0.1920 1626.5   -0.444    0.309
 12              0.6300 0.0601   17.4    0.504    0.757
 18              0.5853 0.0601   17.5    0.459    0.712

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_diag$Mixed_X$FixedEffects)
     (Intercept)  SequenceLength5  SequenceLength6 SequenceLength11 
      0.76370009       0.09171029      -0.12044732      -0.83088215 
SequenceLength12 SequenceLength18 
     -0.13366738      -0.17843204 
print(seq_length_diag$Mixed_X$RandomEffects)
$subject
   (Intercept)
2   0.02489508
3   0.08326921
4  -0.21935031
5  -0.28237119
7  -0.15103986
8   0.26310369
10  0.67778730
11  0.41232158
13 -0.18595566
14  0.06469506
15 -0.01953860
16 -0.03857193
17 -0.18366675
18 -0.06357062
19 -0.25103141
20 -0.19254560
22 -0.11384027
23  0.17541029

with conditional variances for "subject" 
print(head(seq_length_diag$Mixed_X$ScaledResiduals))
         1          2          3          4          5          6 
-0.6827629 -0.8548025  0.0423730 -0.1269665 -0.7462673 -0.5825483 
# --- Display Diagnostics for Axis Y ---
cat("\n=== SEQUENCE LENGTH RMS MODEL: Axis Y ===\n")

=== SEQUENCE LENGTH RMS MODEL: Axis Y ===
print(seq_length_diag$Mixed_Y$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
SequenceLength 8.5664  1.7133     5 12832  5.2197 8.629e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_diag$Mixed_Y$Emmeans))
 SequenceLength emmean     SE     df lower.CL upper.CL
 4               0.661 0.2140 1654.1    0.241    1.081
 5               0.462 0.1510  448.7    0.165    0.759
 6               0.661 0.0666   17.4    0.520    0.801
 11              0.275 0.2140 1639.3   -0.144    0.694
 12              0.669 0.0667   17.4    0.529    0.810
 18              0.615 0.0667   17.5    0.475    0.756

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_diag$Mixed_Y$FixedEffects)
     (Intercept)  SequenceLength5  SequenceLength6 SequenceLength11 
    0.6613243056    -0.1994382630    -0.0007259362    -0.3866337575 
SequenceLength12 SequenceLength18 
    0.0081033492    -0.0460787019 
print(seq_length_diag$Mixed_Y$RandomEffects)
$subject
   (Intercept)
2   0.16437097
3   0.16331899
4  -0.27385113
5  -0.29253679
7  -0.15742241
8   0.34376582
10  0.70260269
11  0.37257745
13 -0.18343453
14  0.08767554
15 -0.12664871
16 -0.04886466
17 -0.14491544
18 -0.04644085
19 -0.27856427
20 -0.21896539
22 -0.28502361
23  0.22235631

with conditional variances for "subject" 
print(head(seq_length_diag$Mixed_Y$ScaledResiduals))
         1          2          3          4          5          6 
-0.9029029 -1.3907004 -0.9201271 -1.0519783 -1.3013022 -1.2657374 
# --- Display Diagnostics for Axis Z ---
cat("\n=== SEQUENCE LENGTH RMS MODEL: Axis Z ===\n")

=== SEQUENCE LENGTH RMS MODEL: Axis Z ===
print(seq_length_diag$Mixed_Z$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
SequenceLength 38.542  7.7084     5 12832  7.2702 8.257e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_diag$Mixed_Z$Emmeans))
 SequenceLength emmean    SE     df lower.CL upper.CL
 4              1.6260 0.390 1124.9    0.861    2.391
 5              1.2101 0.279  310.6    0.662    1.758
 6              1.4232 0.135   17.3    1.139    1.707
 11             0.0696 0.389 1114.3   -0.693    0.832
 12             1.3848 0.135   17.3    1.101    1.669
 18             1.3171 0.135   17.4    1.033    1.601

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_diag$Mixed_Z$FixedEffects)
     (Intercept)  SequenceLength5  SequenceLength6 SequenceLength11 
       1.6259910       -0.4159359       -0.2028338       -1.5564279 
SequenceLength12 SequenceLength18 
      -0.2411451       -0.3089131 
print(seq_length_diag$Mixed_Z$RandomEffects)
$subject
   (Intercept)
2  -0.14574863
3   0.29801432
4  -0.60504327
5  -0.72630042
7   0.17801680
8   0.52524867
10  1.41134086
11  0.69413886
13 -0.10292345
14 -0.32161570
15  0.03962644
16  0.19739584
17 -0.61375376
18  0.33765739
19 -0.63553399
20 -0.48683277
22 -0.46516627
23  0.42147909

with conditional variances for "subject" 
print(head(seq_length_diag$Mixed_Z$ScaledResiduals))
          1           2           3           4           5           6 
-0.73126265 -0.36255661 -0.95756250 -0.10941782  0.18974358 -0.08769942 

#4.4 Model: Does Sequence Length Influence SD?

# --- Compute SD with Sequence Length per Trial ---
compute_step_sd_with_sequence_length <- function(df, label) {
  df %>%
    filter(phase == "Execution", Marker.Text %in% c(14, 15, 16, 17)) %>%
    group_by(subject, Block, trial) %>%
    mutate(SequenceLength = n()) %>%
    group_by(subject, Block, trial, Marker.Text, SequenceLength) %>%
    summarise(
      sd_x = sd(CoM.acc.x, na.rm = TRUE),
      sd_y = sd(CoM.acc.y, na.rm = TRUE),
      sd_z = sd(CoM.acc.z, na.rm = TRUE),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("sd_"), names_to = "Axis", values_to = "SD") %>%
    mutate(
      Axis = gsub("sd_", "", Axis),
      Dataset = label,
      subject = factor(subject),
      SequenceLength = factor(SequenceLength)
    )
}

# --- LMM per Axis for Sequence Length Effect on SD ---
run_sequence_length_sd_model <- function(df, label) {
  get_anova <- function(axis_label) {
    model <- lmer(SD ~ SequenceLength + (1 | subject), data = filter(df, Axis == axis_label))
    anova(model)
  }

  ax <- get_anova("x")
  ay <- get_anova("y")
  az <- get_anova("z")

  tibble(
    Dataset = label,
    Axis = c("X", "Y", "Z"),
    `SequenceLength p-value` = c(ax["SequenceLength", "Pr(>F)"],
                                 ay["SequenceLength", "Pr(>F)"],
                                 az["SequenceLength", "Pr(>F)"])
  )
}

# --- Run Sequence Length SD Analysis on Mixed Data ---
step_sd_seq_mixed <- compute_step_sd_with_sequence_length(tagged_data, "Mixed")
seq_length_sd_pvals <- run_sequence_length_sd_model(step_sd_seq_mixed, "Mixed")

# --- Display SD Model Results ---
print(seq_length_sd_pvals)
# A tibble: 3 × 3
  Dataset Axis  `SequenceLength p-value`
  <chr>   <chr>                    <dbl>
1 Mixed   X                    0.000210 
2 Mixed   Y                    0.0214   
3 Mixed   Z                    0.0000533
# --- Suppress emmeans/pbkrtest warnings globally ---
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

# --- Compute SD with Sequence Length per Trial ---
compute_step_sd_with_sequence_length <- function(df, label) {
  df %>%
    filter(phase == "Execution", Marker.Text %in% c(14, 15, 16, 17)) %>%
    group_by(subject, Block, trial) %>%
    mutate(SequenceLength = n()) %>%
    group_by(subject, Block, trial, Marker.Text, SequenceLength) %>%
    summarise(
      sd_x = sd(CoM.acc.x, na.rm = TRUE),
      sd_y = sd(CoM.acc.y, na.rm = TRUE),
      sd_z = sd(CoM.acc.z, na.rm = TRUE),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("sd_"), names_to = "Axis", values_to = "SD") %>%
    mutate(
      Axis = gsub("sd_", "", Axis),
      Dataset = label,
      subject = factor(subject),
      SequenceLength = factor(SequenceLength)
    )
}

# --- Extended: LMM per Axis for Sequence Length Effect on SD ---
run_sequence_length_sd_model_diagnostics <- function(df, label) {
  axes <- c("x", "y", "z")
  results <- list()

  for (axis in axes) {
    model <- lmer(SD ~ SequenceLength + (1 | subject), data = filter(df, Axis == axis))

    key <- paste0(label, "_", toupper(axis))

    results[[key]] <- list(
      ANOVA = anova(model),
      Emmeans = emmeans(model, ~ SequenceLength),
      FixedEffects = fixef(model),
      RandomEffects = ranef(model),
      ScaledResiduals = resid(model, scaled = TRUE),
      Model = model
    )
  }

  return(results)
}

# --- Run Model and Extract Diagnostics ---
step_sd_seq_mixed <- compute_step_sd_with_sequence_length(tagged_data, "Mixed")
seq_length_sd_diag <- run_sequence_length_sd_model_diagnostics(step_sd_seq_mixed, "Mixed")

# --- Display Diagnostics for Axis X ---
cat("\n=== SEQUENCE LENGTH SD MODEL: Axis X ===\n")

=== SEQUENCE LENGTH SD MODEL: Axis X ===
print(seq_length_sd_diag$Mixed_X$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
SequenceLength 5.1399   1.285     4 10494   5.479 0.0002103 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_sd_diag$Mixed_X$Emmeans))
 SequenceLength emmean     SE     df lower.CL upper.CL
 5               0.865 0.1910 2419.6    0.491    1.239
 6               0.526 0.0530   18.0    0.415    0.637
 11             -0.079 0.1790 1985.8   -0.431    0.273
 12              0.547 0.0526   17.4    0.436    0.658
 18              0.522 0.0526   17.5    0.411    0.633

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_sd_diag$Mixed_X$FixedEffects)
     (Intercept)  SequenceLength6 SequenceLength11 SequenceLength12 
       0.8647651       -0.3388310       -0.9437831       -0.3178414 
SequenceLength18 
      -0.3424989 
print(seq_length_sd_diag$Mixed_X$RandomEffects)
$subject
   (Intercept)
2   0.05357079
3   0.05179505
4  -0.17197087
5  -0.23596647
7  -0.09540464
8   0.16549144
10  0.63696777
11  0.33174416
13 -0.13389309
14  0.15327494
15 -0.09959260
16 -0.02519785
17 -0.12802594
18 -0.05634306
19 -0.20015367
20 -0.16863686
22 -0.17314635
23  0.09548725

with conditional variances for "subject" 
print(head(seq_length_sd_diag$Mixed_X$ScaledResiduals))
         1          3          5          7          9         11 
-0.8944736 -1.0235233 -1.1320258 -0.8847848 -0.8272984 -1.0565356 
# --- Display Diagnostics for Axis Y ---
cat("\n=== SEQUENCE LENGTH SD MODEL: Axis Y ===\n")

=== SEQUENCE LENGTH SD MODEL: Axis Y ===
print(seq_length_sd_diag$Mixed_Y$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
SequenceLength  3.436   0.859     4 10494  2.8777 0.02143 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_sd_diag$Mixed_Y$Emmeans))
 SequenceLength emmean     SE     df lower.CL upper.CL
 5               0.374 0.2150 2605.1  -0.0469    0.796
 6               0.554 0.0583   18.1   0.4319    0.677
 11              0.224 0.2020 2144.8  -0.1721    0.620
 12              0.576 0.0578   17.4   0.4541    0.698
 18              0.543 0.0579   17.5   0.4207    0.664

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_sd_diag$Mixed_Y$FixedEffects)
     (Intercept)  SequenceLength6 SequenceLength11 SequenceLength12 
       0.3743739        0.1801059       -0.1502666        0.2014899 
SequenceLength18 
       0.1681699 
print(seq_length_sd_diag$Mixed_Y$RandomEffects)
$subject
   (Intercept)
2   0.10951141
3   0.12664285
4  -0.19684764
5  -0.25913656
7  -0.06860125
8   0.26833537
10  0.61703214
11  0.32411261
13 -0.14357021
14  0.12144695
15 -0.12156601
16 -0.05942662
17 -0.11835536
18 -0.08892038
19 -0.26722993
20 -0.19137652
22 -0.26257925
23  0.21052840

with conditional variances for "subject" 
print(head(seq_length_sd_diag$Mixed_Y$ScaledResiduals))
         1          3          5          7          9         11 
-0.4348516 -1.0671381 -1.1047401 -1.0053693 -0.2228061 -0.3297785 
# --- Display Diagnostics for Axis Z ---
cat("\n=== SEQUENCE LENGTH SD MODEL: Axis Z ===\n")

=== SEQUENCE LENGTH SD MODEL: Axis Z ===
print(seq_length_sd_diag$Mixed_Z$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
SequenceLength 22.772  5.6931     4 10494  6.2253 5.333e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(seq_length_sd_diag$Mixed_Z$Emmeans))
 SequenceLength emmean     SE     df lower.CL upper.CL
 5              1.2085 0.3740 3203.6    0.475    1.942
 6              0.8894 0.0950   18.2    0.690    1.089
 11             0.0981 0.3520 2666.3   -0.591    0.788
 12             0.9910 0.0940   17.5    0.793    1.189
 18             0.9749 0.0941   17.6    0.777    1.173

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(seq_length_sd_diag$Mixed_Z$FixedEffects)
     (Intercept)  SequenceLength6 SequenceLength11 SequenceLength12 
       1.2085449       -0.3191928       -1.1104780       -0.2175467 
SequenceLength18 
      -0.2336458 
print(seq_length_sd_diag$Mixed_Z$RandomEffects)
$subject
     (Intercept)
2  -5.668181e-03
3   2.204648e-01
4  -3.089863e-01
5  -4.538521e-01
7   9.664095e-02
8   5.206798e-01
10  9.713584e-01
11  5.823385e-01
13 -9.885303e-02
14 -1.358140e-01
15 -2.836437e-02
16 -4.906112e-03
17 -3.613736e-01
18 -4.733085e-05
19 -3.992486e-01
20 -3.788382e-01
22 -4.349800e-01
23  2.194495e-01

with conditional variances for "subject" 
print(head(seq_length_sd_diag$Mixed_Z$ScaledResiduals))
          1           3           5           7           9          11 
-0.77140783 -0.84919395  0.04769161 -0.89023568  1.36427252 -0.80744817 

#5 top 50% vs bottom 50%

# --- Tag Top vs Bottom Performers ---
tag_performance_group <- function(df) {
  top_ids <- c(17, 7, 23, 16, 10, 14, 13, 2, 8)
  df %>%
    mutate(
      PerformanceGroup = ifelse(subject %in% top_ids, "Top", "Bottom"),
      PerformanceGroup = factor(PerformanceGroup, levels = c("Top", "Bottom"))
    )
}


# --- Compute Step-Level RMS with Buffer + Performance Group ---
compute_step_rms_grouped <- function(df) {
  buffer <- 3
  step_markers <- c(14, 15, 16, 17)
  
  step_data <- df %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()
  
  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)
  
  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)
    
    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })
  
  window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = gsub("rms_", "", Axis),
      Step = as.numeric(Step),
      subject = factor(subject),
      Block = factor(Block)
    ) %>%
    tag_performance_group()
}


# --- Run LMM to Compare Top vs Bottom ---
run_group_comparison_model <- function(df, label) {
  axes <- c("x", "y", "z")
  results <- list()
  
  for (axis in axes) {
    model <- lmer(
      RMS ~ Step * Block * PerformanceGroup + (1 | subject),
      data = filter(df, Axis == axis)
    )
    
    key <- paste0(label, "_", toupper(axis))
    results[[key]] <- list(
      ANOVA = anova(model),
      Emmeans = emmeans(model, ~ Step * Block * PerformanceGroup),
      FixedEffects = fixef(model),
      RandomEffects = ranef(model),
      ScaledResiduals = resid(model, scaled = TRUE),
      Model = model
    )
  }
  
  return(results)
}


# --- Compute and Run ---
step_rms_grouped <- compute_step_rms_grouped(tagged_data)
top_bottom_results <- run_group_comparison_model(step_rms_grouped, "StepRMS_PerfGroup")

# --- Inspect X-Axis Results ---
cat("\n=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis X ===\n")

=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis X ===
print(top_bottom_results$StepRMS_PerfGroup_X$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                             Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
Step                        0.23877 0.23877     1 1260.00  7.0907  0.007847 ** 
Block                       2.41418 0.60355     4 1260.00 17.9236 2.521e-14 ***
PerformanceGroup            0.04629 0.04629     1   16.82  1.3745  0.257371    
Step:Block                  0.31355 0.07839     4 1260.00  2.3279  0.054362 .  
Step:PerformanceGroup       0.00013 0.00013     1 1260.00  0.0040  0.949598    
Block:PerformanceGroup      0.20777 0.05194     4 1260.00  1.5426  0.187512    
Step:Block:PerformanceGroup 0.03661 0.00915     4 1260.00  0.2718  0.896234    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(top_bottom_results$StepRMS_PerfGroup_X$Emmeans))
 Step Block PerformanceGroup emmean     SE   df lower.CL upper.CL
  8.5 1     Top               0.993 0.1250 41.6    0.742    1.245
  8.5 2     Top               0.847 0.0998 17.2    0.636    1.057
  8.5 3     Top               0.713 0.0988 16.6    0.504    0.921
  8.5 4     Top               0.898 0.0988 16.6    0.689    1.107
  8.5 5     Top               0.741 0.0988 16.6    0.532    0.950
  8.5 1     Bottom            0.858 0.1250 41.6    0.607    1.109
  8.5 2     Bottom            0.713 0.0998 17.2    0.503    0.924
  8.5 3     Bottom            0.598 0.0988 16.6    0.389    0.807
  8.5 4     Bottom            0.620 0.0988 16.6    0.412    0.829
  8.5 5     Bottom            0.567 0.0988 16.6    0.359    0.776

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(top_bottom_results$StepRMS_PerfGroup_X$FixedEffects)
                       (Intercept)                               Step 
                      1.0232570767                      -0.0035240667 
                            Block2                             Block3 
                     -0.0573792029                      -0.2653315214 
                            Block4                             Block5 
                     -0.0915947287                      -0.2567999848 
            PerformanceGroupBottom                        Step:Block2 
                     -0.2162754294                      -0.0105202952 
                       Step:Block3                        Step:Block4 
                     -0.0018176046                      -0.0003923818 
                       Step:Block5        Step:PerformanceGroupBottom 
                      0.0005326844                       0.0095235474 
     Block2:PerformanceGroupBottom      Block3:PerformanceGroupBottom 
                      0.1127140176                       0.1095931338 
     Block4:PerformanceGroupBottom      Block5:PerformanceGroupBottom 
                     -0.0172128406                       0.0537323855 
Step:Block2:PerformanceGroupBottom Step:Block3:PerformanceGroupBottom 
                     -0.0130146071                      -0.0104805832 
Step:Block4:PerformanceGroupBottom Step:Block5:PerformanceGroupBottom 
                     -0.0147540559                      -0.0108188871 
print(top_bottom_results$StepRMS_PerfGroup_X$RandomEffects)
$subject
   (Intercept)
2   0.02063865
3   0.12662081
4  -0.15993058
5  -0.25401347
7  -0.24936885
8   0.22457842
10  0.72589981
11  0.61103956
13 -0.27790222
14 -0.05475486
15  0.01966492
16 -0.15050185
17 -0.27500607
18  0.05901077
19 -0.19351392
20 -0.15570200
22 -0.05317609
23  0.03641696

with conditional variances for "subject" 
print(head(top_bottom_results$StepRMS_PerfGroup_X$ScaledResiduals))
        1         2         3         4         5         6 
-2.514963 -2.447129 -2.415125 -2.395921 -2.202891 -2.255295 
cat("\n=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis Y ===\n")

=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis Y ===
print(top_bottom_results$StepRMS_PerfGroup_Y$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                             Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
Step                        0.44036 0.44036     1 1260.00  6.4295 0.0113442 *  
Block                       2.38367 0.59592     4 1260.00  8.7008 6.291e-07 ***
PerformanceGroup            0.31771 0.31771     1   17.48  4.6388 0.0454853 *  
Step:Block                  0.36458 0.09115     4 1260.00  1.3308 0.2563668    
Step:PerformanceGroup       0.07288 0.07288     1 1260.00  1.0641 0.3024866    
Block:PerformanceGroup      1.34674 0.33669     4 1260.00  4.9158 0.0006191 ***
Step:Block:PerformanceGroup 0.30489 0.07622     4 1260.00  1.1129 0.3488521    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(top_bottom_results$StepRMS_PerfGroup_Y$Emmeans))
 Step Block PerformanceGroup emmean    SE   df lower.CL upper.CL
  8.5 1     Top               1.081 0.152 69.5    0.779    1.384
  8.5 2     Top               0.936 0.108 18.2    0.709    1.163
  8.5 3     Top               0.754 0.106 17.0    0.530    0.978
  8.5 4     Top               0.940 0.106 17.0    0.716    1.164
  8.5 5     Top               0.969 0.106 17.0    0.745    1.193
  8.5 1     Bottom            0.759 0.152 69.5    0.456    1.061
  8.5 2     Bottom            0.768 0.108 18.2    0.541    0.995
  8.5 3     Bottom            0.597 0.106 17.0    0.373    0.821
  8.5 4     Bottom            0.685 0.106 17.0    0.460    0.909
  8.5 5     Bottom            0.531 0.106 17.0    0.307    0.755

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(top_bottom_results$StepRMS_PerfGroup_Y$FixedEffects)
                       (Intercept)                               Step 
                       1.106875568                       -0.003007596 
                            Block2                             Block3 
                       0.010226216                       -0.310633623 
                            Block4                             Block5 
                      -0.050906970                       -0.006449728 
            PerformanceGroupBottom                        Step:Block2 
                      -0.342310751                       -0.018299576 
                       Step:Block3                        Step:Block4 
                      -0.001928342                       -0.010668633 
                       Step:Block5        Step:PerformanceGroupBottom 
                      -0.012418844                        0.002296496 
     Block2:PerformanceGroupBottom      Block3:PerformanceGroupBottom 
                       0.002381548                        0.181628879 
     Block4:PerformanceGroupBottom      Block5:PerformanceGroupBottom 
                       0.083415750                       -0.184748314 
Step:Block2:PerformanceGroupBottom Step:Block3:PerformanceGroupBottom 
                       0.017889324                       -0.001903484 
Step:Block4:PerformanceGroupBottom Step:Block5:PerformanceGroupBottom 
                      -0.001861503                        0.008141814 
print(top_bottom_results$StepRMS_PerfGroup_Y$RandomEffects)
$subject
    (Intercept)
2   0.080783799
3   0.316720216
4  -0.159994548
5  -0.215888243
7  -0.334291290
8   0.268888618
10  0.631831875
11  0.562812662
13 -0.323033692
14 -0.129143313
15  0.004970042
16 -0.213143582
17 -0.295401150
18  0.059210951
19 -0.211773333
20 -0.139635931
22 -0.216421817
23  0.313508736

with conditional variances for "subject" 
print(head(top_bottom_results$StepRMS_PerfGroup_Y$ScaledResiduals))
        1         2         3         4         5         6 
-2.195117 -2.331548 -2.293657 -2.282164 -2.182169 -2.058850 
cat("\n=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis Z ===\n")

=== TOP vs BOTTOM PERFORMER ANALYSIS: Axis Z ===
print(top_bottom_results$StepRMS_PerfGroup_Z$ANOVA)
Type III Analysis of Variance Table with Satterthwaite's method
                            Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
Step                        0.5721 0.57209     1 1260.00  3.7189   0.05403 .  
Block                       9.0610 2.26524     4 1260.00 14.7251 9.211e-12 ***
PerformanceGroup            0.2571 0.25706     1   16.71  1.6710   0.21371    
Step:Block                  1.4199 0.35499     4 1260.00  2.3076   0.05620 .  
Step:PerformanceGroup       0.0209 0.02091     1 1260.00  0.1359   0.71242    
Block:PerformanceGroup      1.5166 0.37915     4 1260.00  2.4646   0.04343 *  
Step:Block:PerformanceGroup 0.8110 0.20275     4 1260.00  1.3180   0.26117    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(top_bottom_results$StepRMS_PerfGroup_Z$Emmeans))
 Step Block PerformanceGroup emmean    SE   df lower.CL upper.CL
  8.5 1     Top                2.04 0.278 37.6    1.477     2.60
  8.5 2     Top                1.80 0.228 17.1    1.320     2.28
  8.5 3     Top                1.66 0.226 16.5    1.178     2.13
  8.5 4     Top                1.92 0.226 16.5    1.437     2.39
  8.5 5     Top                1.73 0.226 16.5    1.252     2.21
  8.5 1     Bottom             1.85 0.278 37.6    1.284     2.41
  8.5 2     Bottom             1.63 0.228 17.1    1.151     2.11
  8.5 3     Bottom             1.22 0.226 16.5    0.741     1.70
  8.5 4     Bottom             1.39 0.226 16.5    0.907     1.86
  8.5 5     Bottom             1.14 0.226 16.5    0.660     1.62

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(top_bottom_results$StepRMS_PerfGroup_Z$FixedEffects)
                       (Intercept)                               Step 
                      1.9798197650                       0.0070763960 
                            Block2                             Block3 
                      0.0622920952                      -0.3092209024 
                            Block4                             Block5 
                      0.0929333079                      -0.1240243787 
            PerformanceGroupBottom                        Step:Block2 
                     -0.1451560468                      -0.0353677728 
                       Step:Block3                        Step:Block4 
                     -0.0087974049                      -0.0256342517 
                       Step:Block5        Step:PerformanceGroupBottom 
                     -0.0218997384                      -0.0055526106 
     Block2:PerformanceGroupBottom      Block3:PerformanceGroupBottom 
                     -0.2502326036                      -0.2393959275 
     Block4:PerformanceGroupBottom      Block5:PerformanceGroupBottom 
                     -0.3308038330                      -0.5278751442 
Step:Block2:PerformanceGroupBottom Step:Block3:PerformanceGroupBottom 
                      0.0320788302                      -0.0005753052 
Step:Block4:PerformanceGroupBottom Step:Block5:PerformanceGroupBottom 
                     -0.0008040793                       0.0151415792 
print(top_bottom_results$StepRMS_PerfGroup_Z$RandomEffects)
$subject
   (Intercept)
2  -0.31728819
3   0.51870711
4  -0.43996627
5  -0.59511638
7  -0.08056039
8   0.33987120
10  1.74233164
11  1.05116300
13 -0.35881823
14 -0.48942616
15  0.17014432
16 -0.06426532
17 -0.85998160
18  0.55890285
19 -0.51225727
20 -0.37537986
22 -0.37619749
23  0.08813705

with conditional variances for "subject" 
print(head(top_bottom_results$StepRMS_PerfGroup_Z$ScaledResiduals))
        1         2         3         4         5         6 
-1.368196 -1.521605 -1.692512 -1.710554 -1.966153 -1.902318 

#5.1 step lvl rms

# --- Summarize Data for Plotting by Block ---
plot_summary_by_block <- step_rms_grouped %>%
  group_by(Block, Step, Axis, PerformanceGroup) %>%
  summarise(
    MeanRMS = mean(RMS, na.rm = TRUE),
    SERMS = sd(RMS, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )

# --- Plot Function per Block and Axis ---
plot_rms_by_step_group_blocked <- function(summary_data, axis_label) {
  blocks <- unique(summary_data$Block)
  
  plots <- lapply(blocks, function(blk) {
    df_blk <- filter(summary_data, Block == blk, Axis == axis_label)
    
    ggplot(df_blk, aes(x = Step, y = MeanRMS, color = PerformanceGroup)) +
      geom_line(size = 1.2) +
      geom_point(size = 2) +
      geom_errorbar(aes(ymin = MeanRMS - SERMS, ymax = MeanRMS + SERMS), width = 0.2) +
      labs(
        title = paste("Block", blk, "- RMS (Axis", toupper(axis_label), ") by Step & Performance Group"),
        x = "Step",
        y = "Mean RMS Acceleration",
        color = "Group"
      ) +
      theme_minimal(base_size = 13)
  })
  
  return(plots)
}

# --- Plot for Axis X (returns list of ggplot objects, one per block) ---
plots_x <- plot_rms_by_step_group_blocked(plot_summary_by_block, "x")
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
plots_y <- plot_rms_by_step_group_blocked(plot_summary_by_block, "y")
plots_z <- plot_rms_by_step_group_blocked(plot_summary_by_block, "z")




# --- Display (e.g., first plot) ---
print(plots_x[[1]])  # Change index to view Block 2, 3, etc.

print(plots_x[[2]])

print(plots_x[[3]])

print(plots_x[[4]])

print(plots_x[[5]])

print(plots_y[[1]])  # Change index to view Block 2, 3, etc.

print(plots_y[[2]])

print(plots_y[[3]])

print(plots_y[[4]])

print(plots_y[[5]])

print(plots_z[[1]])  # Change index to view Block 2, 3, etc.

print(plots_z[[2]])

print(plots_z[[3]])

print(plots_z[[4]])

print(plots_z[[5]])

#5.2 Block avg RMS

# --- Assign Top/Bottom Groups ---
top_subjects <- c(17, 7, 23, 16, 10, 14, 13, 2, 8)

tagged_data <- tagged_data %>%
  mutate(
    PerformanceGroup = ifelse(subject %in% top_subjects, "Top", "Bottom"),
    subject = factor(subject),
    Block = factor(Block),
    phase = factor(phase)
  )


# --- Compute RMS per Block, Phase, and Subject ---
block_rms_summary <- tagged_data %>%
  group_by(subject, Block, phase, PerformanceGroup) %>%
  summarise(
    rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
    rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
    rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
    .groups = "drop"
  ) %>%
  pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  mutate(Axis = gsub("rms_", "", Axis))


# --- LMM: Does Performance Group Affect RMS? ---
library(lmerTest)

run_group_block_rms_model <- function(axis) {
  lmer(RMS ~ PerformanceGroup * Block * phase + (1 | subject),
       data = filter(block_rms_summary, Axis == axis))
}

model_x <- run_group_block_rms_model("x")
model_y <- run_group_block_rms_model("y")
model_z <- run_group_block_rms_model("z")

anova(model_x)
Type III Analysis of Variance Table with Satterthwaite's method
                              Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
PerformanceGroup              0.0665  0.0665     1    16   2.7902   0.11429    
Block                         0.2654  0.0664     4   144   2.7851   0.02885 *  
phase                        11.7375 11.7375     1   144 492.6213 < 2.2e-16 ***
PerformanceGroup:Block        0.0634  0.0159     4   144   0.6654   0.61703    
PerformanceGroup:phase        0.1430  0.1430     1   144   5.9999   0.01551 *  
Block:phase                   1.0974  0.2744     4   144  11.5147 3.874e-08 ***
PerformanceGroup:Block:phase  0.0123  0.0031     4   144   0.1290   0.97165    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model_y)
Type III Analysis of Variance Table with Satterthwaite's method
                              Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
PerformanceGroup              0.1166  0.1166     1    16   2.7670  0.115689    
Block                         0.3670  0.0918     4   144   2.1781  0.074368 .  
phase                        13.3322 13.3322     1   144 316.4564 < 2.2e-16 ***
PerformanceGroup:Block        0.0473  0.0118     4   144   0.2804  0.890276    
PerformanceGroup:phase        0.4641  0.4641     1   144  11.0158  0.001144 ** 
Block:phase                   1.2060  0.3015     4   144   7.1564  2.77e-05 ***
PerformanceGroup:Block:phase  0.0937  0.0234     4   144   0.5563  0.694730    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model_z)
Type III Analysis of Variance Table with Satterthwaite's method
                             Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
PerformanceGroup              0.247   0.247     1    16   2.7790  0.114960    
Block                         1.034   0.258     4   144   2.9125  0.023595 *  
phase                        36.376  36.376     1   144 409.9435 < 2.2e-16 ***
PerformanceGroup:Block        0.300   0.075     4   144   0.8446  0.499088    
PerformanceGroup:phase        0.717   0.717     1   144   8.0850  0.005113 ** 
Block:phase                   2.847   0.712     4   144   8.0198 7.259e-06 ***
PerformanceGroup:Block:phase  0.070   0.018     4   144   0.1985  0.938791    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# --- Plot Group Differences by Axis, Phase, and Block ---
plot_block_summary <- block_rms_summary %>%
  group_by(PerformanceGroup, Block, phase, Axis) %>%
  summarise(
    MeanRMS = mean(RMS, na.rm = TRUE),
    SERMS = sd(RMS, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )

ggplot(plot_block_summary, aes(x = Block, y = MeanRMS, fill = PerformanceGroup)) +
  geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +
  geom_errorbar(aes(ymin = MeanRMS - SERMS, ymax = MeanRMS + SERMS),
                width = 0.2, position = position_dodge(0.8)) +
  facet_grid(phase ~ Axis) +
  labs(
    title = "Block-Level RMS by Group, Phase, and Axis",
    x = "Block", y = "Mean RMS"
  ) +
  theme_minimal(base_size = 14)

#6. Difficulty comparison #6.1 6 steps Block 1,4 & 5

# -------- Step-Wise RMS ± SD: Blocks 1, 4, 5 — First 6 Steps --------
plot_stepwise_rms_blocks_145_first6 <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject)
    ) %>%
    filter(Block %in% c("1", "4", "5"), Step %in% 1:6)

  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    )

  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = factor(Step), y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS Acceleration ± SD — Axis", ax),
        x = "Step Number (1–6)",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# -------- Run the Analysis Pipeline --------
result <- plot_stepwise_rms_blocks_145_first6(tagged_data2)

stepwise_block145_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# -------- Print Plots --------
for (plot_name in names(stepwise_block145_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block145_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# -------- Compute SD Per Subject from Raw Window Data --------
sd_subject_data <- window_data %>%
  group_by(subject, Block, Step) %>%
  summarise(
    sd_x = sd(CoM.acc.x, na.rm = TRUE),
    sd_y = sd(CoM.acc.y, na.rm = TRUE),
    sd_z = sd(CoM.acc.z, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  pivot_longer(cols = starts_with("sd_"), names_to = "Axis", values_to = "sd_rms") %>%
  mutate(
    Axis = toupper(gsub("sd_", "", Axis)),
    Step = factor(Step),
    Block = factor(Block),
    subject = factor(subject)
  ) %>%
  filter(Step %in% 1:6, Block %in% c("1", "4", "5"))

# -------- Run LMM on sd_rms --------
cat("\n\n==== LMM: SD ~ Block + Step + Axis + (1|subject) ====\n\n")


==== LMM: SD ~ Block + Step + Axis + (1|subject) ====
sd_model <- lmer(sd_rms ~ Block + Step + Axis + (1 | subject), data = sd_subject_data)
summary(sd_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: sd_rms ~ Block + Step + Axis + (1 | subject)
   Data: sd_subject_data

REML criterion at convergence: 877.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0461 -0.5436 -0.0296  0.4436  6.7357 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.2358   0.4856  
 Residual             0.1273   0.3568  
Number of obs: 972, groups:  subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  8.292e-01  1.201e-01  2.016e+01   6.907 9.97e-07 ***
Block4      -2.576e-02  2.804e-02  9.450e+02  -0.919   0.3585    
Block5      -1.826e-01  2.804e-02  9.450e+02  -6.512 1.20e-10 ***
Step2       -1.458e-04  3.965e-02  9.450e+02  -0.004   0.9971    
Step3        5.839e-03  3.965e-02  9.450e+02   0.147   0.8830    
Step4       -1.036e-02  3.965e-02  9.450e+02  -0.261   0.7939    
Step5        6.022e-03  3.965e-02  9.450e+02   0.152   0.8793    
Step6       -3.091e-03  3.965e-02  9.450e+02  -0.078   0.9379    
AxisY        7.130e-02  2.804e-02  9.450e+02   2.543   0.0111 *  
AxisZ        6.758e-01  2.804e-02  9.450e+02  24.105  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
       (Intr) Block4 Block5 Step2  Step3  Step4  Step5  Step6  AxisY 
Block4 -0.117                                                        
Block5 -0.117  0.500                                                 
Step2  -0.165  0.000  0.000                                          
Step3  -0.165  0.000  0.000  0.500                                   
Step4  -0.165  0.000  0.000  0.500  0.500                            
Step5  -0.165  0.000  0.000  0.500  0.500  0.500                     
Step6  -0.165  0.000  0.000  0.500  0.500  0.500  0.500              
AxisY  -0.117  0.000  0.000  0.000  0.000  0.000  0.000  0.000       
AxisZ  -0.117  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.500
# Type III ANOVA
cat("\n\n---- Type III ANOVA ----\n")


---- Type III ANOVA ----
print(anova(sd_model, type = 3))
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Block  6.327   3.164     2   945  24.8436 3.052e-11 ***
Step   0.030   0.006     5   945   0.0475    0.9986    
Axis  89.346  44.673     2   945 350.8175 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Scaled Residuals
cat("\n\n---- Scaled Residuals ----\n")


---- Scaled Residuals ----
print(resid(sd_model, scaled = TRUE))
            1             2             3             4             5 
-0.5863259519 -0.7007378343 -1.2086572113 -0.5793124813 -0.8030092027 
            6             7             8             9            10 
-1.3795749040 -0.5642909384 -0.7972276328 -1.5097775523 -0.5188865821 
           11            12            13            14            15 
-0.7518232766 -1.4643731961 -0.4773458393 -0.7270903856 -1.7180274687 
           16            17            18            19            20 
-0.4797327628 -0.6200311594 -1.5619792361  0.5965443569  0.2240465762 
           21            22            23            24            25 
-0.1041884950  0.4935230838  0.2849053764  0.3269353913  0.7232950235 
           26            27            28            29            30 
 0.0812839377 -0.1076737406  0.4330325404  0.3124158800 -0.1158471402 
           31            32            33            34            35 
 0.2423260354  0.4365196440 -0.1533308077  0.0495486396  0.3345679354 
           36            37            38            39            40 
-0.9408527188  0.5285054791  1.4510901798  0.5647242027  0.5938527102 
           41            42            43            44            45 
 1.4085432034  0.4407339743  0.3908508592  1.1161049350 -0.0179039373 
           46            47            48            49            50 
 0.5023573099  1.1125918268  0.8153800222  0.4763878325  1.0666607830 
           51            52            53            54            55 
 1.0252047291  0.2863771267  0.5986013700  0.9047974079 -0.1032479088 
           56            57            58            59            60 
-0.2903247186 -0.6045009879  0.1401398749 -0.2181407500  0.1483590233 
           61            62            63            64            65 
 0.2267297142 -0.2982558968  0.3327156530  0.2721340705 -0.2528515405 
           66            67            68            69            70 
 0.3781200093  0.4288447155 -0.1920864298  0.6298752277  0.4087846966 
           71            72            73            74            75 
-0.3221509231  0.7193257448 -0.6172909142  0.5050578416  1.0981819198 
           76            77            78            79            80 
-0.5548924119  0.4174715309  1.3788068572 -0.6028932787  0.2624629099 
           81            82            83            84            85 
 1.0470657626 -0.6137127051  0.4073641268  1.0902499336 -0.6127318867 
           86            87            88            89            90 
 0.0706576327  0.7746613070 -0.5438160720 -0.2673819910  0.3821851792 
           91            92            93            94            95 
-0.3648802816 -0.0194167954 -0.1896099389 -0.2453329262  0.0671281858 
           96            97            98            99           100 
-0.1721482879 -0.3012763172 -0.1914166795  0.0051073040 -0.4007568941 
          101           102           103           104           105 
-0.0166606899 -0.1619924757 -0.5121946636 -0.0709626344 -0.6084514014 
          106           107           108           109           110 
-0.6622673237 -0.1749520347 -0.8750094571 -0.1334369958 -0.7331683740 
          111           112           113           114           115 
-1.1203278730  0.0710694053 -0.4590445076 -0.8673502596 -0.0090500073 
          116           117           118           119           120 
-0.4763396374 -0.9885034387  0.0363543490 -0.4309352812 -0.9430990824 
          121           122           123           124           125 
 0.0178321772 -0.4266145749 -1.0072895420  0.0975848675 -0.3581054373 
          126           127           128           129           130 
-1.2172769758 -0.1472519421 -0.1630053331 -0.4817786524 -0.0462100710 
          131           132           133           134           135 
-0.1443173908 -0.5123853825  0.0523225772  0.0794256162 -0.2259387409 
          136           137           138           139           140 
-0.1034920773 -0.0165570922 -0.5167167428 -0.0563264946  0.1658836867 
          141           142           143           144           145 
-0.3857662222  0.2013307441  0.4242236333 -0.0158139304  0.7166625414 
          146           147           148           149           150 
 0.7400515019  0.1678926576  0.9567250281  0.8041485410  0.5273792496 
          151           152           153           154           155 
 1.0276880248  0.8528194814  0.2768529149  0.8045203307  0.6200499946 
          156           157           158           159           160 
 0.1547337248  0.7763738173  0.6113248739  0.1995309415  0.8129094630 
          161           162           163           164           165 
 0.3562996181 -0.0765978302  0.2302108911  0.2069936428 -0.6676969201 
          166           167           168           169           170 
 0.4198542482  0.2318035535 -0.5935183467  0.3978688646  0.1719287117 
          171           172           173           174           175 
-0.6702383525  0.4636663951  0.2227468191 -0.5909857388  0.4143418665 
          176           177           178           179           180 
 0.0933062359 -0.5522435812  0.3626191362  0.1540512223 -0.8521109123 
          181           182           183           184           185 
 0.1319592497  0.4222972856 -0.6661686439  0.0388757986  0.4020805975 
          186           187           188           189           190 
-0.6222615848  0.0595112669  0.4800392691 -0.3305667840  0.0976558104 
          191           192           193           194           195 
 0.3242111739 -0.7618004381 -0.0575591694  0.2796851615 -0.7865178157 
          196           197           198           199           200 
 0.0330021843  0.0216426201 -0.9944423978  0.4909418498  0.3531680377 
          201           202           203           204           205 
-0.4244194179  0.5440915388  0.3596757499 -0.4886623271  0.5100380485 
          206           207           208           209           210 
 0.4239828992 -0.5639568624  0.6099645616  0.3937761667 -0.4586320442 
          211           212           213           214           215 
 0.4822925366  0.3384739990 -0.6290293230  0.4861356571  0.2949507309 
          216           217           218           219           220 
-1.0180992060 -0.3793567257 -0.7260850868 -0.3193020423 -0.3257021301 
          221           222           223           224           225 
-0.6765926588 -0.1166030983 -0.2807817697 -0.6110238277  0.1223498589 
          226           227           228           229           230 
-0.2353774134 -0.5656194714  0.1677542151 -0.1686584849 -0.5350457007 
          231           232           233           234           235 
 0.3956358697 -0.0621352114 -0.4753337159  0.4417847361  0.1064500993 
          236           237           238           239           240 
-0.4752901839  1.4192331775  0.0634274148 -0.4757263060  1.5419619396 
          241           242           243           244           245 
 0.2131169684 -0.4740673870  1.9854996575  0.1705432600 -0.4965576818 
          246           247           248           249           250 
 1.5126541542  0.1437853587 -0.5181075084  1.6753572476  0.0656248302 
          251           252           253           254           255 
-0.5542054654  1.7858089132 -0.2638392934  0.1215818347  0.0503512516 
          256           257           258           259           260 
-0.3187989532  0.1547728386 -0.1714326202 -0.4451837173 -0.2822884655 
          261           262           263           264           265 
-0.5434636742 -0.2656688869  0.1265506163 -0.0072514812 -0.2922876660 
          266           267           268           269           270 
 0.1224593499 -0.1216776416 -0.4723362049 -0.3566549494 -0.5544444159 
          271           272           273           274           275 
-0.2204500361 -0.5365617516  1.9041574648 -0.2617880859 -0.4264536200 
          276           277           278           279           280 
 1.8266787936 -0.3669315502 -0.3864335293  1.8728155493 -0.4433149278 
          281           282           283           284           285 
-0.2720842144  2.0381370127 -0.3583592102 -0.7975329011  1.4398523371 
          286           287           288           289           290 
-0.3403424041 -0.6706439956  1.2816298497 -0.8033170021 -0.9597548714 
          291           292           293           294           295 
 1.3980148585 -1.0184437121 -0.8501831262  1.1311657202 -0.5678141904 
          296           297           298           299           300 
-0.5633051640  2.2904236780 -0.6653344799 -0.8380784469  1.6249648372 
          301           302           303           304           305 
-0.8540355801 -0.8898801909  1.2794439133 -0.2653451345 -0.6641959655 
          306           307           308           309           310 
 1.7970545597 -0.0338159572 -0.2590424023  0.5734752967 -0.1933745272 
          311           312           313           314           315 
-0.5996808468  0.4535668049  0.1731876040 -0.4234574689  0.4354429393 
          316           317           318           319           320 
-0.3006745678 -0.7391925364 -0.0718269290 -0.3788483698 -1.0152843679 
          321           322           323           324           325 
-0.2665044884 -0.7409869571 -0.8651397543 -0.6407132756 -0.1793594936 
          326           327           328           329           330 
 1.0638068342 -0.3808148664 -0.2908936555  1.1372051869  1.5553557953 
          331           332           333           334           335 
-0.6720529607  1.0475954107  0.9800195428 -0.6266486045  1.0929997670 
          336           337           338           339           340 
 1.0254238990 -0.4546781599  1.5763428177  1.4573364505 -0.2400055055 
          341           342           343           344           345 
 1.3907293207  1.8523801624 -0.6473750869  0.7320762057  0.1533069373 
          346           347           348           349           350 
-0.7432481842  0.6616282973  0.5897432686 -0.4701396597  0.7397293163 
          351           352           353           354           355 
 0.4997813460 -0.6542949172  0.2565015554  0.4445404428 -0.3638801734 
          356           357           358           359           360 
 0.4513977212  1.4589585688 -0.0876728109  0.1005861051  1.5318633958 
          361           362           363           364           365 
-1.7739751425 -1.8460142128  1.5690069672 -1.8860400470 -1.8116062415 
          366           367           368           369           370 
 1.6629516389 -2.0822675627 -1.9389304771  0.9874025933 -1.9044502364 
          371           372           373           374           375 
-1.8768448562  0.8915567932 -1.9925068581 -1.7990445469  1.3293602660 
          376           377           378           379           380 
-1.2777959107 -1.9604284204  1.3985274628  1.8400199255  2.4327297098 
          381           382           383           384           385 
 4.3417166612  1.4387125924  2.0532944957  4.0921911155  1.1842586858 
          386           387           388           389           390 
 1.5775903959  4.3165642618  1.2296630421  1.6229947522  4.3619686181 
          391           392           393           394           395 
 1.6820887210  1.8859717344  5.1351079119  2.0936357487  2.2419763828 
          396           397           398           399           400 
 5.7803415896 -0.3571624215  0.3266712504  1.1011971677 -0.4382540606 
          401           402           403           404           405 
 0.2926726547  0.7609574946 -0.7745488089 -1.2447997625 -0.6390544579 
          406           407           408           409           410 
-0.4753425995  0.1482960400  0.9883546686 -0.5900398087  0.2391177989 
          411           412           413           414           415 
 0.9485920846 -0.6873775684 -2.0281079551 -0.6516698914 -2.3652280797 
          416           417           418           419           420 
-2.6166053177 -3.0460523353 -2.3004824477 -2.7045899316 -2.8141886875 
          421           422           423           424           425 
-1.8216499990 -2.5966396430 -2.2879740767 -2.0493336338 -2.6407358059 
          426           427           428           429           430 
-2.9240629147 -2.1227457908 -2.8200860173 -2.7880006627 -1.9352699384 
          431           432           433           434           435 
-2.5948970950 -2.5589073763 -0.4234643541  0.2395995303  0.9502831449 
          436           437           438           439           440 
-0.4658632078  0.1159525270  0.7361812280 -0.4543611175  0.1229069728 
          441           442           443           444           445 
 0.5955651689 -0.4089567612  0.1683113291  0.6409695252 -0.3960364994 
          446           447           448           449           450 
 0.1868621971  0.3776780519 -0.4168188910  0.3694379803  0.5543026419 
          451           452           453           454           455 
-0.3750857498 -0.6633498571 -0.2617928009 -0.2761881550 -0.5697726112 
          456           457           458           459           460 
-0.2883838576 -0.1226726637 -0.5637428439 -0.2166684124 -0.4107846058 
          461           462           463           464           465 
-0.6308704915 -0.5184700817 -0.3644504589 -0.7104695224 -0.5806615546 
          466           467           468           469           470 
-0.3463393265 -0.6670842561 -0.9099235879 -0.1009739583 -0.3102768001 
          471           472           473           474           475 
 1.1997908998  0.0722436569 -0.2295501839  1.3744824143  0.2523872378 
          476           477           478           479           480 
-0.2940516485  1.4284116529  0.0356572420 -0.0780334609  1.1852811044 
          481           482           483           484           485 
-0.0237944484 -0.0203740066  1.2613040507  0.0004866387 -0.3042331978 
          486           487           488           489           490 
 0.3720006355  1.3949883107  1.3997071203 -2.4214161852  1.2478771585 
          491           492           493           494           495 
 1.2738734690 -1.8215177491  1.1601108603  1.1613437082 -1.8512955749 
          496           497           498           499           500 
 1.2055152166  1.2067480645 -1.8058912186  1.2817484472  1.3158059918 
          501           502           503           504           505 
-1.7888128318  0.3898413643  1.6761012980 -1.6433309343 -0.1269114611 
          506           507           508           509           510 
-0.1111524362  0.6811659661 -0.0191526281 -0.1102873475  0.5333579183 
          511           512           513           514           515 
-0.1520009181 -0.0637736957  0.7876752631 -0.0619476688 -0.2176496241 
          516           517           518           519           520 
 0.3877718096 -0.0290506170 -0.1439403642  0.2982611335 -0.4040816564 
          521           522           523           524           525 
-0.5492627060 -0.2155808498  0.3148276162  0.0277308857 -1.0628880232 
          526           527           528           529           530 
 0.1100094185  0.0842629952 -1.1056914806  0.3897069136  0.0918896181 
          531           532           533           534           535 
-0.9891772770  0.2995063784 -0.0241322046 -1.0481115260  0.1797405901 
          536           537           538           539           540 
-0.0071589512 -0.8792624610  0.5999089166 -0.0427240601 -0.9152492606 
          541           542           543           544           545 
-0.1882698857 -0.7235809652 -0.2300762989 -0.1714814560 -0.7559246013 
          546           547           548           549           550 
-0.3980949590 -0.2688671281 -0.8113708452 -0.4368807270 -0.2234627718 
          551           552           553           554           555 
-0.7659664889 -0.3914763708 -0.1721307660 -0.7238244951 -0.2479090579 
          556           557           558           559           560 
-0.0755640936 -0.7733675732 -0.0558916283 -0.4016040440 -0.7246079030 
          561           562           563           564           565 
-0.8127565405 -0.5693140956 -0.7269202997 -1.0013397263 -0.5780407427 
          566           567           568           569           570 
-0.6392829452 -0.7441166849 -0.4162370427 -0.6739620195 -0.8368053041 
          571           572           573           574           575 
-0.4730619672 -0.6203900942 -0.8928098846 -0.6172448877 -0.6663533777 
          576           577           578           579           580 
-0.7851972646  0.4522822618  0.4693245124  1.4744023886  0.4433078263 
          581           582           583           584           585 
 0.6968949718  1.5335519781  1.1624085434  0.6891368678  2.2615205642 
          586           587           588           589           590 
 0.8001081948  0.3744831224  1.5060559507  0.8807559799  0.3697794753 
          591           592           593           594           595 
 1.8640531852  1.2472254582  0.4825874792  2.7564159507 -0.2733303670 
          596           597           598           599           600 
-0.7083082149 -1.0815642479 -0.3194852348 -0.7465549603 -1.1168100235 
          601           602           603           604           605 
-0.1936435433 -0.7728998989 -0.8793869678 -0.1482391870 -0.7274955426 
          606           607           608           609           610 
-0.8339826115 -0.1915446765 -0.8004954469 -0.8503490724 -0.1102469856 
          611           612           613           614           615 
-0.8370873438 -0.6870111117  1.0159230428  0.5020341201  0.3970440565 
          616           617           618           619           620 
 0.4944573086  0.2574300872 -0.2585075228  0.7787513744  0.3592203532 
          621           622           623           624           625 
-0.2868624929  0.9616025986  0.5945411618  0.4360061368  0.7593446518 
          626           627           628           629           630 
 0.3855402156  0.1656011529  0.8665980418  0.4191459504 -0.2021261145 
          631           632           633           634           635 
 0.1443631296  0.5547652268  1.1019204723  0.0376814854  0.3162944460 
          636           637           638           639           640 
 0.1246235072 -0.1724028373  0.2985334876 -1.1827696383  0.0938139177 
          641           642           643           644           645 
 0.4832598167  1.1584919380  0.0314025298 -0.0189124663  0.4702066757 
          646           647           648           649           650 
 0.0166607074 -0.2177802167  0.1556259897 -0.2681510053 -0.6202256551 
          651           652           653           654           655 
-2.1819533823 -0.2243521002 -0.5264612457 -2.1484963552 -0.1982554100 
          656           657           658           659           660 
-0.3350335791 -2.1351115375 -0.1528510537 -0.2896292228 -2.0897071812 
          661           662           663           664           665 
-0.1933816080 -0.2863530965 -2.1185991710 -0.1475484514 -0.1921465009 
          666           667           668           669           670 
-2.1158885675  0.2851980376  0.3462671330 -0.3342125986  0.3527623754 
          671           672           673           674           675 
 0.6837474528 -0.0399813939  0.4427364748  0.5531308638 -0.0653481976 
          676           677           678           679           680 
 0.4104341590  0.6657894752 -0.1163733497  0.5666508784  0.7717698438 
          681           682           683           684           685 
-0.0318337264  0.7098997844  0.7548341309  0.0002850116  0.9238918246 
          686           687           688           689           690 
 0.9330109353 -0.2277595644  1.1054657682  1.0120401435 -0.2952446350 
          691           692           693           694           695 
 1.1400712150  1.0556109073  0.1091880583  0.9458259001  0.8124593155 
          696           697           698           699           700 
-0.2776566897  0.9676194833  0.8731792548 -0.3828070643  0.8480968703 
          701           702           703           704           705 
 0.5347600810 -0.4398577829 -0.6814500652 -0.7118129207 -1.0584189193 
          706           707           708           709           710 
-0.6757475749 -0.6751007466 -1.1394029823 -0.7026801904 -0.5524260963 
          711           712           713           714           715 
-1.2011326730 -0.6572758341 -0.5070217400 -1.1557283167 -0.6589674473 
          716           717           718           719           720 
-0.4830222988 -1.1788887374 -0.6218123483 -0.3285021580 -1.1558335885 
          721           722           723           724           725 
 0.3943424946  0.2786723801  1.7469126987  0.4343417854  0.1425927882 
          726           727           728           729           730 
 0.4101493146  0.9341073059  0.2236139723  1.5806842584  0.5110467738 
          731           732           733           734           735 
 0.2718119920  1.6205447895  0.5562147021  0.2661115145  1.3404123026 
          736           737           738           739           740 
 0.6504227686  0.1500575168  1.4027537673  0.3759990129 -0.0363692432 
          741           742           743           744           745 
-0.0858206412  0.3525345662 -0.0331507272  0.2386771221  0.1380326450 
          746           747           748           749           750 
-0.0882674253 -0.0301417860  0.3021923608 -0.0019990444 -0.0625775661 
          751           752           753           754           755 
 0.1779932081 -0.0839694238  0.1310297244  0.0627916473 -0.2471657555 
          756           757           758           759           760 
-0.0780709794 -0.1349255315 -0.2251034696 -0.5482561651 -0.1061196082 
          761           762           763           764           765 
-0.2096332966 -0.6726240076 -0.0989213223 -0.2703280454 -0.7415670354 
          766           767           768           769           770 
-0.0535169660 -0.2249236891 -0.6961626791 -0.0990727666 -0.2746239785 
          771           772           773           774           775 
-0.6994428780 -0.0332885165 -0.2070456662 -0.5147404469  0.6308772860 
          776           777           778           779           780 
 0.1530787498 -0.2901021601  0.5839097817  0.0997985976 -0.4334616342 
          781           782           783           784           785 
 0.5638002367  0.2401495514 -0.3256453528  0.6554870252  0.2110648469 
          786           787           788           789           790 
-0.1408803270  0.4449672304  0.1736710445 -0.3445625343  0.3638248369 
          791           792           793           794           795 
 0.2870272415 -0.4426780383  0.6436866470  0.4393005663 -0.2688373676 
          796           797           798           799           800 
 0.5700970137  0.2955404957 -0.3764364733  0.5859996733  0.2734930440 
          801           802           803           804           805 
-0.2017711013  0.5658485752  0.3747744557 -0.4364240125  0.5173801270 
          806           807           808           809           810 
 0.2260243367 -0.7100561734  0.5316276923  0.2238084223 -0.6139448452 
          811           812           813           814           815 
 0.3681482841  0.0899184868 -0.7052190523  0.2974490335  0.1636710764 
          816           817           818           819           820 
-0.8228034191  0.2336926538  0.1221940885 -0.9445362327  0.2790970101 
          821           822           823           824           825 
 0.1675984448 -0.8991318764  0.2237404366  0.1524846638 -0.8473306690 
          826           827           828           829           830 
 0.1751167429  0.1775236442 -0.8293575464  0.1558982214  0.2144486577 
          831           832           833           834           835 
-0.0246265665  0.3061299272  0.3257835335  0.2120417156  0.1344662449 
          836           837           838           839           840 
 0.2878326815  0.0738096333  0.1702833270  0.2811648961 -0.1726355109 
          841           842           843           844           845 
 0.1396733365  0.2882271791  0.0513670089  0.0323121190  0.2177156473 
          846           847           848           849           850 
 0.0813365877  0.4539859910 -0.0313842800 -0.6825113311  0.5269939767 
          851           852           853           854           855 
 0.0166358023 -0.7487215573  0.5311379043  0.0402367015 -0.5030553130 
          856           857           858           859           860 
 0.5152908449  0.0365808159 -0.5721445002  0.3982766198 -0.0172388350 
          861           862           863           864           865 
-0.6724849405  0.4793882994  0.0148965792 -0.5306441094  0.3515331669 
          866           867           868           869           870 
-0.4046290332 -1.2297498384  0.3344018011 -0.3933970640 -1.2469741939 
          871           872           873           874           875 
 0.3238462612 -0.3573276005 -1.1972479334  0.3692506174 -0.3119232443 
          876           877           878           879           880 
-1.1518435771  0.2704575139 -0.3789530118 -1.3392202275  0.3528466171 
          881           882           883           884           885 
-0.3708585808 -1.3025136371  0.5092053732  0.3472364671 -0.5484655465 
          886           887           888           889           890 
 0.4882511500  0.3411025357 -0.6073236524  0.3409990747  0.2021539218 
          891           892           893           894           895 
-0.6133365610  0.5467102138  0.2052494685 -0.5415754253  0.5594779495 
          896           897           898           899           900 
 0.1887233013 -0.6610906795  0.4483074532  0.2273642545 -0.5261198011 
          901           902           903           904           905 
 1.0336893629  0.3315975689 -0.3635618793  0.7913749325  0.2883213423 
          906           907           908           909           910 
-0.4715555950  0.8130854008  0.4619589894 -0.1388560764  0.9761197224 
          911           912           913           914           915 
 0.4226981934 -0.3167366238  0.8471691500  0.4400387955 -0.3210937325 
          916           917           918           919           920 
 1.0335117786  0.4857151051 -0.2270489755  1.5788605014  0.9640660389 
          921           922           923           924           925 
 2.0197217673  1.1118463733  0.5712695539  2.8091024130  0.8065025366 
          926           927           928           929           930 
 0.2321548879  2.2154960095  0.8519068929  0.2775592442  2.2609003657 
          931           932           933           934           935 
 0.9364245069  0.0407549992  2.4156316468  0.8662786759 -0.2629515555 
          936           937           938           939           940 
 2.5548038183 -2.1862830483 -1.5297214750 -0.0693366475 -2.2171467117 
          941           942           943           944           945 
-1.4948094037 -0.5707053962 -1.9862581955 -1.5416572329 -0.4592331858 
          946           947           948           949           950 
-2.1914961557 -1.6606184058 -0.7428236184 -2.1081566600 -1.7422702598 
          951           952           953           954           955 
-0.7780034405 -1.9074257908 -1.8864053567 -0.1447109661 -1.4879843673 
          956           957           958           959           960 
 1.3509556002 -1.3486604477 -1.2825637973  1.9390445283 -1.2566508242 
          961           962           963           964           965 
-1.0206457992  3.5061639506 -2.1386188796 -1.2441781928  0.6889522944 
          966           967           968           969           970 
-0.6268668596 -1.1691390675  2.4726969642 -0.4004689663 -0.9374701168 
          971           972 
 6.7356983514  0.1715341641 
# Random Effects
cat("\n\n---- Random Effects ----\n")


---- Random Effects ----
print(ranef(sd_model))
$subject
   (Intercept)
2  -0.04381153
3   0.08579759
4  -0.33752134
5  -0.51619590
7  -0.11908924
8   0.64164441
10  1.10840251
11  0.82140135
13 -0.10799117
14 -0.07400293
15 -0.08584267
16 -0.15657266
17 -0.41668536
18 -0.13132725
19 -0.48896244
20 -0.37490556
22 -0.45535399
23  0.65101616

with conditional variances for "subject" 
# Fixed Effects
cat("\n\n---- Fixed Effects ----\n")


---- Fixed Effects ----
print(fixef(sd_model))
  (Intercept)        Block4        Block5         Step2         Step3 
 0.8292311235 -0.0257559203 -0.1825684201 -0.0001458282  0.0058387659 
        Step4         Step5         Step6         AxisY         AxisZ 
-0.0103636459  0.0060215586 -0.0030908040  0.0712998953  0.6758268839 
# Pairwise Comparisons with emmeans
cat("\n\n---- Pairwise Comparisons (emmeans) ----\n")


---- Pairwise Comparisons (emmeans) ----
emmeans_sd <- emmeans(sd_model, pairwise ~ Block)
print(emmeans_sd$emmeans)
 Block emmean    SE   df lower.CL upper.CL
 1      1.078 0.116 17.7    0.834     1.32
 4      1.052 0.116 17.7    0.808     1.30
 5      0.895 0.116 17.7    0.651     1.14

Results are averaged over the levels of: Step, Axis 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(emmeans_sd$contrasts)
 contrast        estimate    SE  df t.ratio p.value
 Block1 - Block4   0.0258 0.028 945   0.919  0.6286
 Block1 - Block5   0.1826 0.028 945   6.512  <.0001
 Block4 - Block5   0.1568 0.028 945   5.593  <.0001

Results are averaged over the levels of: Step, Axis 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}




# Run per-axis models for 6-step analysis: Blocks 1, 4, 5
rms_lmm_results_6step <- list()
sd_lmm_results_6step <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for 6-step Axis: {ax} ==========\n\n"))

  # ----- RMS Model -----
  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject), data = df_rms)

  rms_lmm_results_6step[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )

  # ----- SD Model -----
  df_sd <- sd_subject_data %>% filter(Axis == ax)
  sd_model <- lmer(sd_rms ~ Block + Step + (1 | subject), data = df_sd)

  sd_lmm_results_6step[[paste0("SD_", ax)]] <- list(
    Model = sd_model,
    ANOVA = anova(sd_model, type = 3),
    Pairwise = emmeans(sd_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(sd_model),
    RandomEffects = ranef(sd_model),
    ScaledResiduals = resid(sd_model, scaled = TRUE)
  )
}

========== Running models for 6-step Axis: X ==========

========== Running models for 6-step Axis: Y ==========

========== Running models for 6-step Axis: Z ==========
print_stepwise_lmm_diagnostics(rms_lmm_results_6step, dataset_name = "6-Step RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 6-Step RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 3.1819 1.59093     2   299 28.8653 3.451e-12 ***
Step  0.0120 0.00241     5   299  0.0437    0.9989    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block1 - Block4    0.134 0.0319 299   4.179  0.0001
 Block1 - Block5    0.242 0.0319 299   7.585  <.0001
 Block4 - Block5    0.109 0.0319 299   3.405  0.0022

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 9.219620e-01 -1.335255e-01 -2.423214e-01 -6.770361e-03  7.181157e-03 
        Step4         Step5         Step6 
-1.242737e-02 -2.986672e-03 -6.056655e-05 

Random Effects:
$subject
   (Intercept)
2  -0.03329716
3   0.08668532
4  -0.23981010
5  -0.39752483
7  -0.18724692
8   0.46667437
10  0.77455961
11  0.66234450
13 -0.19133789
14  0.05513399
15 -0.02003981
16 -0.11499726
17 -0.28275395
18 -0.09507468
19 -0.35656446
20 -0.28989425
22 -0.20532253
23  0.36846603

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.319584 -1.252735 -1.302158 -1.218634 -1.122979 -1.191415 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
Block 1.01322 0.50661     2   299  4.6572 0.01019 *
Step  0.05595 0.01119     5   299  0.1029 0.99151  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block1 - Block4   0.0498 0.0449 299   1.111  0.5083
 Block1 - Block5   0.1354 0.0449 299   3.017  0.0078
 Block4 - Block5   0.0856 0.0449 299   1.907  0.1386

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.944456997 -0.049844127 -0.135417037 -0.001657183 -0.006629423 -0.031823331 
       Step5        Step6 
-0.020561637 -0.030795551 

Random Effects:
$subject
   (Intercept)
2   0.15266341
3   0.09118758
4  -0.33223110
5  -0.42540054
7  -0.27838104
8   0.40093672
10  1.02463149
11  0.68773823
13 -0.18641948
14  0.03947274
15 -0.21805074
16 -0.15413790
17 -0.28614944
18 -0.12125429
19 -0.43943192
20 -0.34642676
22 -0.42062532
23  0.81187836

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.476399 -1.588750 -1.552726 -1.476339 -1.440259 -1.320497 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 10.1069  5.0535     2   299 22.1571 1.064e-09 ***
Step   0.1189  0.0238     5   299  0.1042    0.9912    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate    SE  df t.ratio p.value
 Block1 - Block4    0.176 0.065 299   2.701  0.0199
 Block1 - Block5    0.430 0.065 299   6.620  <.0001
 Block4 - Block5    0.255 0.065 299   3.918  0.0003

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 1.9327062573 -0.1755507644 -0.4302084489  0.0140812984 -0.0005561811 
        Step4         Step5         Step6 
-0.0155314268 -0.0131648598 -0.0473140198 

Random Effects:
$subject
   (Intercept)
2  -0.25936063
3   0.42090751
4  -0.60016627
5  -0.92240086
7   0.24758892
8   0.78908937
10  1.67458863
11  1.11922982
13  0.16825428
14 -0.50934851
15 -0.01206954
16 -0.19401092
17 -0.84071444
18  0.26909682
19 -0.84057282
20 -0.64937445
22 -0.68150651
23  0.82076960

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.131495 -1.272155 -1.367050 -1.335693 -1.535748 -1.396999 

=============================================================
print_stepwise_lmm_diagnostics(sd_lmm_results_6step, dataset_name = "6-Step SD Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 6-Step SD Acceleration ===========
--- SD_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 2.45734 1.22867     2   299 23.5123 3.284e-10 ***
Step  0.01737 0.00347     5   299  0.0665     0.997    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block1 - Block4   0.0936 0.0311 299   3.010  0.0080
 Block1 - Block5   0.2128 0.0311 299   6.841  <.0001
 Block4 - Block5   0.1192 0.0311 299   3.831  0.0005

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 0.8622323418 -0.0936387821 -0.2128120061 -0.0077653666  0.0107211719 
        Step4         Step5         Step6 
-0.0113872288  0.0006561473  0.0042809082 

Random Effects:
$subject
    (Intercept)
2  -0.001921724
3  -0.006408225
4  -0.231431386
5  -0.393590191
7  -0.169546559
8   0.478870931
10  0.766220508
11  0.677544824
13 -0.187326369
14  0.078395064
15 -0.067771117
16 -0.079524174
17 -0.261541135
18 -0.111019281
19 -0.358924693
20 -0.261261956
22 -0.243614530
23  0.372850013

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.242885 -1.198605 -1.229846 -1.133132 -1.049293 -1.108737 

=============================================================

--- SD_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
Block 1.13378 0.56689     2   299  5.6333 0.003967 **
Step  0.03017 0.00603     5   299  0.0600 0.997621   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block1 - Block4   0.0490 0.0432 299   1.136  0.4928
 Block1 - Block5   0.1426 0.0432 299   3.303  0.0031
 Block4 - Block5   0.0936 0.0432 299   2.167  0.0785

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 0.9022021398 -0.0490339401 -0.1426004088  0.0009374256 -0.0002039485 
        Step4         Step5         Step6 
-0.0250563364 -0.0052720965 -0.0155517076 

Random Effects:
$subject
   (Intercept)
2   0.03506852
3   0.07222790
4  -0.30059943
5  -0.40255462
7  -0.24513116
8   0.39764892
10  1.05983331
11  0.67547976
13 -0.17917461
14  0.06241090
15 -0.19012261
16 -0.16510012
17 -0.27537227
18 -0.17443423
19 -0.44529403
20 -0.31571863
22 -0.40990160
23  0.80073401

with conditional variances for "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-1.0421879 -1.1606481 -1.1316809 -1.0533377 -1.0362305 -0.9121195 

=============================================================

--- SD_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 3.8759 1.93793     2   299 12.1960 8.097e-06 ***
Step  0.0174 0.00348     5   299  0.0219    0.9998    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block1 - Block4  -0.0654 0.0542 299  -1.206  0.4507
 Block1 - Block5   0.1923 0.0542 299   3.545  0.0013
 Block4 - Block5   0.2577 0.0542 299   4.751  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.470385668  0.065404961 -0.192292845  0.006390456  0.006999074  0.005352627 
       Step5        Step6 
 0.022680625  0.001998387 

Random Effects:
$subject
    (Intercept)
2  -0.163641417
3   0.188658864
4  -0.467870778
5  -0.733365115
7   0.063344655
8   1.025555930
10  1.456969613
11  1.080332180
13  0.047707373
14 -0.361591841
15  0.004523366
16 -0.219132359
17 -0.698368965
18 -0.103059010
19 -0.644148552
20 -0.533797637
22 -0.695713745
23  0.753597438

with conditional variances for "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.6944028 -0.8638062 -0.9668776 -0.9627473 -1.1921847 -1.0234650 

=============================================================

#6.2 12 steps Block 2,4 & 5

# --- Updated function for Blocks 2, 4, 5 (12 steps only) ---
plot_stepwise_rms_blocks_245_12steps <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  # Filter and tag steps
  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    filter(Block %in% c(2, 4, 5)) %>%
    mutate(Step = as.numeric(Step)) %>%
    group_by(subject, Block, trial) %>%
    mutate(step_count = max(Step, na.rm = TRUE)) %>%
    ungroup() %>%
    filter(step_count %in% c(12, 18)) %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup() %>%
    filter(Step <= 12)

  # Extract indices for step windows
  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  # Compute per-step RMS
  step_summary <- window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject)
    ) %>%
    filter(Step %in% 1:12)

  # Aggregate for plotting
  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    )

  # Create bar plots
  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS Acceleration ± SD — Axis", ax),
        x = "Step Number (1–12)",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# --- Run function and extract results ---
result <- plot_stepwise_rms_blocks_245_12steps(tagged_data2)

stepwise_block245_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# --- Print plots ---
for (plot_name in names(stepwise_block245_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block245_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# --- Compute SD from raw data (windowed) ---
sd_subject_data <- window_data %>%
  group_by(subject, Block, Step) %>%
  summarise(
    sd_x = sd(CoM.acc.x, na.rm = TRUE),
    sd_y = sd(CoM.acc.y, na.rm = TRUE),
    sd_z = sd(CoM.acc.z, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  pivot_longer(cols = starts_with("sd_"), names_to = "Axis", values_to = "sd_rms") %>%
  mutate(
    Axis = toupper(gsub("sd_", "", Axis)),
    Step = factor(Step),
    Block = factor(Block),
    subject = factor(subject)
  ) %>%
  filter(Step %in% 1:12, Block %in% c("2", "4", "5"))
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}



# Initialize result containers
rms_lmm_results <- list()
sd_lmm_results <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for Axis: {ax} ==========\n\n"))

  # ----- RMS Model -----
  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject), data = df_rms)

  rms_lmm_results[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )

  # ----- SD Model -----
  df_sd <- sd_subject_data %>% filter(Axis == ax)
  sd_model <- lmer(sd_rms ~ Block + Step + (1 | subject), data = df_sd)

  sd_lmm_results[[paste0("SD_", ax)]] <- list(
    Model = sd_model,
    ANOVA = anova(sd_model, type = 3),
    Pairwise = emmeans(sd_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(sd_model),
    RandomEffects = ranef(sd_model),
    ScaledResiduals = resid(sd_model, scaled = TRUE)
  )
}

========== Running models for Axis: X ==========

========== Running models for Axis: Y ==========

========== Running models for Axis: Z ==========
print_stepwise_lmm_diagnostics(rms_lmm_results, dataset_name = "RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)    
Block 2.73566 1.36783     2   617 47.7813 <2e-16 ***
Step  0.38686 0.03517    11   617  1.2285  0.264    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0246 0.0163 617   1.511  0.2866
 Block2 - Block5   0.1485 0.0163 617   9.120  <.0001
 Block4 - Block5   0.1239 0.0163 617   7.609  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.842993606 -0.024593926 -0.148473177 -0.007393845  0.007656765 -0.014015367 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.016791111 -0.023318483 -0.043879190 -0.042966029 -0.056834256 -0.066463355 
      Step11       Step12 
-0.057617109 -0.056746826 

Random Effects:
$subject
   (Intercept)
2   0.15848406
3   0.01317072
4  -0.25170095
5  -0.37304767
7  -0.16276342
8   0.37708038
10  0.86210464
11  0.55087302
13 -0.19837272
14  0.04684232
15 -0.05856620
16 -0.05353192
17 -0.20818606
18 -0.06107446
19 -0.28530476
20 -0.27975006
22 -0.13125727
23  0.05500034

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.4556295 0.8890487 0.6382654 0.4688176 0.4858263 0.5978940 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
Block 0.87068 0.43534     2   617  4.7495 0.008975 **
Step  0.55087 0.05008    11   617  0.5464 0.871733   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0283 0.0291 617   0.971  0.5957
 Block2 - Block5   0.0879 0.0291 617   3.019  0.0074
 Block4 - Block5   0.0597 0.0291 617   2.048  0.1018

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 0.9139496619 -0.0282768480 -0.0879402579  0.0028714077 -0.0005287429 
        Step4         Step5         Step6         Step7         Step8 
-0.0231990301 -0.0219622003 -0.0407700454 -0.0506262624 -0.0533103869 
        Step9        Step10        Step11        Step12 
-0.0726737185 -0.0737777137 -0.0626563873 -0.0798290792 

Random Effects:
$subject
   (Intercept)
2   0.32010117
3   0.17789913
4  -0.31755846
5  -0.42182350
7  -0.22339555
8   0.46725710
10  0.77354998
11  0.49820582
13 -0.24676053
14 -0.05057119
15 -0.19278986
16 -0.06002448
17 -0.18638106
18 -0.08170518
19 -0.38547812
20 -0.31701438
22 -0.39563383
23  0.64212294

with conditional variances for "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.9661683 -0.8783427 -0.6806564 -0.5966132 -0.3347132 -0.2240945 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 10.6881  5.3441     2   617 36.9795 6.791e-16 ***
Step   1.4505  0.1319    11   617  0.9124    0.5278    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0344 0.0366 617   0.942  0.6141
 Block2 - Block5   0.2880 0.0366 617   7.874  <.0001
 Block4 - Block5   0.2536 0.0366 617   6.932  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
(Intercept)      Block4      Block5       Step2       Step3       Step4 
 1.81885763 -0.03444481 -0.28802335 -0.00738757 -0.02123234 -0.03290710 
      Step5       Step6       Step7       Step8       Step9      Step10 
-0.04693632 -0.08607941 -0.08972365 -0.08232825 -0.13001174 -0.13327835 
     Step11      Step12 
-0.09739196 -0.13820924 

Random Effects:
$subject
   (Intercept)
2  -0.05133255
3   0.18879046
4  -0.65680395
5  -0.87293904
7   0.17360114
8   0.73664753
10  1.88431290
11  0.99897785
13 -0.13716572
14 -0.38876009
15 -0.04815916
16  0.21177573
17 -0.69080677
18  0.32924469
19 -0.76524197
20 -0.59590204
22 -0.61509897
23  0.29885996

with conditional variances for "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.15697426 -0.02940094 -0.13727066 -0.19152371 -0.20090476 -0.20340640 

=============================================================
print_stepwise_lmm_diagnostics(sd_lmm_results, dataset_name = "SD Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: SD Acceleration ===========
--- SD_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)    
Block 3.13277 1.56639     2   617 54.9112 <2e-16 ***
Step  0.33935 0.03085    11   617  1.0815 0.3736    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0235 0.0163 617   1.445  0.3187
 Block2 - Block5   0.1578 0.0163 617   9.711  <.0001
 Block4 - Block5   0.1344 0.0163 617   8.267  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.820007226 -0.023476605 -0.157827323 -0.006692571  0.013830892 -0.008683006 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.009609194 -0.014823923 -0.036898338 -0.034873439 -0.048375019 -0.058928452 
      Step11       Step12 
-0.051007297 -0.049479024 

Random Effects:
$subject
    (Intercept)
2   0.174279479
3  -0.009755408
4  -0.247121976
5  -0.357605215
7  -0.153379808
8   0.367189453
10  0.845347050
11  0.551005897
13 -0.187624421
14  0.059879944
15 -0.069572910
16 -0.035470410
17 -0.196336208
18 -0.077042210
19 -0.293555212
20 -0.264354937
22 -0.176610423
23  0.070727316

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.5013051 0.9445774 0.6544064 0.4738771 0.4774416 0.5605867 

=============================================================

--- SD_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
Block 1.22549 0.61275     2   617  6.5770 0.001492 **
Step  0.46254 0.04205    11   617  0.4513 0.932093   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0356 0.0294 617   1.213  0.4457
 Block2 - Block5   0.1048 0.0294 617   3.567  0.0011
 Block4 - Block5   0.0691 0.0294 617   2.353  0.0495

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.885388031 -0.035635153 -0.104754046  0.004624095  0.004968428 -0.017165126 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.010661964 -0.030588056 -0.040429105 -0.047572819 -0.060673076 -0.063621829 
      Step11       Step12 
-0.058763709 -0.068132108 

Random Effects:
$subject
   (Intercept)
2   0.21230605
3   0.14448454
4  -0.29580232
5  -0.40834224
7  -0.19592017
8   0.45879206
10  0.79208586
11  0.51998579
13 -0.22914933
14 -0.03523675
15 -0.19065391
16 -0.07164817
17 -0.18654560
18 -0.13035689
19 -0.38143035
20 -0.29246169
22 -0.37027103
23  0.66016415

with conditional variances for "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.56127428 -0.47007162 -0.27687601 -0.19786186  0.01426335  0.12584559 

=============================================================

--- SD_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)    
Block 10.5854  5.2927     2   617 43.7683 <2e-16 ***
Step   0.5092  0.0463    11   617  0.3828 0.9628    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block2 - Block4   0.0444 0.0335 617   1.326  0.3813
 Block2 - Block5   0.2906 0.0335 617   8.684  <.0001
 Block4 - Block5   0.2462 0.0335 617   7.358  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
(Intercept)      Block4      Block5       Step2       Step3       Step4 
 1.60945970 -0.04436577 -0.29057288 -0.01618399 -0.02059153 -0.01725852 
      Step5       Step6       Step7       Step8       Step9      Step10 
-0.01342257 -0.04860412 -0.04679831 -0.04415617 -0.07470931 -0.08362982 
     Step11      Step12 
-0.06059107 -0.08556150 

Random Effects:
$subject
   (Intercept)
2  -0.04767230
3   0.16718136
4  -0.51314417
5  -0.75114593
7   0.08325545
8   0.86632313
10  1.55430049
11  0.99992179
13 -0.15347611
14 -0.28020757
15 -0.01866363
16  0.10302935
17 -0.60287502
18  0.10000760
19 -0.65319437
20 -0.61075192
22 -0.62910178
23  0.38621362

with conditional variances for "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.26483192  0.01196484  0.07890902 -0.09647006 -0.15243761 -0.17348686 

=============================================================

#6.3 18 steps Block 3,4 & 5

# -------- Function: Plot + Extract Stepwise RMS ± SD --------
plot_stepwise_rms_blocks_345_18steps <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    filter(Block %in% c(3, 4, 5)) %>%
    mutate(Step = as.numeric(Step)) %>%
    group_by(subject, Block, trial) %>%
    mutate(step_count = max(Step, na.rm = TRUE)) %>%
    ungroup() %>%
    filter(step_count == 18) %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup() %>%
    filter(Step <= 18)

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject)
    )

  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    )

  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS Acceleration ± SD — Axis", ax),
        x = "Step Number (1–18)",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# -------- Run analysis function for Blocks 3, 4, 5 --------
result <- plot_stepwise_rms_blocks_345_18steps(tagged_data2)

stepwise_block345_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# -------- Plot (optional) --------
for (plot_name in names(stepwise_block345_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block345_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# -------- Compute SD from raw data --------
sd_subject_data <- window_data %>%
  group_by(subject, Block, Step) %>%
  summarise(
    sd_x = sd(CoM.acc.x, na.rm = TRUE),
    sd_y = sd(CoM.acc.y, na.rm = TRUE),
    sd_z = sd(CoM.acc.z, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  pivot_longer(cols = starts_with("sd_"), names_to = "Axis", values_to = "sd_rms") %>%
  mutate(
    Axis = toupper(gsub("sd_", "", Axis)),
    Step = factor(Step),
    Block = factor(Block),
    subject = factor(subject)
  )

# -------- Print Function (if not already defined) --------
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}

# -------- Run axis-wise LMMs for RMS and SD --------
rms_lmm_results_18step <- list()
sd_lmm_results_18step <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for 18-step Axis: {ax} ==========\n\n"))

  # ---- RMS Model ----
  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject), data = df_rms)

  rms_lmm_results_18step[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )

  # ---- SD Model ----
  df_sd <- sd_subject_data %>% filter(Axis == ax)
  sd_model <- lmer(sd_rms ~ Block + Step + (1 | subject), data = df_sd)

  sd_lmm_results_18step[[paste0("SD_", ax)]] <- list(
    Model = sd_model,
    ANOVA = anova(sd_model, type = 3),
    Pairwise = emmeans(sd_model, pairwise ~ Block)$contrasts,
    FixedEffects = fixef(sd_model),
    RandomEffects = ranef(sd_model),
    ScaledResiduals = resid(sd_model, scaled = TRUE)
  )
}

========== Running models for 18-step Axis: X ==========

========== Running models for 18-step Axis: Y ==========

========== Running models for 18-step Axis: Z ==========
# -------- Print nicely formatted output --------
print_stepwise_lmm_diagnostics(rms_lmm_results_18step, dataset_name = "18-Step RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 18-Step RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 2.28798 1.14399     2   935 58.6656 < 2.2e-16 ***
Step  0.79508 0.04677    17   935  2.3984  0.001202 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate    SE  df t.ratio p.value
 Block3 - Block4 -0.10357 0.011 935  -9.440  <.0001
 Block3 - Block5 -0.00132 0.011 935  -0.120  0.9920
 Block4 - Block5  0.10225 0.011 935   9.320  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.685390730  0.103574426  0.001321964 -0.008549400  0.012078397 -0.008074561 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.011227122 -0.011425203 -0.016229456 -0.026155269 -0.028195704 -0.044890004 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.042937031 -0.041654826 -0.054952255 -0.065178826 -0.067303345 -0.085352878 
      Step17       Step18 
-0.077222807 -0.072495850 

Random Effects:
$subject
    (Intercept)
2   0.116418461
3  -0.039675170
4  -0.212745971
5  -0.351999215
7  -0.142466723
8   0.334466843
10  0.803169849
11  0.327416480
13 -0.157676835
14 -0.026028783
15 -0.049004873
16 -0.005954662
17 -0.115201918
18  0.034041517
19 -0.231769138
20 -0.219236724
22 -0.113469088
23  0.049715952

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.4553314 0.3734032 0.2403991 0.7324080 0.2523302 0.5573982 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 2.6511 1.32556     2   935 24.8842 2.956e-11 ***
Step  2.5040 0.14729    17   935  2.7651 0.0001594 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block3 - Block4  -0.1278 0.0181 935  -7.047  <.0001
 Block3 - Block5  -0.0691 0.0181 935  -3.808  0.0004
 Block4 - Block5   0.0587 0.0181 935   3.239  0.0036

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.731609270  0.127786732  0.069050690  0.001280471  0.004547396 -0.021933270 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.010545659 -0.027221312 -0.030146465 -0.034423821 -0.046119991 -0.057639370 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.047573690 -0.078040381 -0.086734489 -0.107826316 -0.121343771 -0.144502533 
      Step17       Step18 
-0.151214555 -0.133753710 

Random Effects:
$subject
   (Intercept)
2   0.28423585
3   0.16068140
4  -0.23276914
5  -0.31869462
7  -0.18242332
8   0.33874983
10  0.67779750
11  0.13990538
13 -0.18898201
14 -0.05763280
15 -0.07167369
16 -0.02814295
17 -0.08962412
18 -0.02179947
19 -0.32783051
20 -0.27306156
22 -0.29998782
23  0.49125206

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.114306 -1.175336 -1.160312 -0.959026 -1.157868 -0.779443 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 8.6392  4.3196     2   935 49.4093 < 2.2e-16 ***
Step  4.0556  0.2386    17   935  2.7288 0.0001957 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block3 - Block4 -0.19541 0.0232 935  -8.412  <.0001
 Block3 - Block5  0.00886 0.0232 935   0.381  0.9230
 Block4 - Block5  0.20427 0.0232 935   8.793  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.527644728  0.195413536 -0.008860052 -0.009813911 -0.006933563 -0.025309247 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.024285362 -0.068148694 -0.062056577 -0.073709087 -0.099765061 -0.112348529 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.088214312 -0.126271606 -0.116744474 -0.158440962 -0.152759518 -0.184948014 
      Step17       Step18 
-0.212336462 -0.183937294 

Random Effects:
$subject
    (Intercept)
2   0.001619598
3   0.169135755
4  -0.614465634
5  -0.796696828
7   0.146006858
8   0.457705306
10  2.126216988
11  0.326658731
13 -0.122259417
14 -0.134923482
15  0.008717373
16  0.180610272
17 -0.506454910
18  0.360735138
19 -0.702406710
20 -0.534688810
22 -0.549999194
23  0.184488965

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.4752407 0.6156987 0.3100476 0.5455948 0.2487787 0.1835137 

=============================================================
print_stepwise_lmm_diagnostics(sd_lmm_results_18step, dataset_name = "18-Step SD Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 18-Step SD Acceleration ===========
--- SD_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 2.43077 1.21539     2   935 62.1475 < 2.2e-16 ***
Step  0.75458 0.04439    17   935  2.2697  0.002372 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate    SE  df t.ratio p.value
 Block3 - Block4 -0.10330 0.011 935  -9.402  <.0001
 Block3 - Block5  0.00537 0.011 935   0.489  0.8767
 Block4 - Block5  0.10867 0.011 935   9.890  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.664669620  0.103296700 -0.005368431 -0.009744697  0.015497426 -0.006890933 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.006819232 -0.005023495 -0.012219742 -0.022284789 -0.022527925 -0.039758993 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.037185786 -0.035730845 -0.046941225 -0.059584885 -0.062958155 -0.082831722 
      Step17       Step18 
-0.073714739 -0.067541733 

Random Effects:
$subject
    (Intercept)
2   0.133649080
3  -0.042217886
4  -0.213041455
5  -0.333690610
7  -0.133066813
8   0.319093276
10  0.785735565
11  0.330056906
13 -0.145178452
14 -0.011124509
15 -0.046464808
16  0.006818412
17 -0.107690998
18  0.007442294
19 -0.246196429
20 -0.204530033
22 -0.166071420
23  0.066477880

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.4993757 0.4239849 0.2562167 0.7565987 0.2561125 0.5483282 

=============================================================

--- SD_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 2.2589 1.12944     2   935 21.0905 1.099e-09 ***
Step  2.1150 0.12441    17   935  2.3232  0.001792 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block3 - Block4  -0.1180 0.0182 935  -6.488  <.0001
 Block3 - Block5  -0.0543 0.0182 935  -2.985  0.0082
 Block4 - Block5   0.0637 0.0182 935   3.503  0.0014

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.701915882  0.117957776  0.054266770  0.002768840  0.010375572 -0.015669879 
       Step5        Step6        Step7        Step8        Step9       Step10 
 0.001553698 -0.016756482 -0.018147540 -0.024890025 -0.030008291 -0.042296670 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.035119034 -0.060632363 -0.066139468 -0.087261088 -0.103472604 -0.127958683 
      Step17       Step18 
-0.135768747 -0.120468492 

Random Effects:
$subject
   (Intercept)
2   0.19623149
3   0.13515423
4  -0.21560684
5  -0.30834798
7  -0.15932454
8   0.32433378
10  0.69743859
11  0.14812475
13 -0.17154155
14 -0.04787943
15 -0.06015274
16 -0.03522383
17 -0.08812562
18 -0.07764270
19 -0.31936312
20 -0.25389406
22 -0.27670284
23  0.51252239

with conditional variances for "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.5977339 -0.6807506 -0.7015031 -0.5038350 -0.6983478 -0.3094323 

=============================================================

--- SD_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)    
Block 6.6300  3.3150     2   935 46.1539 < 2e-16 ***
Step  1.8642  0.1097    17   935  1.5268 0.07807 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise Comparisons:
 contrast        estimate     SE  df t.ratio p.value
 Block3 - Block4  -0.1432 0.0211 935  -6.799  <.0001
 Block3 - Block5   0.0522 0.0211 935   2.480  0.0355
 Block4 - Block5   0.1954 0.0211 935   9.279  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.362910880  0.143152648 -0.052216714 -0.014907745 -0.008575322 -0.009667555 
       Step5        Step6        Step7        Step8        Step9       Step10 
 0.008934875 -0.033549943 -0.021087484 -0.030968462 -0.042874348 -0.056343361 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.035483728 -0.065232552 -0.053591531 -0.085352318 -0.087043858 -0.122206725 
      Step17       Step18 
-0.143614922 -0.123449973 

Random Effects:
$subject
     (Intercept)
2   0.0001078391
3   0.2033690975
4  -0.4914968314
5  -0.6855571731
7   0.0825640490
8   0.5528861374
10  1.7836696302
11  0.3283699393
13 -0.1020702155
14 -0.0712725465
15  0.0410698488
16  0.0682422986
17 -0.4210071801
18  0.1810042955
19 -0.6148012777
20 -0.5356898469
22 -0.5726784251
23  0.2532903609

with conditional variances for "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.3169071 0.6984461 0.4729325 0.7633309 0.3118129 0.2998259 

=============================================================

#7 Reaction Times #7.1 RT stepwise per block

RT <- read.csv("/Users/can/Documents/Uni/Thesis/Data/E-Prime/all_excluded2.csv", sep = ";")

# Filter only response procedure entries, remove subject 12, convert to numeric
RTR <- RT %>%
  filter(procedure == "responsprocedure") %>%
  mutate(
    feedback.ACC = as.numeric(feedback.ACC),
    feedback.RT = as.numeric(feedback.RT)
  ) %>%
  filter(subject != 12)

# -------- Assign trial numbers dynamically --------
RTR <- RTR %>%
  group_by(subject, session) %>%
  mutate(trial = cumsum(sub.trial.number == 1)) %>%
  ungroup()

# -------- Compute trial-level accuracy and mean RT --------
df <- RTR %>%
  group_by(subject, session, trial) %>%
  mutate(
    trial.acc = sum(feedback.ACC, na.rm = TRUE) / n(),
    trial.RT = mean(feedback.RT, na.rm = TRUE)
  ) %>%
  ungroup()

# -------- Filter only trials with 80% accuracy --------
df_acc <- df %>%
  filter(trial.acc >= 0.8) %>%
  mutate(
    subject = as.factor(subject),
    sub.trial.number = as.factor(sub.trial.number),
    session = as.factor(session)
  )

# -------- Add corr_trials per subject --------
df_acc5 <- df_acc %>%
  distinct(subject, trial, session) %>%
  count(subject, name = "corr_trials")

df_acc <- left_join(df_acc, df_acc5, by = "subject")

df_acc <- df_acc %>% select(-feedback.CRESP, -feedback.RESP, -cue.OnsetDelay, -cue.OnsetTime)
# Full model across all blocks
#M2 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
#           (1 | subject) + (1 | session) + (1 | trial) + (1 | corr_trials),
#           data = df_acc)

# Full model stats
#Anova(M2)
#ae.m.M2 <- allEffects(M2)
#ae.m.M2.df <- as.data.frame(ae.m.M2[1])
#plot(ae.m.M2)
#summary(M2)

# Post hoc for full model
#posthoc <- emmeans(M2, ~ factor(sub.trial.number))
#pairwise_comparisons <- pairs(posthoc)
#summary(pairwise_comparisons)

# Subset by block (sessions 1 to 5)
df_B1 <- df_acc %>% filter(session == 1)
df_B2 <- df_acc %>% filter(session == 2)
df_B3 <- df_acc %>% filter(session == 3)
df_B4 <- df_acc %>% filter(session == 4)
df_B5 <- df_acc %>% filter(session == 5)

### BLOCK 1 ANALYSIS
M_B1 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
             (1 | subject) + (1 | trial),
             data = df_B1)

Anova(M_B1)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 602.58  6  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.M_B1 <- allEffects(M_B1)
ae.m.M_B1.df <- as.data.frame(ae.m.M_B1[1])
plot(ae.m.M_B1)

summary(M_B1)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ 0 + sub.trial.number + (1 | subject) + (1 | trial)
   Data: df_B1

REML criterion at convergence: 63545

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2607 -0.3704 -0.0988  0.2392 29.5066 

Random effects:
 Groups   Name        Variance Std.Dev.
 trial    (Intercept)  13795   117.5   
 subject  (Intercept)  68992   262.7   
 Residual             102211   319.7   
Number of obs: 4410, groups:  trial, 48; subject, 18

Fixed effects:
                  Estimate Std. Error     df t value Pr(>|t|)    
sub.trial.number1   760.52      65.27  20.68  11.652 1.52e-10 ***
sub.trial.number2   464.27      65.27  20.68   7.113 5.62e-07 ***
sub.trial.number3   442.12      65.27  20.68   6.774 1.15e-06 ***
sub.trial.number4   453.28      65.27  20.68   6.945 8.02e-07 ***
sub.trial.number5   472.08      65.27  20.68   7.233 4.38e-07 ***
sub.trial.number6   479.82      65.27  20.68   7.351 3.42e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            sb.t.1 sb.t.2 sb.t.3 sb.t.4 sb.t.5
sb.trl.nmb2 0.967                             
sb.trl.nmb3 0.967  0.967                      
sb.trl.nmb4 0.967  0.967  0.967               
sb.trl.nmb5 0.967  0.967  0.967  0.967        
sb.trl.nmb6 0.967  0.967  0.967  0.967  0.967 
posthocM_B1 <- emmeans(M_B1, ~ factor(sub.trial.number))
pairwise_comparisonsM_B1 <- pairs(posthocM_B1)
summary(pairwise_comparisonsM_B1)
 contrast                              estimate   SE   df t.ratio p.value
 sub.trial.number1 - sub.trial.number2   296.25 16.7 4340  17.764  <.0001
 sub.trial.number1 - sub.trial.number3   318.39 16.7 4340  19.092  <.0001
 sub.trial.number1 - sub.trial.number4   307.24 16.7 4340  18.423  <.0001
 sub.trial.number1 - sub.trial.number5   288.44 16.7 4340  17.296  <.0001
 sub.trial.number1 - sub.trial.number6   280.70 16.7 4340  16.832  <.0001
 sub.trial.number2 - sub.trial.number3    22.14 16.7 4340   1.328  0.7696
 sub.trial.number2 - sub.trial.number4    10.99 16.7 4340   0.659  0.9863
 sub.trial.number2 - sub.trial.number5    -7.81 16.7 4340  -0.468  0.9972
 sub.trial.number2 - sub.trial.number6   -15.55 16.7 4340  -0.932  0.9382
 sub.trial.number3 - sub.trial.number4   -11.15 16.7 4340  -0.669  0.9853
 sub.trial.number3 - sub.trial.number5   -29.95 16.7 4340  -1.796  0.4684
 sub.trial.number3 - sub.trial.number6   -37.69 16.7 4340  -2.260  0.2109
 sub.trial.number4 - sub.trial.number5   -18.80 16.7 4340  -1.127  0.8701
 sub.trial.number4 - sub.trial.number6   -26.54 16.7 4340  -1.591  0.6043
 sub.trial.number5 - sub.trial.number6    -7.74 16.7 4340  -0.464  0.9973

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
### BLOCK 2 ANALYSIS
M_B2 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
             (1 | subject) + (1 | trial),
             data = df_B2)

Anova(M_B2)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 726.83 12  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.M_B2 <- allEffects(M_B2)
ae.m.M_B2.df <- as.data.frame(ae.m.M_B2[1])
plot(ae.m.M_B2)

summary(M_B2)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ 0 + sub.trial.number + (1 | subject) + (1 | trial)
   Data: df_B2

REML criterion at convergence: 107563.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.4650 -0.4593 -0.1806  0.1814 12.4992 

Random effects:
 Groups   Name        Variance Std.Dev.
 trial    (Intercept)  3901     62.46  
 subject  (Intercept) 60187    245.33  
 Residual             81544    285.56  
Number of obs: 7596, groups:  trial, 48; subject, 18

Fixed effects:
                   Estimate Std. Error     df t value Pr(>|t|)    
sub.trial.number1    766.95      59.62  19.02  12.863 7.82e-11 ***
sub.trial.number2    478.14      59.62  19.02   8.019 1.60e-07 ***
sub.trial.number3    448.41      59.62  19.02   7.521 4.11e-07 ***
sub.trial.number4    417.93      59.62  19.02   7.010 1.12e-06 ***
sub.trial.number5    528.07      59.62  19.02   8.857 3.55e-08 ***
sub.trial.number6    490.32      59.62  19.02   8.224 1.10e-07 ***
sub.trial.number7    536.07      59.62  19.02   8.991 2.81e-08 ***
sub.trial.number8    504.41      59.62  19.02   8.460 7.17e-08 ***
sub.trial.number9    528.69      59.62  19.02   8.867 3.48e-08 ***
sub.trial.number10   501.77      59.62  19.02   8.416 7.76e-08 ***
sub.trial.number11   464.25      59.62  19.02   7.786 2.48e-07 ***
sub.trial.number12   485.15      59.62  19.02   8.137 1.29e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            sb.t.1 sb.t.2 sb.t.3 sb.t.4 sb.t.5 sb.t.6 sb.t.7 sb.t.8 sb.t.9
sb.trl.nmb2 0.964                                                         
sb.trl.nmb3 0.964  0.964                                                  
sb.trl.nmb4 0.964  0.964  0.964                                           
sb.trl.nmb5 0.964  0.964  0.964  0.964                                    
sb.trl.nmb6 0.964  0.964  0.964  0.964  0.964                             
sb.trl.nmb7 0.964  0.964  0.964  0.964  0.964  0.964                      
sb.trl.nmb8 0.964  0.964  0.964  0.964  0.964  0.964  0.964               
sb.trl.nmb9 0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964        
sb.trl.nm10 0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964 
sb.trl.nm11 0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964 
sb.trl.nm12 0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964  0.964 
            sb..10 sb..11
sb.trl.nmb2              
sb.trl.nmb3              
sb.trl.nmb4              
sb.trl.nmb5              
sb.trl.nmb6              
sb.trl.nmb7              
sb.trl.nmb8              
sb.trl.nmb9              
sb.trl.nm10              
sb.trl.nm11 0.964        
sb.trl.nm12 0.964  0.964 
posthocM_B2 <- emmeans(M_B2, ~ factor(sub.trial.number))
pairwise_comparisonsM_B2 <- pairs(posthocM_B2)
summary(pairwise_comparisonsM_B2)
 contrast                                estimate   SE   df t.ratio p.value
 sub.trial.number1 - sub.trial.number2    288.807 16.1 7520  17.993  <.0001
 sub.trial.number1 - sub.trial.number3    318.537 16.1 7520  19.845  <.0001
 sub.trial.number1 - sub.trial.number4    349.021 16.1 7520  21.744  <.0001
 sub.trial.number1 - sub.trial.number5    238.880 16.1 7520  14.882  <.0001
 sub.trial.number1 - sub.trial.number6    276.632 16.1 7520  17.234  <.0001
 sub.trial.number1 - sub.trial.number7    230.885 16.1 7520  14.384  <.0001
 sub.trial.number1 - sub.trial.number8    262.545 16.1 7520  16.357  <.0001
 sub.trial.number1 - sub.trial.number9    238.256 16.1 7520  14.843  <.0001
 sub.trial.number1 - sub.trial.number10   265.180 16.1 7520  16.521  <.0001
 sub.trial.number1 - sub.trial.number11   302.703 16.1 7520  18.859  <.0001
 sub.trial.number1 - sub.trial.number12   281.799 16.1 7520  17.556  <.0001
 sub.trial.number2 - sub.trial.number3     29.730 16.1 7520   1.852  0.7887
 sub.trial.number2 - sub.trial.number4     60.213 16.1 7520   3.751  0.0097
 sub.trial.number2 - sub.trial.number5    -49.927 16.1 7520  -3.110  0.0800
 sub.trial.number2 - sub.trial.number6    -12.175 16.1 7520  -0.759  0.9998
 sub.trial.number2 - sub.trial.number7    -57.923 16.1 7520  -3.609  0.0162
 sub.trial.number2 - sub.trial.number8    -26.262 16.1 7520  -1.636  0.8958
 sub.trial.number2 - sub.trial.number9    -50.551 16.1 7520  -3.149  0.0715
 sub.trial.number2 - sub.trial.number10   -23.627 16.1 7520  -1.472  0.9482
 sub.trial.number2 - sub.trial.number11    13.896 16.1 7520   0.866  0.9994
 sub.trial.number2 - sub.trial.number12    -7.008 16.1 7520  -0.437  1.0000
 sub.trial.number3 - sub.trial.number4     30.483 16.1 7520   1.899  0.7601
 sub.trial.number3 - sub.trial.number5    -79.657 16.1 7520  -4.963  <.0001
 sub.trial.number3 - sub.trial.number6    -41.905 16.1 7520  -2.611  0.2736
 sub.trial.number3 - sub.trial.number7    -87.652 16.1 7520  -5.461  <.0001
 sub.trial.number3 - sub.trial.number8    -55.992 16.1 7520  -3.488  0.0246
 sub.trial.number3 - sub.trial.number9    -80.281 16.1 7520  -5.002  <.0001
 sub.trial.number3 - sub.trial.number10   -53.357 16.1 7520  -3.324  0.0421
 sub.trial.number3 - sub.trial.number11   -15.834 16.1 7520  -0.986  0.9980
 sub.trial.number3 - sub.trial.number12   -36.738 16.1 7520  -2.289  0.4847
 sub.trial.number4 - sub.trial.number5   -110.141 16.1 7520  -6.862  <.0001
 sub.trial.number4 - sub.trial.number6    -72.389 16.1 7520  -4.510  0.0004
 sub.trial.number4 - sub.trial.number7   -118.136 16.1 7520  -7.360  <.0001
 sub.trial.number4 - sub.trial.number8    -86.475 16.1 7520  -5.387  <.0001
 sub.trial.number4 - sub.trial.number9   -110.765 16.1 7520  -6.901  <.0001
 sub.trial.number4 - sub.trial.number10   -83.840 16.1 7520  -5.223  <.0001
 sub.trial.number4 - sub.trial.number11   -46.318 16.1 7520  -2.886  0.1461
 sub.trial.number4 - sub.trial.number12   -67.221 16.1 7520  -4.188  0.0017
 sub.trial.number5 - sub.trial.number6     37.752 16.1 7520   2.352  0.4394
 sub.trial.number5 - sub.trial.number7     -7.995 16.1 7520  -0.498  1.0000
 sub.trial.number5 - sub.trial.number8     23.665 16.1 7520   1.474  0.9476
 sub.trial.number5 - sub.trial.number9     -0.624 16.1 7520  -0.039  1.0000
 sub.trial.number5 - sub.trial.number10    26.300 16.1 7520   1.639  0.8949
 sub.trial.number5 - sub.trial.number11    63.823 16.1 7520   3.976  0.0041
 sub.trial.number5 - sub.trial.number12    42.919 16.1 7520   2.674  0.2395
 sub.trial.number6 - sub.trial.number7    -45.747 16.1 7520  -2.850  0.1595
 sub.trial.number6 - sub.trial.number8    -14.087 16.1 7520  -0.878  0.9993
 sub.trial.number6 - sub.trial.number9    -38.376 16.1 7520  -2.391  0.4123
 sub.trial.number6 - sub.trial.number10   -11.452 16.1 7520  -0.713  0.9999
 sub.trial.number6 - sub.trial.number11    26.071 16.1 7520   1.624  0.9005
 sub.trial.number6 - sub.trial.number12     5.168 16.1 7520   0.322  1.0000
 sub.trial.number7 - sub.trial.number8     31.660 16.1 7520   1.972  0.7124
 sub.trial.number7 - sub.trial.number9      7.371 16.1 7520   0.459  1.0000
 sub.trial.number7 - sub.trial.number10    34.295 16.1 7520   2.137  0.5962
 sub.trial.number7 - sub.trial.number11    71.818 16.1 7520   4.474  0.0005
 sub.trial.number7 - sub.trial.number12    50.915 16.1 7520   3.172  0.0670
 sub.trial.number8 - sub.trial.number9    -24.289 16.1 7520  -1.513  0.9373
 sub.trial.number8 - sub.trial.number10     2.635 16.1 7520   0.164  1.0000
 sub.trial.number8 - sub.trial.number11    40.158 16.1 7520   2.502  0.3387
 sub.trial.number8 - sub.trial.number12    19.254 16.1 7520   1.200  0.9891
 sub.trial.number9 - sub.trial.number10    26.924 16.1 7520   1.677  0.8787
 sub.trial.number9 - sub.trial.number11    64.447 16.1 7520   4.015  0.0035
 sub.trial.number9 - sub.trial.number12    43.543 16.1 7520   2.713  0.2199
 sub.trial.number10 - sub.trial.number11   37.523 16.1 7520   2.338  0.4496
 sub.trial.number10 - sub.trial.number12   16.619 16.1 7520   1.035  0.9969
 sub.trial.number11 - sub.trial.number12  -20.904 16.1 7520  -1.302  0.9790

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
### BLOCK 3 ANALYSIS
M_B3 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
             (1 | subject) + (1 | trial),
             data = df_B3)

Anova(M_B3)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 816.07 18  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.M_B3 <- allEffects(M_B3)
ae.m.M_B3.df <- as.data.frame(ae.m.M_B3[1])
plot(ae.m.M_B3)

summary(M_B3)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ 0 + sub.trial.number + (1 | subject) + (1 | trial)
   Data: df_B3

REML criterion at convergence: 148465.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5209 -0.4299 -0.1722  0.1637 29.6780 

Random effects:
 Groups   Name        Variance Std.Dev.
 trial    (Intercept)   1366    36.96  
 subject  (Intercept)  42285   205.63  
 Residual             115584   339.98  
Number of obs: 10242, groups:  trial, 48; subject, 18

Fixed effects:
                   Estimate Std. Error     df t value Pr(>|t|)    
sub.trial.number1    821.31      50.82  20.28  16.160 4.75e-13 ***
sub.trial.number2    495.98      50.82  20.28   9.759 4.17e-09 ***
sub.trial.number3    468.55      50.82  20.28   9.219 1.08e-08 ***
sub.trial.number4    449.90      50.82  20.28   8.852 2.10e-08 ***
sub.trial.number5    555.18      50.82  20.28  10.924 6.02e-10 ***
sub.trial.number6    533.84      50.82  20.28  10.504 1.19e-09 ***
sub.trial.number7    528.27      50.82  20.28  10.394 1.42e-09 ***
sub.trial.number8    513.04      50.82  20.28  10.095 2.35e-09 ***
sub.trial.number9    561.74      50.82  20.28  11.053 4.90e-10 ***
sub.trial.number10   574.64      50.82  20.28  11.307 3.29e-10 ***
sub.trial.number11   542.80      50.82  20.28  10.680 8.91e-10 ***
sub.trial.number12   481.91      50.82  20.28   9.482 6.76e-09 ***
sub.trial.number13   728.99      50.82  20.28  14.344 4.42e-12 ***
sub.trial.number14   586.87      50.82  20.28  11.547 2.27e-10 ***
sub.trial.number15   536.93      50.82  20.28  10.565 1.08e-09 ***
sub.trial.number16   481.77      50.82  20.28   9.479 6.80e-09 ***
sub.trial.number17   521.32      50.82  20.28  10.258 1.79e-09 ***
sub.trial.number18   535.39      50.82  20.28  10.534 1.13e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 18 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
posthocM_B3 <- emmeans(M_B3, ~ factor(sub.trial.number))
pairwise_comparisonsM_B3 <- pairs(posthocM_B3)
summary(pairwise_comparisonsM_B3)
 contrast                                estimate   SE    df t.ratio p.value
 sub.trial.number1 - sub.trial.number2    325.330 20.2 10160  16.141  <.0001
 sub.trial.number1 - sub.trial.number3    352.761 20.2 10160  17.501  <.0001
 sub.trial.number1 - sub.trial.number4    371.413 20.2 10160  18.427  <.0001
 sub.trial.number1 - sub.trial.number5    266.135 20.2 10160  13.204  <.0001
 sub.trial.number1 - sub.trial.number6    287.473 20.2 10160  14.262  <.0001
 sub.trial.number1 - sub.trial.number7    293.037 20.2 10160  14.538  <.0001
 sub.trial.number1 - sub.trial.number8    308.276 20.2 10160  15.294  <.0001
 sub.trial.number1 - sub.trial.number9    259.576 20.2 10160  12.878  <.0001
 sub.trial.number1 - sub.trial.number10   246.677 20.2 10160  12.238  <.0001
 sub.trial.number1 - sub.trial.number11   278.510 20.2 10160  13.818  <.0001
 sub.trial.number1 - sub.trial.number12   339.397 20.2 10160  16.838  <.0001
 sub.trial.number1 - sub.trial.number13    92.325 20.2 10160   4.580  0.0007
 sub.trial.number1 - sub.trial.number14   234.438 20.2 10160  11.631  <.0001
 sub.trial.number1 - sub.trial.number15   284.378 20.2 10160  14.109  <.0001
 sub.trial.number1 - sub.trial.number16   339.539 20.2 10160  16.845  <.0001
 sub.trial.number1 - sub.trial.number17   299.988 20.2 10160  14.883  <.0001
 sub.trial.number1 - sub.trial.number18   285.919 20.2 10160  14.185  <.0001
 sub.trial.number2 - sub.trial.number3     27.431 20.2 10160   1.361  0.9969
 sub.trial.number2 - sub.trial.number4     46.083 20.2 10160   2.286  0.6936
 sub.trial.number2 - sub.trial.number5    -59.195 20.2 10160  -2.937  0.2322
 sub.trial.number2 - sub.trial.number6    -37.858 20.2 10160  -1.878  0.9201
 sub.trial.number2 - sub.trial.number7    -32.294 20.2 10160  -1.602  0.9815
 sub.trial.number2 - sub.trial.number8    -17.055 20.2 10160  -0.846  1.0000
 sub.trial.number2 - sub.trial.number9    -65.754 20.2 10160  -3.262  0.1000
 sub.trial.number2 - sub.trial.number10   -78.654 20.2 10160  -3.902  0.0117
 sub.trial.number2 - sub.trial.number11   -46.821 20.2 10160  -2.323  0.6666
 sub.trial.number2 - sub.trial.number12    14.067 20.2 10160   0.698  1.0000
 sub.trial.number2 - sub.trial.number13  -233.005 20.2 10160 -11.560  <.0001
 sub.trial.number2 - sub.trial.number14   -90.893 20.2 10160  -4.509  0.0009
 sub.trial.number2 - sub.trial.number15   -40.953 20.2 10160  -2.032  0.8540
 sub.trial.number2 - sub.trial.number16    14.209 20.2 10160   0.705  1.0000
 sub.trial.number2 - sub.trial.number17   -25.343 20.2 10160  -1.257  0.9988
 sub.trial.number2 - sub.trial.number18   -39.411 20.2 10160  -1.955  0.8901
 sub.trial.number3 - sub.trial.number4     18.652 20.2 10160   0.925  1.0000
 sub.trial.number3 - sub.trial.number5    -86.626 20.2 10160  -4.298  0.0023
 sub.trial.number3 - sub.trial.number6    -65.288 20.2 10160  -3.239  0.1068
 sub.trial.number3 - sub.trial.number7    -59.724 20.2 10160  -2.963  0.2185
 sub.trial.number3 - sub.trial.number8    -44.485 20.2 10160  -2.207  0.7492
 sub.trial.number3 - sub.trial.number9    -93.184 20.2 10160  -4.623  0.0005
 sub.trial.number3 - sub.trial.number10  -106.084 20.2 10160  -5.263  <.0001
 sub.trial.number3 - sub.trial.number11   -74.251 20.2 10160  -3.684  0.0260
 sub.trial.number3 - sub.trial.number12   -13.364 20.2 10160  -0.663  1.0000
 sub.trial.number3 - sub.trial.number13  -260.436 20.2 10160 -12.921  <.0001
 sub.trial.number3 - sub.trial.number14  -118.323 20.2 10160  -5.870  <.0001
 sub.trial.number3 - sub.trial.number15   -68.383 20.2 10160  -3.393  0.0679
 sub.trial.number3 - sub.trial.number16   -13.221 20.2 10160  -0.656  1.0000
 sub.trial.number3 - sub.trial.number17   -52.773 20.2 10160  -2.618  0.4398
 sub.trial.number3 - sub.trial.number18   -66.842 20.2 10160  -3.316  0.0854
 sub.trial.number4 - sub.trial.number5   -105.278 20.2 10160  -5.223  <.0001
 sub.trial.number4 - sub.trial.number6    -83.940 20.2 10160  -4.164  0.0041
 sub.trial.number4 - sub.trial.number7    -78.376 20.2 10160  -3.888  0.0123
 sub.trial.number4 - sub.trial.number8    -63.137 20.2 10160  -3.132  0.1430
 sub.trial.number4 - sub.trial.number9   -111.837 20.2 10160  -5.549  <.0001
 sub.trial.number4 - sub.trial.number10  -124.736 20.2 10160  -6.189  <.0001
 sub.trial.number4 - sub.trial.number11   -92.903 20.2 10160  -4.609  0.0006
 sub.trial.number4 - sub.trial.number12   -32.016 20.2 10160  -1.588  0.9831
 sub.trial.number4 - sub.trial.number13  -279.088 20.2 10160 -13.846  <.0001
 sub.trial.number4 - sub.trial.number14  -136.975 20.2 10160  -6.796  <.0001
 sub.trial.number4 - sub.trial.number15   -87.035 20.2 10160  -4.318  0.0021
 sub.trial.number4 - sub.trial.number16   -31.873 20.2 10160  -1.581  0.9838
 sub.trial.number4 - sub.trial.number17   -71.425 20.2 10160  -3.544  0.0419
 sub.trial.number4 - sub.trial.number18   -85.494 20.2 10160  -4.242  0.0030
 sub.trial.number5 - sub.trial.number6     21.337 20.2 10160   1.059  0.9999
 sub.trial.number5 - sub.trial.number7     26.902 20.2 10160   1.335  0.9976
 sub.trial.number5 - sub.trial.number8     42.141 20.2 10160   2.091  0.8220
 sub.trial.number5 - sub.trial.number9     -6.559 20.2 10160  -0.325  1.0000
 sub.trial.number5 - sub.trial.number10   -19.459 20.2 10160  -0.965  1.0000
 sub.trial.number5 - sub.trial.number11    12.374 20.2 10160   0.614  1.0000
 sub.trial.number5 - sub.trial.number12    73.262 20.2 10160   3.635  0.0308
 sub.trial.number5 - sub.trial.number13  -173.810 20.2 10160  -8.623  <.0001
 sub.trial.number5 - sub.trial.number14   -31.698 20.2 10160  -1.573  0.9847
 sub.trial.number5 - sub.trial.number15    18.242 20.2 10160   0.905  1.0000
 sub.trial.number5 - sub.trial.number16    73.404 20.2 10160   3.642  0.0301
 sub.trial.number5 - sub.trial.number17    33.852 20.2 10160   1.680  0.9706
 sub.trial.number5 - sub.trial.number18    19.784 20.2 10160   0.982  1.0000
 sub.trial.number6 - sub.trial.number7      5.564 20.2 10160   0.276  1.0000
 sub.trial.number6 - sub.trial.number8     20.803 20.2 10160   1.032  0.9999
 sub.trial.number6 - sub.trial.number9    -27.896 20.2 10160  -1.384  0.9963
 sub.trial.number6 - sub.trial.number10   -40.796 20.2 10160  -2.024  0.8580
 sub.trial.number6 - sub.trial.number11    -8.963 20.2 10160  -0.445  1.0000
 sub.trial.number6 - sub.trial.number12    51.924 20.2 10160   2.576  0.4716
 sub.trial.number6 - sub.trial.number13  -195.148 20.2 10160  -9.682  <.0001
 sub.trial.number6 - sub.trial.number14   -53.035 20.2 10160  -2.631  0.4302
 sub.trial.number6 - sub.trial.number15    -3.095 20.2 10160  -0.154  1.0000
 sub.trial.number6 - sub.trial.number16    52.067 20.2 10160   2.583  0.4662
 sub.trial.number6 - sub.trial.number17    12.515 20.2 10160   0.621  1.0000
 sub.trial.number6 - sub.trial.number18    -1.554 20.2 10160  -0.077  1.0000
 sub.trial.number7 - sub.trial.number8     15.239 20.2 10160   0.756  1.0000
 sub.trial.number7 - sub.trial.number9    -33.461 20.2 10160  -1.660  0.9737
 sub.trial.number7 - sub.trial.number10   -46.360 20.2 10160  -2.300  0.6835
 sub.trial.number7 - sub.trial.number11   -14.527 20.2 10160  -0.721  1.0000
 sub.trial.number7 - sub.trial.number12    46.360 20.2 10160   2.300  0.6835
 sub.trial.number7 - sub.trial.number13  -200.712 20.2 10160  -9.958  <.0001
 sub.trial.number7 - sub.trial.number14   -58.599 20.2 10160  -2.907  0.2484
 sub.trial.number7 - sub.trial.number15    -8.659 20.2 10160  -0.430  1.0000
 sub.trial.number7 - sub.trial.number16    46.503 20.2 10160   2.307  0.6783
 sub.trial.number7 - sub.trial.number17     6.951 20.2 10160   0.345  1.0000
 sub.trial.number7 - sub.trial.number18    -7.118 20.2 10160  -0.353  1.0000
 sub.trial.number8 - sub.trial.number9    -48.700 20.2 10160  -2.416  0.5955
 sub.trial.number8 - sub.trial.number10   -61.599 20.2 10160  -3.056  0.1742
 sub.trial.number8 - sub.trial.number11   -29.766 20.2 10160  -1.477  0.9922
 sub.trial.number8 - sub.trial.number12    31.121 20.2 10160   1.544  0.9874
 sub.trial.number8 - sub.trial.number13  -215.951 20.2 10160 -10.714  <.0001
 sub.trial.number8 - sub.trial.number14   -73.838 20.2 10160  -3.663  0.0279
 sub.trial.number8 - sub.trial.number15   -23.898 20.2 10160  -1.186  0.9994
 sub.trial.number8 - sub.trial.number16    31.264 20.2 10160   1.551  0.9868
 sub.trial.number8 - sub.trial.number17    -8.288 20.2 10160  -0.411  1.0000
 sub.trial.number8 - sub.trial.number18   -22.357 20.2 10160  -1.109  0.9998
 sub.trial.number9 - sub.trial.number10   -12.900 20.2 10160  -0.640  1.0000
 sub.trial.number9 - sub.trial.number11    18.933 20.2 10160   0.939  1.0000
 sub.trial.number9 - sub.trial.number12    79.821 20.2 10160   3.960  0.0094
 sub.trial.number9 - sub.trial.number13  -167.251 20.2 10160  -8.298  <.0001
 sub.trial.number9 - sub.trial.number14   -25.139 20.2 10160  -1.247  0.9989
 sub.trial.number9 - sub.trial.number15    24.801 20.2 10160   1.230  0.9991
 sub.trial.number9 - sub.trial.number16    79.963 20.2 10160   3.967  0.0091
 sub.trial.number9 - sub.trial.number17    40.411 20.2 10160   2.005  0.8674
 sub.trial.number9 - sub.trial.number18    26.343 20.2 10160   1.307  0.9981
 sub.trial.number10 - sub.trial.number11   31.833 20.2 10160   1.579  0.9841
 sub.trial.number10 - sub.trial.number12   92.721 20.2 10160   4.600  0.0006
 sub.trial.number10 - sub.trial.number13 -154.351 20.2 10160  -7.658  <.0001
 sub.trial.number10 - sub.trial.number14  -12.239 20.2 10160  -0.607  1.0000
 sub.trial.number10 - sub.trial.number15   37.701 20.2 10160   1.870  0.9228
 sub.trial.number10 - sub.trial.number16   92.863 20.2 10160   4.607  0.0006
 sub.trial.number10 - sub.trial.number17   53.311 20.2 10160   2.645  0.4201
 sub.trial.number10 - sub.trial.number18   39.242 20.2 10160   1.947  0.8936
 sub.trial.number11 - sub.trial.number12   60.888 20.2 10160   3.021  0.1902
 sub.trial.number11 - sub.trial.number13 -186.185 20.2 10160  -9.237  <.0001
 sub.trial.number11 - sub.trial.number14  -44.072 20.2 10160  -2.187  0.7629
 sub.trial.number11 - sub.trial.number15    5.868 20.2 10160   0.291  1.0000
 sub.trial.number11 - sub.trial.number16   61.030 20.2 10160   3.028  0.1869
 sub.trial.number11 - sub.trial.number17   21.478 20.2 10160   1.066  0.9999
 sub.trial.number11 - sub.trial.number18    7.410 20.2 10160   0.368  1.0000
 sub.trial.number12 - sub.trial.number13 -247.072 20.2 10160 -12.258  <.0001
 sub.trial.number12 - sub.trial.number14 -104.960 20.2 10160  -5.207  <.0001
 sub.trial.number12 - sub.trial.number15  -55.019 20.2 10160  -2.730  0.3596
 sub.trial.number12 - sub.trial.number16    0.142 20.2 10160   0.007  1.0000
 sub.trial.number12 - sub.trial.number17  -39.410 20.2 10160  -1.955  0.8901
 sub.trial.number12 - sub.trial.number18  -53.478 20.2 10160  -2.653  0.4140
 sub.trial.number13 - sub.trial.number14  142.113 20.2 10160   7.051  <.0001
 sub.trial.number13 - sub.trial.number15  192.053 20.2 10160   9.528  <.0001
 sub.trial.number13 - sub.trial.number16  247.214 20.2 10160  12.265  <.0001
 sub.trial.number13 - sub.trial.number17  207.663 20.2 10160  10.303  <.0001
 sub.trial.number13 - sub.trial.number18  193.594 20.2 10160   9.605  <.0001
 sub.trial.number14 - sub.trial.number15   49.940 20.2 10160   2.478  0.5477
 sub.trial.number14 - sub.trial.number16  105.102 20.2 10160   5.214  <.0001
 sub.trial.number14 - sub.trial.number17   65.550 20.2 10160   3.252  0.1029
 sub.trial.number14 - sub.trial.number18   51.481 20.2 10160   2.554  0.4884
 sub.trial.number15 - sub.trial.number16   55.162 20.2 10160   2.737  0.3548
 sub.trial.number15 - sub.trial.number17   15.610 20.2 10160   0.774  1.0000
 sub.trial.number15 - sub.trial.number18    1.541 20.2 10160   0.076  1.0000
 sub.trial.number16 - sub.trial.number17  -39.552 20.2 10160  -1.962  0.8870
 sub.trial.number16 - sub.trial.number18  -53.620 20.2 10160  -2.660  0.4088
 sub.trial.number17 - sub.trial.number18  -14.069 20.2 10160  -0.698  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
### BLOCK 4 ANALYSIS
M_B4 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
             (1 | subject) + (1 | trial),
             data = df_B4)

Anova(M_B4)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                 Chisq Df Pr(>Chisq)    
sub.trial.number 837.9 18  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.M_B4 <- allEffects(M_B4)
ae.m.M_B4.df <- as.data.frame(ae.m.M_B4[1])
plot(ae.m.M_B4)

summary(M_B4)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ 0 + sub.trial.number + (1 | subject) + (1 | trial)
   Data: df_B4

REML criterion at convergence: 120490.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1704 -0.3740 -0.1464  0.1338 26.0516 

Random effects:
 Groups   Name        Variance Std.Dev.
 trial    (Intercept)    984.3  31.37  
 subject  (Intercept)  38348.3 195.83  
 Residual             118868.8 344.77  
Number of obs: 8298, groups:  trial, 48; subject, 18

Fixed effects:
                   Estimate Std. Error     df t value Pr(>|t|)    
sub.trial.number1    771.42      48.14  19.82  16.024 8.26e-13 ***
sub.trial.number2    429.67      48.14  19.82   8.925 2.23e-08 ***
sub.trial.number3    392.65      48.14  19.82   8.156 9.22e-08 ***
sub.trial.number4    385.34      48.14  19.82   8.004 1.23e-07 ***
sub.trial.number5    432.79      48.14  19.82   8.990 1.98e-08 ***
sub.trial.number6    444.94      48.14  19.82   9.242 1.27e-08 ***
sub.trial.number7    566.63      49.11  21.47  11.538 1.14e-10 ***
sub.trial.number8    464.89      49.11  21.47   9.466 4.08e-09 ***
sub.trial.number9    497.81      49.11  21.47  10.136 1.22e-09 ***
sub.trial.number10   471.20      49.11  21.47   9.595 3.22e-09 ***
sub.trial.number11   455.31      49.11  21.47   9.271 5.87e-09 ***
sub.trial.number12   445.95      49.11  21.47   9.080 8.40e-09 ***
sub.trial.number13   592.53      52.12  27.23  11.368 7.58e-12 ***
sub.trial.number14   542.87      52.12  27.23  10.416 5.34e-11 ***
sub.trial.number15   432.58      52.12  27.23   8.300 6.16e-09 ***
sub.trial.number16   442.77      52.12  27.23   8.495 3.87e-09 ***
sub.trial.number17   450.63      52.12  27.23   8.646 2.72e-09 ***
sub.trial.number18   550.28      52.12  27.23  10.558 3.96e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 18 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
posthocM_B4 <- emmeans(M_B4, ~ factor(sub.trial.number))
pairwise_comparisonsM_B4 <- pairs(posthocM_B4)
summary(pairwise_comparisonsM_B4)
 contrast                                estimate   SE   df t.ratio p.value
 sub.trial.number1 - sub.trial.number2    341.747 18.2 8216  18.742  <.0001
 sub.trial.number1 - sub.trial.number3    378.772 18.2 8216  20.772  <.0001
 sub.trial.number1 - sub.trial.number4    386.085 18.2 8216  21.173  <.0001
 sub.trial.number1 - sub.trial.number5    338.631 18.2 8216  18.571  <.0001
 sub.trial.number1 - sub.trial.number6    326.477 18.2 8216  17.904  <.0001
 sub.trial.number1 - sub.trial.number7    204.786 20.7 8228   9.912  <.0001
 sub.trial.number1 - sub.trial.number8    306.530 20.7 8228  14.837  <.0001
 sub.trial.number1 - sub.trial.number9    273.607 20.7 8228  13.243  <.0001
 sub.trial.number1 - sub.trial.number10   300.217 20.7 8228  14.531  <.0001
 sub.trial.number1 - sub.trial.number11   316.112 20.7 8228  15.301  <.0001
 sub.trial.number1 - sub.trial.number12   325.467 20.7 8228  15.753  <.0001
 sub.trial.number1 - sub.trial.number13   178.887 27.0 8233   6.615  <.0001
 sub.trial.number1 - sub.trial.number14   228.550 27.0 8233   8.452  <.0001
 sub.trial.number1 - sub.trial.number15   338.840 27.0 8233  12.531  <.0001
 sub.trial.number1 - sub.trial.number16   328.650 27.0 8233  12.154  <.0001
 sub.trial.number1 - sub.trial.number17   320.792 27.0 8233  11.863  <.0001
 sub.trial.number1 - sub.trial.number18   221.138 27.0 8233   8.178  <.0001
 sub.trial.number2 - sub.trial.number3     37.025 18.2 8216   2.030  0.8546
 sub.trial.number2 - sub.trial.number4     44.339 18.2 8216   2.432  0.5835
 sub.trial.number2 - sub.trial.number5     -3.116 18.2 8216  -0.171  1.0000
 sub.trial.number2 - sub.trial.number6    -15.270 18.2 8216  -0.837  1.0000
 sub.trial.number2 - sub.trial.number7   -136.961 20.7 8228  -6.629  <.0001
 sub.trial.number2 - sub.trial.number8    -35.217 20.7 8228  -1.705  0.9661
 sub.trial.number2 - sub.trial.number9    -68.140 20.7 8228  -3.298  0.0901
 sub.trial.number2 - sub.trial.number10   -41.530 20.7 8228  -2.010  0.8648
 sub.trial.number2 - sub.trial.number11   -25.635 20.7 8228  -1.241  0.9990
 sub.trial.number2 - sub.trial.number12   -16.280 20.7 8228  -0.788  1.0000
 sub.trial.number2 - sub.trial.number13  -162.860 27.0 8233  -6.023  <.0001
 sub.trial.number2 - sub.trial.number14  -113.196 27.0 8233  -4.186  0.0038
 sub.trial.number2 - sub.trial.number15    -2.907 27.0 8233  -0.108  1.0000
 sub.trial.number2 - sub.trial.number16   -13.097 27.0 8233  -0.484  1.0000
 sub.trial.number2 - sub.trial.number17   -20.955 27.0 8233  -0.775  1.0000
 sub.trial.number2 - sub.trial.number18  -120.609 27.0 8233  -4.460  0.0011
 sub.trial.number3 - sub.trial.number4      7.313 18.2 8216   0.401  1.0000
 sub.trial.number3 - sub.trial.number5    -40.141 18.2 8216  -2.201  0.7530
 sub.trial.number3 - sub.trial.number6    -52.295 18.2 8216  -2.868  0.2711
 sub.trial.number3 - sub.trial.number7   -173.986 20.7 8228  -8.421  <.0001
 sub.trial.number3 - sub.trial.number8    -72.242 20.7 8228  -3.497  0.0489
 sub.trial.number3 - sub.trial.number9   -105.165 20.7 8228  -5.090  0.0001
 sub.trial.number3 - sub.trial.number10   -78.555 20.7 8228  -3.802  0.0170
 sub.trial.number3 - sub.trial.number11   -62.660 20.7 8228  -3.033  0.1846
 sub.trial.number3 - sub.trial.number12   -53.306 20.7 8228  -2.580  0.4686
 sub.trial.number3 - sub.trial.number13  -199.885 27.0 8233  -7.392  <.0001
 sub.trial.number3 - sub.trial.number14  -150.222 27.0 8233  -5.555  <.0001
 sub.trial.number3 - sub.trial.number15   -39.932 27.0 8233  -1.477  0.9922
 sub.trial.number3 - sub.trial.number16   -50.122 27.0 8233  -1.854  0.9284
 sub.trial.number3 - sub.trial.number17   -57.980 27.0 8233  -2.144  0.7901
 sub.trial.number3 - sub.trial.number18  -157.634 27.0 8233  -5.830  <.0001
 sub.trial.number4 - sub.trial.number5    -47.455 18.2 8216  -2.602  0.4517
 sub.trial.number4 - sub.trial.number6    -59.608 18.2 8216  -3.269  0.0981
 sub.trial.number4 - sub.trial.number7   -181.299 20.7 8228  -8.775  <.0001
 sub.trial.number4 - sub.trial.number8    -79.555 20.7 8228  -3.851  0.0142
 sub.trial.number4 - sub.trial.number9   -112.479 20.7 8228  -5.444  <.0001
 sub.trial.number4 - sub.trial.number10   -85.868 20.7 8228  -4.156  0.0043
 sub.trial.number4 - sub.trial.number11   -69.973 20.7 8228  -3.387  0.0691
 sub.trial.number4 - sub.trial.number12   -60.619 20.7 8228  -2.934  0.2338
 sub.trial.number4 - sub.trial.number13  -207.198 27.0 8233  -7.662  <.0001
 sub.trial.number4 - sub.trial.number14  -157.535 27.0 8233  -5.826  <.0001
 sub.trial.number4 - sub.trial.number15   -47.246 27.0 8233  -1.747  0.9573
 sub.trial.number4 - sub.trial.number16   -57.435 27.0 8233  -2.124  0.8024
 sub.trial.number4 - sub.trial.number17   -65.293 27.0 8233  -2.415  0.5967
 sub.trial.number4 - sub.trial.number18  -164.947 27.0 8233  -6.100  <.0001
 sub.trial.number5 - sub.trial.number6    -12.154 18.2 8216  -0.667  1.0000
 sub.trial.number5 - sub.trial.number7   -133.845 20.7 8228  -6.478  <.0001
 sub.trial.number5 - sub.trial.number8    -32.101 20.7 8228  -1.554  0.9865
 sub.trial.number5 - sub.trial.number9    -65.024 20.7 8228  -3.147  0.1375
 sub.trial.number5 - sub.trial.number10   -38.414 20.7 8228  -1.859  0.9265
 sub.trial.number5 - sub.trial.number11   -22.519 20.7 8228  -1.090  0.9998
 sub.trial.number5 - sub.trial.number12   -13.164 20.7 8228  -0.637  1.0000
 sub.trial.number5 - sub.trial.number13  -159.744 27.0 8233  -5.908  <.0001
 sub.trial.number5 - sub.trial.number14  -110.080 27.0 8233  -4.071  0.0060
 sub.trial.number5 - sub.trial.number15     0.209 27.0 8233   0.008  1.0000
 sub.trial.number5 - sub.trial.number16    -9.981 27.0 8233  -0.369  1.0000
 sub.trial.number5 - sub.trial.number17   -17.839 27.0 8233  -0.660  1.0000
 sub.trial.number5 - sub.trial.number18  -117.493 27.0 8233  -4.345  0.0019
 sub.trial.number6 - sub.trial.number7   -121.691 20.7 8228  -5.890  <.0001
 sub.trial.number6 - sub.trial.number8    -19.947 20.7 8228  -0.965  1.0000
 sub.trial.number6 - sub.trial.number9    -52.870 20.7 8228  -2.559  0.4847
 sub.trial.number6 - sub.trial.number10   -26.260 20.7 8228  -1.271  0.9987
 sub.trial.number6 - sub.trial.number11   -10.365 20.7 8228  -0.502  1.0000
 sub.trial.number6 - sub.trial.number12    -1.010 20.7 8228  -0.049  1.0000
 sub.trial.number6 - sub.trial.number13  -147.590 27.0 8233  -5.458  <.0001
 sub.trial.number6 - sub.trial.number14   -97.926 27.0 8233  -3.621  0.0323
 sub.trial.number6 - sub.trial.number15    12.363 27.0 8233   0.457  1.0000
 sub.trial.number6 - sub.trial.number16     2.173 27.0 8233   0.080  1.0000
 sub.trial.number6 - sub.trial.number17    -5.685 27.0 8233  -0.210  1.0000
 sub.trial.number6 - sub.trial.number18  -105.339 27.0 8233  -3.896  0.0120
 sub.trial.number7 - sub.trial.number8    101.744 22.8 8216   4.461  0.0011
 sub.trial.number7 - sub.trial.number9     68.821 22.8 8216   3.017  0.1918
 sub.trial.number7 - sub.trial.number10    95.431 22.8 8216   4.184  0.0038
 sub.trial.number7 - sub.trial.number11   111.326 22.8 8216   4.881  0.0002
 sub.trial.number7 - sub.trial.number12   120.680 22.8 8216   5.291  <.0001
 sub.trial.number7 - sub.trial.number13   -25.899 28.7 8229  -0.902  1.0000
 sub.trial.number7 - sub.trial.number14    23.764 28.7 8229   0.828  1.0000
 sub.trial.number7 - sub.trial.number15   134.054 28.7 8229   4.668  0.0004
 sub.trial.number7 - sub.trial.number16   123.864 28.7 8229   4.313  0.0022
 sub.trial.number7 - sub.trial.number17   116.006 28.7 8229   4.040  0.0069
 sub.trial.number7 - sub.trial.number18    16.352 28.7 8229   0.569  1.0000
 sub.trial.number8 - sub.trial.number9    -32.923 22.8 8216  -1.443  0.9940
 sub.trial.number8 - sub.trial.number10    -6.313 22.8 8216  -0.277  1.0000
 sub.trial.number8 - sub.trial.number11     9.582 22.8 8216   0.420  1.0000
 sub.trial.number8 - sub.trial.number12    18.936 22.8 8216   0.830  1.0000
 sub.trial.number8 - sub.trial.number13  -127.643 28.7 8229  -4.445  0.0012
 sub.trial.number8 - sub.trial.number14   -77.980 28.7 8229  -2.715  0.3696
 sub.trial.number8 - sub.trial.number15    32.310 28.7 8229   1.125  0.9997
 sub.trial.number8 - sub.trial.number16    22.120 28.7 8229   0.770  1.0000
 sub.trial.number8 - sub.trial.number17    14.262 28.7 8229   0.497  1.0000
 sub.trial.number8 - sub.trial.number18   -85.392 28.7 8229  -2.973  0.2132
 sub.trial.number9 - sub.trial.number10    26.610 22.8 8216   1.167  0.9996
 sub.trial.number9 - sub.trial.number11    42.505 22.8 8216   1.864  0.9251
 sub.trial.number9 - sub.trial.number12    51.860 22.8 8216   2.274  0.7026
 sub.trial.number9 - sub.trial.number13   -94.720 28.7 8229  -3.298  0.0901
 sub.trial.number9 - sub.trial.number14   -45.056 28.7 8229  -1.569  0.9851
 sub.trial.number9 - sub.trial.number15    65.233 28.7 8229   2.272  0.7042
 sub.trial.number9 - sub.trial.number16    55.043 28.7 8229   1.917  0.9059
 sub.trial.number9 - sub.trial.number17    47.186 28.7 8229   1.643  0.9762
 sub.trial.number9 - sub.trial.number18   -52.468 28.7 8229  -1.827  0.9366
 sub.trial.number10 - sub.trial.number11   15.895 22.8 8216   0.697  1.0000
 sub.trial.number10 - sub.trial.number12   25.250 22.8 8216   1.107  0.9998
 sub.trial.number10 - sub.trial.number13 -121.330 28.7 8229  -4.225  0.0032
 sub.trial.number10 - sub.trial.number14  -71.667 28.7 8229  -2.496  0.5338
 sub.trial.number10 - sub.trial.number15   38.623 28.7 8229   1.345  0.9973
 sub.trial.number10 - sub.trial.number16   28.433 28.7 8229   0.990  1.0000
 sub.trial.number10 - sub.trial.number17   20.575 28.7 8229   0.716  1.0000
 sub.trial.number10 - sub.trial.number18  -79.079 28.7 8229  -2.754  0.3433
 sub.trial.number11 - sub.trial.number12    9.354 22.8 8216   0.410  1.0000
 sub.trial.number11 - sub.trial.number13 -137.225 28.7 8229  -4.778  0.0003
 sub.trial.number11 - sub.trial.number14  -87.562 28.7 8229  -3.049  0.1774
 sub.trial.number11 - sub.trial.number15   22.727 28.7 8229   0.791  1.0000
 sub.trial.number11 - sub.trial.number16   12.538 28.7 8229   0.437  1.0000
 sub.trial.number11 - sub.trial.number17    4.680 28.7 8229   0.163  1.0000
 sub.trial.number11 - sub.trial.number18  -94.974 28.7 8229  -3.307  0.0878
 sub.trial.number12 - sub.trial.number13 -146.580 28.7 8229  -5.104  0.0001
 sub.trial.number12 - sub.trial.number14  -96.916 28.7 8229  -3.375  0.0717
 sub.trial.number12 - sub.trial.number15   13.373 28.7 8229   0.466  1.0000
 sub.trial.number12 - sub.trial.number16    3.183 28.7 8229   0.111  1.0000
 sub.trial.number12 - sub.trial.number17   -4.674 28.7 8229  -0.163  1.0000
 sub.trial.number12 - sub.trial.number18 -104.328 28.7 8229  -3.633  0.0311
 sub.trial.number13 - sub.trial.number14   49.663 33.6 8216   1.480  0.9921
 sub.trial.number13 - sub.trial.number15  159.953 33.6 8216   4.765  0.0003
 sub.trial.number13 - sub.trial.number16  149.763 33.6 8216   4.462  0.0011
 sub.trial.number13 - sub.trial.number17  141.905 33.6 8216   4.228  0.0032
 sub.trial.number13 - sub.trial.number18   42.251 33.6 8216   1.259  0.9988
 sub.trial.number14 - sub.trial.number15  110.289 33.6 8216   3.286  0.0935
 sub.trial.number14 - sub.trial.number16  100.100 33.6 8216   2.982  0.2089
 sub.trial.number14 - sub.trial.number17   92.242 33.6 8216   2.748  0.3471
 sub.trial.number14 - sub.trial.number18   -7.412 33.6 8216  -0.221  1.0000
 sub.trial.number15 - sub.trial.number16  -10.190 33.6 8216  -0.304  1.0000
 sub.trial.number15 - sub.trial.number17  -18.047 33.6 8216  -0.538  1.0000
 sub.trial.number15 - sub.trial.number18 -117.701 33.6 8216  -3.507  0.0474
 sub.trial.number16 - sub.trial.number17   -7.858 33.6 8216  -0.234  1.0000
 sub.trial.number16 - sub.trial.number18 -107.512 33.6 8216  -3.203  0.1182
 sub.trial.number17 - sub.trial.number18  -99.654 33.6 8216  -2.969  0.2156

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
### BLOCK 5 ANALYSIS
M_B5 <- lmer(feedback.RT ~ 0 + sub.trial.number + 
             (1 | subject) + (1 | trial),
             data = df_B5)

Anova(M_B5)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 766.03 18  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.M_B5 <- allEffects(M_B5)
ae.m.M_B5.df <- as.data.frame(ae.m.M_B5[1])
plot(ae.m.M_B5)

summary(M_B5)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ 0 + sub.trial.number + (1 | subject) + (1 | trial)
   Data: df_B5

REML criterion at convergence: 96471.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.8446 -0.4090 -0.1616  0.1312 21.3481 

Random effects:
 Groups   Name        Variance Std.Dev.
 trial    (Intercept)   4131    64.27  
 subject  (Intercept)  35216   187.66  
 Residual             221693   470.84  
Number of obs: 6372, groups:  trial, 48; subject, 18

Fixed effects:
                   Estimate Std. Error     df t value Pr(>|t|)    
sub.trial.number1    962.44      49.35  24.94  19.503  < 2e-16 ***
sub.trial.number2    538.30      49.35  24.94  10.908 5.55e-11 ***
sub.trial.number3    525.39      49.35  24.94  10.647 9.17e-11 ***
sub.trial.number4    544.89      49.35  24.94  11.042 4.31e-11 ***
sub.trial.number5    571.99      49.35  24.94  11.591 1.55e-11 ***
sub.trial.number6    564.08      49.35  24.94  11.431 2.08e-11 ***
sub.trial.number7    708.50      52.02  30.78  13.621 1.43e-14 ***
sub.trial.number8    591.56      52.02  30.78  11.373 1.50e-12 ***
sub.trial.number9    794.72      52.02  30.78  15.279 6.47e-16 ***
sub.trial.number10   668.19      52.02  30.78  12.846 6.65e-14 ***
sub.trial.number11   507.50      52.02  30.78   9.757 6.20e-11 ***
sub.trial.number12   555.03      52.02  30.78  10.671 7.26e-12 ***
sub.trial.number13   997.24      59.53  52.72  16.753  < 2e-16 ***
sub.trial.number14   666.50      59.53  52.72  11.197 1.50e-15 ***
sub.trial.number15   508.67      59.53  52.72   8.545 1.59e-11 ***
sub.trial.number16   540.20      59.53  52.72   9.075 2.35e-12 ***
sub.trial.number17   570.91      59.53  52.72   9.591 3.75e-13 ***
sub.trial.number18   523.31      59.53  52.72   8.791 6.51e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 18 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
posthocM_B5 <- emmeans(M_B5, ~ factor(sub.trial.number))
pairwise_comparisonsM_B5 <- pairs(posthocM_B5)
summary(pairwise_comparisonsM_B5)
 contrast                                estimate   SE   df t.ratio p.value
 sub.trial.number1 - sub.trial.number2     424.14 27.8 6291  15.234  <.0001
 sub.trial.number1 - sub.trial.number3     437.05 27.8 6291  15.698  <.0001
 sub.trial.number1 - sub.trial.number4     417.55 27.8 6291  14.998  <.0001
 sub.trial.number1 - sub.trial.number5     390.46 27.8 6291  14.024  <.0001
 sub.trial.number1 - sub.trial.number6     398.36 27.8 6291  14.308  <.0001
 sub.trial.number1 - sub.trial.number7     253.95 32.3 6303   7.865  <.0001
 sub.trial.number1 - sub.trial.number8     370.88 32.3 6303  11.486  <.0001
 sub.trial.number1 - sub.trial.number9     167.73 32.3 6303   5.195  <.0001
 sub.trial.number1 - sub.trial.number10    294.25 32.3 6303   9.113  <.0001
 sub.trial.number1 - sub.trial.number11    454.94 32.3 6303  14.090  <.0001
 sub.trial.number1 - sub.trial.number12    407.41 32.3 6303  12.618  <.0001
 sub.trial.number1 - sub.trial.number13    -34.80 43.3 6308  -0.803  1.0000
 sub.trial.number1 - sub.trial.number14    295.94 43.3 6308   6.833  <.0001
 sub.trial.number1 - sub.trial.number15    453.77 43.3 6308  10.478  <.0001
 sub.trial.number1 - sub.trial.number16    422.24 43.3 6308   9.750  <.0001
 sub.trial.number1 - sub.trial.number17    391.53 43.3 6308   9.041  <.0001
 sub.trial.number1 - sub.trial.number18    439.13 43.3 6308  10.140  <.0001
 sub.trial.number2 - sub.trial.number3      12.91 27.8 6291   0.464  1.0000
 sub.trial.number2 - sub.trial.number4      -6.59 27.8 6291  -0.237  1.0000
 sub.trial.number2 - sub.trial.number5     -33.68 27.8 6291  -1.210  0.9993
 sub.trial.number2 - sub.trial.number6     -25.78 27.8 6291  -0.926  1.0000
 sub.trial.number2 - sub.trial.number7    -170.19 32.3 6303  -5.271  <.0001
 sub.trial.number2 - sub.trial.number8     -53.26 32.3 6303  -1.650  0.9753
 sub.trial.number2 - sub.trial.number9    -256.41 32.3 6303  -7.941  <.0001
 sub.trial.number2 - sub.trial.number10   -129.89 32.3 6303  -4.023  0.0073
 sub.trial.number2 - sub.trial.number11     30.80 32.3 6303   0.954  1.0000
 sub.trial.number2 - sub.trial.number12    -16.73 32.3 6303  -0.518  1.0000
 sub.trial.number2 - sub.trial.number13   -458.94 43.3 6308 -10.597  <.0001
 sub.trial.number2 - sub.trial.number14   -128.20 43.3 6308  -2.960  0.2202
 sub.trial.number2 - sub.trial.number15     29.63 43.3 6308   0.684  1.0000
 sub.trial.number2 - sub.trial.number16     -1.90 43.3 6308  -0.044  1.0000
 sub.trial.number2 - sub.trial.number17    -32.61 43.3 6308  -0.753  1.0000
 sub.trial.number2 - sub.trial.number18     14.99 43.3 6308   0.346  1.0000
 sub.trial.number3 - sub.trial.number4     -19.50 27.8 6291  -0.700  1.0000
 sub.trial.number3 - sub.trial.number5     -46.60 27.8 6291  -1.674  0.9715
 sub.trial.number3 - sub.trial.number6     -38.69 27.8 6291  -1.390  0.9961
 sub.trial.number3 - sub.trial.number7    -183.11 32.3 6303  -5.671  <.0001
 sub.trial.number3 - sub.trial.number8     -66.18 32.3 6303  -2.049  0.8447
 sub.trial.number3 - sub.trial.number9    -269.33 32.3 6303  -8.341  <.0001
 sub.trial.number3 - sub.trial.number10   -142.80 32.3 6303  -4.423  0.0014
 sub.trial.number3 - sub.trial.number11     17.89 32.3 6303   0.554  1.0000
 sub.trial.number3 - sub.trial.number12    -29.64 32.3 6303  -0.918  1.0000
 sub.trial.number3 - sub.trial.number13   -471.85 43.3 6308 -10.895  <.0001
 sub.trial.number3 - sub.trial.number14   -141.11 43.3 6308  -3.258  0.1012
 sub.trial.number3 - sub.trial.number15     16.72 43.3 6308   0.386  1.0000
 sub.trial.number3 - sub.trial.number16    -14.81 43.3 6308  -0.342  1.0000
 sub.trial.number3 - sub.trial.number17    -45.52 43.3 6308  -1.051  0.9999
 sub.trial.number3 - sub.trial.number18      2.08 43.3 6308   0.048  1.0000
 sub.trial.number4 - sub.trial.number5     -27.10 27.8 6291  -0.973  1.0000
 sub.trial.number4 - sub.trial.number6     -19.19 27.8 6291  -0.689  1.0000
 sub.trial.number4 - sub.trial.number7    -163.61 32.3 6303  -5.067  0.0001
 sub.trial.number4 - sub.trial.number8     -46.68 32.3 6303  -1.446  0.9939
 sub.trial.number4 - sub.trial.number9    -249.83 32.3 6303  -7.737  <.0001
 sub.trial.number4 - sub.trial.number10   -123.30 32.3 6303  -3.819  0.0160
 sub.trial.number4 - sub.trial.number11     37.39 32.3 6303   1.158  0.9996
 sub.trial.number4 - sub.trial.number12    -10.14 32.3 6303  -0.314  1.0000
 sub.trial.number4 - sub.trial.number13   -452.35 43.3 6308 -10.445  <.0001
 sub.trial.number4 - sub.trial.number14   -121.61 43.3 6308  -2.808  0.3078
 sub.trial.number4 - sub.trial.number15     36.22 43.3 6308   0.836  1.0000
 sub.trial.number4 - sub.trial.number16      4.69 43.3 6308   0.108  1.0000
 sub.trial.number4 - sub.trial.number17    -26.02 43.3 6308  -0.601  1.0000
 sub.trial.number4 - sub.trial.number18     21.58 43.3 6308   0.498  1.0000
 sub.trial.number5 - sub.trial.number6       7.90 27.8 6291   0.284  1.0000
 sub.trial.number5 - sub.trial.number7    -136.51 32.3 6303  -4.228  0.0032
 sub.trial.number5 - sub.trial.number8     -19.58 32.3 6303  -0.606  1.0000
 sub.trial.number5 - sub.trial.number9    -222.73 32.3 6303  -6.898  <.0001
 sub.trial.number5 - sub.trial.number10    -96.21 32.3 6303  -2.980  0.2102
 sub.trial.number5 - sub.trial.number11     64.49 32.3 6303   1.997  0.8711
 sub.trial.number5 - sub.trial.number12     16.95 32.3 6303   0.525  1.0000
 sub.trial.number5 - sub.trial.number13   -425.25 43.3 6308  -9.819  <.0001
 sub.trial.number5 - sub.trial.number14    -94.51 43.3 6308  -2.182  0.7656
 sub.trial.number5 - sub.trial.number15     63.31 43.3 6308   1.462  0.9930
 sub.trial.number5 - sub.trial.number16     31.79 43.3 6308   0.734  1.0000
 sub.trial.number5 - sub.trial.number17      1.07 43.3 6308   0.025  1.0000
 sub.trial.number5 - sub.trial.number18     48.67 43.3 6308   1.124  0.9997
 sub.trial.number6 - sub.trial.number7    -144.41 32.3 6303  -4.473  0.0011
 sub.trial.number6 - sub.trial.number8     -27.48 32.3 6303  -0.851  1.0000
 sub.trial.number6 - sub.trial.number9    -230.63 32.3 6303  -7.143  <.0001
 sub.trial.number6 - sub.trial.number10   -104.11 32.3 6303  -3.224  0.1114
 sub.trial.number6 - sub.trial.number11     56.58 32.3 6303   1.752  0.9561
 sub.trial.number6 - sub.trial.number12      9.05 32.3 6303   0.280  1.0000
 sub.trial.number6 - sub.trial.number13   -433.16 43.3 6308 -10.002  <.0001
 sub.trial.number6 - sub.trial.number14   -102.42 43.3 6308  -2.365  0.6350
 sub.trial.number6 - sub.trial.number15     55.41 43.3 6308   1.279  0.9986
 sub.trial.number6 - sub.trial.number16     23.88 43.3 6308   0.551  1.0000
 sub.trial.number6 - sub.trial.number17     -6.83 43.3 6308  -0.158  1.0000
 sub.trial.number6 - sub.trial.number18     40.77 43.3 6308   0.941  1.0000
 sub.trial.number7 - sub.trial.number8     116.93 36.1 6291   3.238  0.1072
 sub.trial.number7 - sub.trial.number9     -86.22 36.1 6291  -2.388  0.6175
 sub.trial.number7 - sub.trial.number10     40.30 36.1 6291   1.116  0.9998
 sub.trial.number7 - sub.trial.number11    201.00 36.1 6291   5.566  <.0001
 sub.trial.number7 - sub.trial.number12    153.46 36.1 6291   4.250  0.0029
 sub.trial.number7 - sub.trial.number13   -288.74 46.2 6298  -6.249  <.0001
 sub.trial.number7 - sub.trial.number14     42.00 46.2 6298   0.909  1.0000
 sub.trial.number7 - sub.trial.number15    199.82 46.2 6298   4.324  0.0021
 sub.trial.number7 - sub.trial.number16    168.30 46.2 6298   3.642  0.0301
 sub.trial.number7 - sub.trial.number17    137.58 46.2 6298   2.978  0.2113
 sub.trial.number7 - sub.trial.number18    185.18 46.2 6298   4.008  0.0078
 sub.trial.number8 - sub.trial.number9    -203.15 36.1 6291  -5.626  <.0001
 sub.trial.number8 - sub.trial.number10    -76.63 36.1 6291  -2.122  0.8036
 sub.trial.number8 - sub.trial.number11     84.06 36.1 6291   2.328  0.6628
 sub.trial.number8 - sub.trial.number12     36.53 36.1 6291   1.012  0.9999
 sub.trial.number8 - sub.trial.number13   -405.67 46.2 6298  -8.779  <.0001
 sub.trial.number8 - sub.trial.number14    -74.93 46.2 6298  -1.622  0.9791
 sub.trial.number8 - sub.trial.number15     82.89 46.2 6298   1.794  0.9459
 sub.trial.number8 - sub.trial.number16     51.37 46.2 6298   1.112  0.9998
 sub.trial.number8 - sub.trial.number17     20.65 46.2 6298   0.447  1.0000
 sub.trial.number8 - sub.trial.number18     68.25 46.2 6298   1.477  0.9922
 sub.trial.number9 - sub.trial.number10    126.52 36.1 6291   3.504  0.0479
 sub.trial.number9 - sub.trial.number11    287.22 36.1 6291   7.954  <.0001
 sub.trial.number9 - sub.trial.number12    239.69 36.1 6291   6.637  <.0001
 sub.trial.number9 - sub.trial.number13   -202.52 46.2 6298  -4.383  0.0016
 sub.trial.number9 - sub.trial.number14    128.22 46.2 6298   2.775  0.3293
 sub.trial.number9 - sub.trial.number15    286.04 46.2 6298   6.190  <.0001
 sub.trial.number9 - sub.trial.number16    254.52 46.2 6298   5.508  <.0001
 sub.trial.number9 - sub.trial.number17    223.80 46.2 6298   4.843  0.0002
 sub.trial.number9 - sub.trial.number18    271.40 46.2 6298   5.874  <.0001
 sub.trial.number10 - sub.trial.number11   160.69 36.1 6291   4.450  0.0012
 sub.trial.number10 - sub.trial.number12   113.16 36.1 6291   3.134  0.1427
 sub.trial.number10 - sub.trial.number13  -329.05 46.2 6298  -7.121  <.0001
 sub.trial.number10 - sub.trial.number14     1.69 46.2 6298   0.037  1.0000
 sub.trial.number10 - sub.trial.number15   159.52 46.2 6298   3.452  0.0564
 sub.trial.number10 - sub.trial.number16   127.99 46.2 6298   2.770  0.3325
 sub.trial.number10 - sub.trial.number17    97.28 46.2 6298   2.105  0.8135
 sub.trial.number10 - sub.trial.number18   144.88 46.2 6298   3.135  0.1420
 sub.trial.number11 - sub.trial.number12   -47.53 36.1 6291  -1.316  0.9979
 sub.trial.number11 - sub.trial.number13  -489.74 46.2 6298 -10.599  <.0001
 sub.trial.number11 - sub.trial.number14  -159.00 46.2 6298  -3.441  0.0585
 sub.trial.number11 - sub.trial.number15    -1.17 46.2 6298  -0.025  1.0000
 sub.trial.number11 - sub.trial.number16   -32.70 46.2 6298  -0.708  1.0000
 sub.trial.number11 - sub.trial.number17   -63.41 46.2 6298  -1.372  0.9966
 sub.trial.number11 - sub.trial.number18   -15.81 46.2 6298  -0.342  1.0000
 sub.trial.number12 - sub.trial.number13  -442.21 46.2 6298  -9.570  <.0001
 sub.trial.number12 - sub.trial.number14  -111.47 46.2 6298  -2.412  0.5985
 sub.trial.number12 - sub.trial.number15    46.36 46.2 6298   1.003  0.9999
 sub.trial.number12 - sub.trial.number16    14.83 46.2 6298   0.321  1.0000
 sub.trial.number12 - sub.trial.number17   -15.88 46.2 6298  -0.344  1.0000
 sub.trial.number12 - sub.trial.number18    31.72 46.2 6298   0.686  1.0000
 sub.trial.number13 - sub.trial.number14   330.74 54.4 6291   6.083  <.0001
 sub.trial.number13 - sub.trial.number15   488.57 54.4 6291   8.986  <.0001
 sub.trial.number13 - sub.trial.number16   457.04 54.4 6291   8.406  <.0001
 sub.trial.number13 - sub.trial.number17   426.33 54.4 6291   7.841  <.0001
 sub.trial.number13 - sub.trial.number18   473.93 54.4 6291   8.717  <.0001
 sub.trial.number14 - sub.trial.number15   157.83 54.4 6291   2.903  0.2510
 sub.trial.number14 - sub.trial.number16   126.30 54.4 6291   2.323  0.6664
 sub.trial.number14 - sub.trial.number17    95.59 54.4 6291   1.758  0.9548
 sub.trial.number14 - sub.trial.number18   143.19 54.4 6291   2.634  0.4284
 sub.trial.number15 - sub.trial.number16   -31.53 54.4 6291  -0.580  1.0000
 sub.trial.number15 - sub.trial.number17   -62.24 54.4 6291  -1.145  0.9997
 sub.trial.number15 - sub.trial.number18   -14.64 54.4 6291  -0.269  1.0000
 sub.trial.number16 - sub.trial.number17   -30.71 54.4 6291  -0.565  1.0000
 sub.trial.number16 - sub.trial.number18    16.89 54.4 6291   0.311  1.0000
 sub.trial.number17 - sub.trial.number18    47.60 54.4 6291   0.876  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
# -------- Helper to extract pairwise summary for one block --------
extract_pairwise_pvalues <- function(emmeans_obj, block_label) {
  pairwise_df <- as.data.frame(summary(pairs(emmeans_obj)))
  pairwise_df$Block <- block_label
  pairwise_df %>%
    select(Block, contrast, estimate, SE, df, t.ratio, p.value)
}

# -------- Apply to All 5 Blocks --------
pairwise_pvalues_summary <- bind_rows(
  extract_pairwise_pvalues(emmeans(M_B1, ~ factor(sub.trial.number)), "Block 1"),
  extract_pairwise_pvalues(emmeans(M_B2, ~ factor(sub.trial.number)), "Block 2"),
  extract_pairwise_pvalues(emmeans(M_B3, ~ factor(sub.trial.number)), "Block 3"),
  extract_pairwise_pvalues(emmeans(M_B4, ~ factor(sub.trial.number)), "Block 4"),
  extract_pairwise_pvalues(emmeans(M_B5, ~ factor(sub.trial.number)), "Block 5")
)

# -------- View or Save --------
print(pairwise_pvalues_summary)
      Block                                contrast     estimate       SE
1   Block 1   sub.trial.number1 - sub.trial.number2  296.2503401 16.67711
2   Block 1   sub.trial.number1 - sub.trial.number3  318.3931973 16.67711
3   Block 1   sub.trial.number1 - sub.trial.number4  307.2421769 16.67711
4   Block 1   sub.trial.number1 - sub.trial.number5  288.4408163 16.67711
5   Block 1   sub.trial.number1 - sub.trial.number6  280.7020408 16.67711
6   Block 1   sub.trial.number2 - sub.trial.number3   22.1428571 16.67711
7   Block 1   sub.trial.number2 - sub.trial.number4   10.9918367 16.67711
8   Block 1   sub.trial.number2 - sub.trial.number5   -7.8095238 16.67711
9   Block 1   sub.trial.number2 - sub.trial.number6  -15.5482993 16.67711
10  Block 1   sub.trial.number3 - sub.trial.number4  -11.1510204 16.67711
11  Block 1   sub.trial.number3 - sub.trial.number5  -29.9523810 16.67711
12  Block 1   sub.trial.number3 - sub.trial.number6  -37.6911565 16.67711
13  Block 1   sub.trial.number4 - sub.trial.number5  -18.8013605 16.67711
14  Block 1   sub.trial.number4 - sub.trial.number6  -26.5401361 16.67711
15  Block 1   sub.trial.number5 - sub.trial.number6   -7.7387755 16.67711
16  Block 2   sub.trial.number1 - sub.trial.number2  288.8072670 16.05123
17  Block 2   sub.trial.number1 - sub.trial.number3  318.5371248 16.05123
18  Block 2   sub.trial.number1 - sub.trial.number4  349.0205371 16.05123
19  Block 2   sub.trial.number1 - sub.trial.number5  238.8799368 16.05123
20  Block 2   sub.trial.number1 - sub.trial.number6  276.6319115 16.05123
21  Block 2   sub.trial.number1 - sub.trial.number7  230.8846761 16.05123
22  Block 2   sub.trial.number1 - sub.trial.number8  262.5450237 16.05123
23  Block 2   sub.trial.number1 - sub.trial.number9  238.2559242 16.05123
24  Block 2  sub.trial.number1 - sub.trial.number10  265.1800948 16.05123
25  Block 2  sub.trial.number1 - sub.trial.number11  302.7030016 16.05123
26  Block 2  sub.trial.number1 - sub.trial.number12  281.7993681 16.05123
27  Block 2   sub.trial.number2 - sub.trial.number3   29.7298578 16.05123
28  Block 2   sub.trial.number2 - sub.trial.number4   60.2132701 16.05123
29  Block 2   sub.trial.number2 - sub.trial.number5  -49.9273302 16.05123
30  Block 2   sub.trial.number2 - sub.trial.number6  -12.1753555 16.05123
31  Block 2   sub.trial.number2 - sub.trial.number7  -57.9225908 16.05123
32  Block 2   sub.trial.number2 - sub.trial.number8  -26.2622433 16.05123
33  Block 2   sub.trial.number2 - sub.trial.number9  -50.5513428 16.05123
34  Block 2  sub.trial.number2 - sub.trial.number10  -23.6271722 16.05123
35  Block 2  sub.trial.number2 - sub.trial.number11   13.8957346 16.05123
36  Block 2  sub.trial.number2 - sub.trial.number12   -7.0078989 16.05123
37  Block 2   sub.trial.number3 - sub.trial.number4   30.4834123 16.05123
38  Block 2   sub.trial.number3 - sub.trial.number5  -79.6571880 16.05123
39  Block 2   sub.trial.number3 - sub.trial.number6  -41.9052133 16.05123
40  Block 2   sub.trial.number3 - sub.trial.number7  -87.6524487 16.05123
41  Block 2   sub.trial.number3 - sub.trial.number8  -55.9921011 16.05123
42  Block 2   sub.trial.number3 - sub.trial.number9  -80.2812006 16.05123
43  Block 2  sub.trial.number3 - sub.trial.number10  -53.3570300 16.05123
44  Block 2  sub.trial.number3 - sub.trial.number11  -15.8341232 16.05123
45  Block 2  sub.trial.number3 - sub.trial.number12  -36.7377567 16.05123
46  Block 2   sub.trial.number4 - sub.trial.number5 -110.1406003 16.05123
47  Block 2   sub.trial.number4 - sub.trial.number6  -72.3886256 16.05123
48  Block 2   sub.trial.number4 - sub.trial.number7 -118.1358610 16.05123
49  Block 2   sub.trial.number4 - sub.trial.number8  -86.4755134 16.05123
50  Block 2   sub.trial.number4 - sub.trial.number9 -110.7646130 16.05123
51  Block 2  sub.trial.number4 - sub.trial.number10  -83.8404423 16.05123
52  Block 2  sub.trial.number4 - sub.trial.number11  -46.3175355 16.05123
53  Block 2  sub.trial.number4 - sub.trial.number12  -67.2211690 16.05123
54  Block 2   sub.trial.number5 - sub.trial.number6   37.7519747 16.05123
55  Block 2   sub.trial.number5 - sub.trial.number7   -7.9952607 16.05123
56  Block 2   sub.trial.number5 - sub.trial.number8   23.6650869 16.05123
57  Block 2   sub.trial.number5 - sub.trial.number9   -0.6240126 16.05123
58  Block 2  sub.trial.number5 - sub.trial.number10   26.3001580 16.05123
59  Block 2  sub.trial.number5 - sub.trial.number11   63.8230648 16.05123
60  Block 2  sub.trial.number5 - sub.trial.number12   42.9194313 16.05123
61  Block 2   sub.trial.number6 - sub.trial.number7  -45.7472354 16.05123
62  Block 2   sub.trial.number6 - sub.trial.number8  -14.0868878 16.05123
63  Block 2   sub.trial.number6 - sub.trial.number9  -38.3759874 16.05123
64  Block 2  sub.trial.number6 - sub.trial.number10  -11.4518167 16.05123
65  Block 2  sub.trial.number6 - sub.trial.number11   26.0710900 16.05123
66  Block 2  sub.trial.number6 - sub.trial.number12    5.1674566 16.05123
67  Block 2   sub.trial.number7 - sub.trial.number8   31.6603476 16.05123
68  Block 2   sub.trial.number7 - sub.trial.number9    7.3712480 16.05123
69  Block 2  sub.trial.number7 - sub.trial.number10   34.2954186 16.05123
70  Block 2  sub.trial.number7 - sub.trial.number11   71.8183254 16.05123
71  Block 2  sub.trial.number7 - sub.trial.number12   50.9146919 16.05123
72  Block 2   sub.trial.number8 - sub.trial.number9  -24.2890995 16.05123
73  Block 2  sub.trial.number8 - sub.trial.number10    2.6350711 16.05123
74  Block 2  sub.trial.number8 - sub.trial.number11   40.1579779 16.05123
75  Block 2  sub.trial.number8 - sub.trial.number12   19.2543444 16.05123
76  Block 2  sub.trial.number9 - sub.trial.number10   26.9241706 16.05123
77  Block 2  sub.trial.number9 - sub.trial.number11   64.4470774 16.05123
78  Block 2  sub.trial.number9 - sub.trial.number12   43.5434439 16.05123
79  Block 2 sub.trial.number10 - sub.trial.number11   37.5229068 16.05123
80  Block 2 sub.trial.number10 - sub.trial.number12   16.6192733 16.05123
81  Block 2 sub.trial.number11 - sub.trial.number12  -20.9036335 16.05123
82  Block 3   sub.trial.number1 - sub.trial.number2  325.3304042 20.15615
83  Block 3   sub.trial.number1 - sub.trial.number3  352.7609842 20.15615
84  Block 3   sub.trial.number1 - sub.trial.number4  371.4130053 20.15615
85  Block 3   sub.trial.number1 - sub.trial.number5  266.1353251 20.15615
86  Block 3   sub.trial.number1 - sub.trial.number6  287.4727592 20.15615
87  Block 3   sub.trial.number1 - sub.trial.number7  293.0369069 20.15615
88  Block 3   sub.trial.number1 - sub.trial.number8  308.2759227 20.15615
89  Block 3   sub.trial.number1 - sub.trial.number9  259.5764499 20.15615
90  Block 3  sub.trial.number1 - sub.trial.number10  246.6766257 20.15615
91  Block 3  sub.trial.number1 - sub.trial.number11  278.5096661 20.15615
92  Block 3  sub.trial.number1 - sub.trial.number12  339.3971880 20.15615
93  Block 3  sub.trial.number1 - sub.trial.number13   92.3251318 20.15615
94  Block 3  sub.trial.number1 - sub.trial.number14  234.4376098 20.15615
95  Block 3  sub.trial.number1 - sub.trial.number15  284.3778559 20.15615
96  Block 3  sub.trial.number1 - sub.trial.number16  339.5395431 20.15615
97  Block 3  sub.trial.number1 - sub.trial.number17  299.9876977 20.15615
98  Block 3  sub.trial.number1 - sub.trial.number18  285.9191564 20.15615
99  Block 3   sub.trial.number2 - sub.trial.number3   27.4305800 20.15615
100 Block 3   sub.trial.number2 - sub.trial.number4   46.0826011 20.15615
101 Block 3   sub.trial.number2 - sub.trial.number5  -59.1950791 20.15615
102 Block 3   sub.trial.number2 - sub.trial.number6  -37.8576450 20.15615
103 Block 3   sub.trial.number2 - sub.trial.number7  -32.2934974 20.15615
104 Block 3   sub.trial.number2 - sub.trial.number8  -17.0544815 20.15615
105 Block 3   sub.trial.number2 - sub.trial.number9  -65.7539543 20.15615
106 Block 3  sub.trial.number2 - sub.trial.number10  -78.6537786 20.15615
107 Block 3  sub.trial.number2 - sub.trial.number11  -46.8207381 20.15615
108 Block 3  sub.trial.number2 - sub.trial.number12   14.0667838 20.15615
109 Block 3  sub.trial.number2 - sub.trial.number13 -233.0052724 20.15615
110 Block 3  sub.trial.number2 - sub.trial.number14  -90.8927944 20.15615
111 Block 3  sub.trial.number2 - sub.trial.number15  -40.9525483 20.15615
112 Block 3  sub.trial.number2 - sub.trial.number16   14.2091388 20.15615
113 Block 3  sub.trial.number2 - sub.trial.number17  -25.3427065 20.15615
114 Block 3  sub.trial.number2 - sub.trial.number18  -39.4112478 20.15615
115 Block 3   sub.trial.number3 - sub.trial.number4   18.6520211 20.15615
116 Block 3   sub.trial.number3 - sub.trial.number5  -86.6256591 20.15615
117 Block 3   sub.trial.number3 - sub.trial.number6  -65.2882250 20.15615
118 Block 3   sub.trial.number3 - sub.trial.number7  -59.7240773 20.15615
119 Block 3   sub.trial.number3 - sub.trial.number8  -44.4850615 20.15615
120 Block 3   sub.trial.number3 - sub.trial.number9  -93.1845343 20.15615
121 Block 3  sub.trial.number3 - sub.trial.number10 -106.0843585 20.15615
122 Block 3  sub.trial.number3 - sub.trial.number11  -74.2513181 20.15615
123 Block 3  sub.trial.number3 - sub.trial.number12  -13.3637961 20.15615
124 Block 3  sub.trial.number3 - sub.trial.number13 -260.4358524 20.15615
125 Block 3  sub.trial.number3 - sub.trial.number14 -118.3233743 20.15615
126 Block 3  sub.trial.number3 - sub.trial.number15  -68.3831283 20.15615
127 Block 3  sub.trial.number3 - sub.trial.number16  -13.2214411 20.15615
128 Block 3  sub.trial.number3 - sub.trial.number17  -52.7732865 20.15615
129 Block 3  sub.trial.number3 - sub.trial.number18  -66.8418278 20.15615
130 Block 3   sub.trial.number4 - sub.trial.number5 -105.2776801 20.15615
131 Block 3   sub.trial.number4 - sub.trial.number6  -83.9402460 20.15615
132 Block 3   sub.trial.number4 - sub.trial.number7  -78.3760984 20.15615
133 Block 3   sub.trial.number4 - sub.trial.number8  -63.1370826 20.15615
134 Block 3   sub.trial.number4 - sub.trial.number9 -111.8365554 20.15615
135 Block 3  sub.trial.number4 - sub.trial.number10 -124.7363796 20.15615
136 Block 3  sub.trial.number4 - sub.trial.number11  -92.9033392 20.15615
137 Block 3  sub.trial.number4 - sub.trial.number12  -32.0158172 20.15615
138 Block 3  sub.trial.number4 - sub.trial.number13 -279.0878735 20.15615
139 Block 3  sub.trial.number4 - sub.trial.number14 -136.9753954 20.15615
140 Block 3  sub.trial.number4 - sub.trial.number15  -87.0351494 20.15615
141 Block 3  sub.trial.number4 - sub.trial.number16  -31.8734622 20.15615
142 Block 3  sub.trial.number4 - sub.trial.number17  -71.4253076 20.15615
143 Block 3  sub.trial.number4 - sub.trial.number18  -85.4938489 20.15615
144 Block 3   sub.trial.number5 - sub.trial.number6   21.3374341 20.15615
145 Block 3   sub.trial.number5 - sub.trial.number7   26.9015817 20.15615
146 Block 3   sub.trial.number5 - sub.trial.number8   42.1405975 20.15615
147 Block 3   sub.trial.number5 - sub.trial.number9   -6.5588752 20.15615
148 Block 3  sub.trial.number5 - sub.trial.number10  -19.4586995 20.15615
149 Block 3  sub.trial.number5 - sub.trial.number11   12.3743409 20.15615
150 Block 3  sub.trial.number5 - sub.trial.number12   73.2618629 20.15615
151 Block 3  sub.trial.number5 - sub.trial.number13 -173.8101933 20.15615
152 Block 3  sub.trial.number5 - sub.trial.number14  -31.6977153 20.15615
153 Block 3  sub.trial.number5 - sub.trial.number15   18.2425308 20.15615
154 Block 3  sub.trial.number5 - sub.trial.number16   73.4042179 20.15615
155 Block 3  sub.trial.number5 - sub.trial.number17   33.8523726 20.15615
156 Block 3  sub.trial.number5 - sub.trial.number18   19.7838313 20.15615
157 Block 3   sub.trial.number6 - sub.trial.number7    5.5641476 20.15615
158 Block 3   sub.trial.number6 - sub.trial.number8   20.8031634 20.15615
159 Block 3   sub.trial.number6 - sub.trial.number9  -27.8963093 20.15615
160 Block 3  sub.trial.number6 - sub.trial.number10  -40.7961336 20.15615
161 Block 3  sub.trial.number6 - sub.trial.number11   -8.9630931 20.15615
162 Block 3  sub.trial.number6 - sub.trial.number12   51.9244288 20.15615
163 Block 3  sub.trial.number6 - sub.trial.number13 -195.1476274 20.15615
164 Block 3  sub.trial.number6 - sub.trial.number14  -53.0351494 20.15615
165 Block 3  sub.trial.number6 - sub.trial.number15   -3.0949033 20.15615
166 Block 3  sub.trial.number6 - sub.trial.number16   52.0667838 20.15615
167 Block 3  sub.trial.number6 - sub.trial.number17   12.5149385 20.15615
168 Block 3  sub.trial.number6 - sub.trial.number18   -1.5536028 20.15615
169 Block 3   sub.trial.number7 - sub.trial.number8   15.2390158 20.15615
170 Block 3   sub.trial.number7 - sub.trial.number9  -33.4604569 20.15615
171 Block 3  sub.trial.number7 - sub.trial.number10  -46.3602812 20.15615
172 Block 3  sub.trial.number7 - sub.trial.number11  -14.5272408 20.15615
173 Block 3  sub.trial.number7 - sub.trial.number12   46.3602812 20.15615
174 Block 3  sub.trial.number7 - sub.trial.number13 -200.7117750 20.15615
175 Block 3  sub.trial.number7 - sub.trial.number14  -58.5992970 20.15615
176 Block 3  sub.trial.number7 - sub.trial.number15   -8.6590510 20.15615
177 Block 3  sub.trial.number7 - sub.trial.number16   46.5026362 20.15615
178 Block 3  sub.trial.number7 - sub.trial.number17    6.9507909 20.15615
179 Block 3  sub.trial.number7 - sub.trial.number18   -7.1177504 20.15615
180 Block 3   sub.trial.number8 - sub.trial.number9  -48.6994728 20.15615
181 Block 3  sub.trial.number8 - sub.trial.number10  -61.5992970 20.15615
182 Block 3  sub.trial.number8 - sub.trial.number11  -29.7662566 20.15615
183 Block 3  sub.trial.number8 - sub.trial.number12   31.1212654 20.15615
184 Block 3  sub.trial.number8 - sub.trial.number13 -215.9507909 20.15615
185 Block 3  sub.trial.number8 - sub.trial.number14  -73.8383128 20.15615
186 Block 3  sub.trial.number8 - sub.trial.number15  -23.8980668 20.15615
187 Block 3  sub.trial.number8 - sub.trial.number16   31.2636204 20.15615
188 Block 3  sub.trial.number8 - sub.trial.number17   -8.2882250 20.15615
189 Block 3  sub.trial.number8 - sub.trial.number18  -22.3567663 20.15615
190 Block 3  sub.trial.number9 - sub.trial.number10  -12.8998243 20.15615
191 Block 3  sub.trial.number9 - sub.trial.number11   18.9332162 20.15615
192 Block 3  sub.trial.number9 - sub.trial.number12   79.8207381 20.15615
193 Block 3  sub.trial.number9 - sub.trial.number13 -167.2513181 20.15615
194 Block 3  sub.trial.number9 - sub.trial.number14  -25.1388401 20.15615
195 Block 3  sub.trial.number9 - sub.trial.number15   24.8014060 20.15615
196 Block 3  sub.trial.number9 - sub.trial.number16   79.9630931 20.15615
197 Block 3  sub.trial.number9 - sub.trial.number17   40.4112478 20.15615
198 Block 3  sub.trial.number9 - sub.trial.number18   26.3427065 20.15615
199 Block 3 sub.trial.number10 - sub.trial.number11   31.8330404 20.15615
200 Block 3 sub.trial.number10 - sub.trial.number12   92.7205624 20.15615
201 Block 3 sub.trial.number10 - sub.trial.number13 -154.3514938 20.15615
202 Block 3 sub.trial.number10 - sub.trial.number14  -12.2390158 20.15615
203 Block 3 sub.trial.number10 - sub.trial.number15   37.7012302 20.15615
204 Block 3 sub.trial.number10 - sub.trial.number16   92.8629174 20.15615
205 Block 3 sub.trial.number10 - sub.trial.number17   53.3110721 20.15615
206 Block 3 sub.trial.number10 - sub.trial.number18   39.2425308 20.15615
207 Block 3 sub.trial.number11 - sub.trial.number12   60.8875220 20.15615
208 Block 3 sub.trial.number11 - sub.trial.number13 -186.1845343 20.15615
209 Block 3 sub.trial.number11 - sub.trial.number14  -44.0720562 20.15615
210 Block 3 sub.trial.number11 - sub.trial.number15    5.8681898 20.15615
211 Block 3 sub.trial.number11 - sub.trial.number16   61.0298770 20.15615
212 Block 3 sub.trial.number11 - sub.trial.number17   21.4780316 20.15615
213 Block 3 sub.trial.number11 - sub.trial.number18    7.4094903 20.15615
214 Block 3 sub.trial.number12 - sub.trial.number13 -247.0720562 20.15615
215 Block 3 sub.trial.number12 - sub.trial.number14 -104.9595782 20.15615
216 Block 3 sub.trial.number12 - sub.trial.number15  -55.0193322 20.15615
217 Block 3 sub.trial.number12 - sub.trial.number16    0.1423550 20.15615
218 Block 3 sub.trial.number12 - sub.trial.number17  -39.4094903 20.15615
219 Block 3 sub.trial.number12 - sub.trial.number18  -53.4780316 20.15615
220 Block 3 sub.trial.number13 - sub.trial.number14  142.1124780 20.15615
221 Block 3 sub.trial.number13 - sub.trial.number15  192.0527241 20.15615
222 Block 3 sub.trial.number13 - sub.trial.number16  247.2144112 20.15615
223 Block 3 sub.trial.number13 - sub.trial.number17  207.6625659 20.15615
224 Block 3 sub.trial.number13 - sub.trial.number18  193.5940246 20.15615
225 Block 3 sub.trial.number14 - sub.trial.number15   49.9402460 20.15615
226 Block 3 sub.trial.number14 - sub.trial.number16  105.1019332 20.15615
227 Block 3 sub.trial.number14 - sub.trial.number17   65.5500879 20.15615
228 Block 3 sub.trial.number14 - sub.trial.number18   51.4815466 20.15615
229 Block 3 sub.trial.number15 - sub.trial.number16   55.1616872 20.15615
230 Block 3 sub.trial.number15 - sub.trial.number17   15.6098418 20.15615
231 Block 3 sub.trial.number15 - sub.trial.number18    1.5413005 20.15615
232 Block 3 sub.trial.number16 - sub.trial.number17  -39.5518453 20.15615
233 Block 3 sub.trial.number16 - sub.trial.number18  -53.6203866 20.15615
234 Block 3 sub.trial.number17 - sub.trial.number18  -14.0685413 20.15615
235 Block 4   sub.trial.number1 - sub.trial.number2  341.7468531 18.23459
236 Block 4   sub.trial.number1 - sub.trial.number3  378.7720280 18.23459
237 Block 4   sub.trial.number1 - sub.trial.number4  386.0853147 18.23459
238 Block 4   sub.trial.number1 - sub.trial.number5  338.6307692 18.23459
239 Block 4   sub.trial.number1 - sub.trial.number6  326.4769231 18.23459
240 Block 4   sub.trial.number1 - sub.trial.number7  204.7860313 20.66022
241 Block 4   sub.trial.number1 - sub.trial.number8  306.5300138 20.66022
242 Block 4   sub.trial.number1 - sub.trial.number9  273.6066002 20.66022
243 Block 4  sub.trial.number1 - sub.trial.number10  300.2171035 20.66022
244 Block 4  sub.trial.number1 - sub.trial.number11  316.1120707 20.66022
245 Block 4  sub.trial.number1 - sub.trial.number12  325.4665565 20.66022
246 Block 4  sub.trial.number1 - sub.trial.number13  178.8869685 27.04069
247 Block 4  sub.trial.number1 - sub.trial.number14  228.5504756 27.04069
248 Block 4  sub.trial.number1 - sub.trial.number15  338.8395751 27.04069
249 Block 4  sub.trial.number1 - sub.trial.number16  328.6500016 27.04069
250 Block 4  sub.trial.number1 - sub.trial.number17  320.7921817 27.04069
251 Block 4  sub.trial.number1 - sub.trial.number18  221.1381533 27.04069
252 Block 4   sub.trial.number2 - sub.trial.number3   37.0251748 18.23459
253 Block 4   sub.trial.number2 - sub.trial.number4   44.3384615 18.23459
254 Block 4   sub.trial.number2 - sub.trial.number5   -3.1160839 18.23459
255 Block 4   sub.trial.number2 - sub.trial.number6  -15.2699301 18.23459
256 Block 4   sub.trial.number2 - sub.trial.number7 -136.9608219 20.66022
257 Block 4   sub.trial.number2 - sub.trial.number8  -35.2168394 20.66022
258 Block 4   sub.trial.number2 - sub.trial.number9  -68.1402529 20.66022
259 Block 4  sub.trial.number2 - sub.trial.number10  -41.5297497 20.66022
260 Block 4  sub.trial.number2 - sub.trial.number11  -25.6347825 20.66022
261 Block 4  sub.trial.number2 - sub.trial.number12  -16.2802967 20.66022
262 Block 4  sub.trial.number2 - sub.trial.number13 -162.8598847 27.04069
263 Block 4  sub.trial.number2 - sub.trial.number14 -113.1963776 27.04069
264 Block 4  sub.trial.number2 - sub.trial.number15   -2.9072780 27.04069
265 Block 4  sub.trial.number2 - sub.trial.number16  -13.0968515 27.04069
266 Block 4  sub.trial.number2 - sub.trial.number17  -20.9546714 27.04069
267 Block 4  sub.trial.number2 - sub.trial.number18 -120.6086998 27.04069
268 Block 4   sub.trial.number3 - sub.trial.number4    7.3132867 18.23459
269 Block 4   sub.trial.number3 - sub.trial.number5  -40.1412587 18.23459
270 Block 4   sub.trial.number3 - sub.trial.number6  -52.2951049 18.23459
271 Block 4   sub.trial.number3 - sub.trial.number7 -173.9859967 20.66022
272 Block 4   sub.trial.number3 - sub.trial.number8  -72.2420142 20.66022
273 Block 4   sub.trial.number3 - sub.trial.number9 -105.1654278 20.66022
274 Block 4  sub.trial.number3 - sub.trial.number10  -78.5549245 20.66022
275 Block 4  sub.trial.number3 - sub.trial.number11  -62.6599573 20.66022
276 Block 4  sub.trial.number3 - sub.trial.number12  -53.3054715 20.66022
277 Block 4  sub.trial.number3 - sub.trial.number13 -199.8850595 27.04069
278 Block 4  sub.trial.number3 - sub.trial.number14 -150.2215524 27.04069
279 Block 4  sub.trial.number3 - sub.trial.number15  -39.9324529 27.04069
280 Block 4  sub.trial.number3 - sub.trial.number16  -50.1220263 27.04069
281 Block 4  sub.trial.number3 - sub.trial.number17  -57.9798462 27.04069
282 Block 4  sub.trial.number3 - sub.trial.number18 -157.6338747 27.04069
283 Block 4   sub.trial.number4 - sub.trial.number5  -47.4545455 18.23459
284 Block 4   sub.trial.number4 - sub.trial.number6  -59.6083916 18.23459
285 Block 4   sub.trial.number4 - sub.trial.number7 -181.2992834 20.66022
286 Block 4   sub.trial.number4 - sub.trial.number8  -79.5553009 20.66022
287 Block 4   sub.trial.number4 - sub.trial.number9 -112.4787145 20.66022
288 Block 4  sub.trial.number4 - sub.trial.number10  -85.8682112 20.66022
289 Block 4  sub.trial.number4 - sub.trial.number11  -69.9732440 20.66022
290 Block 4  sub.trial.number4 - sub.trial.number12  -60.6187582 20.66022
291 Block 4  sub.trial.number4 - sub.trial.number13 -207.1983462 27.04069
292 Block 4  sub.trial.number4 - sub.trial.number14 -157.5348391 27.04069
293 Block 4  sub.trial.number4 - sub.trial.number15  -47.2457396 27.04069
294 Block 4  sub.trial.number4 - sub.trial.number16  -57.4353130 27.04069
295 Block 4  sub.trial.number4 - sub.trial.number17  -65.2931329 27.04069
296 Block 4  sub.trial.number4 - sub.trial.number18 -164.9471614 27.04069
297 Block 4   sub.trial.number5 - sub.trial.number6  -12.1538462 18.23459
298 Block 4   sub.trial.number5 - sub.trial.number7 -133.8447379 20.66022
299 Block 4   sub.trial.number5 - sub.trial.number8  -32.1007555 20.66022
300 Block 4   sub.trial.number5 - sub.trial.number9  -65.0241690 20.66022
301 Block 4  sub.trial.number5 - sub.trial.number10  -38.4136657 20.66022
302 Block 4  sub.trial.number5 - sub.trial.number11  -22.5186986 20.66022
303 Block 4  sub.trial.number5 - sub.trial.number12  -13.1642128 20.66022
304 Block 4  sub.trial.number5 - sub.trial.number13 -159.7438008 27.04069
305 Block 4  sub.trial.number5 - sub.trial.number14 -110.0802937 27.04069
306 Block 4  sub.trial.number5 - sub.trial.number15    0.2088059 27.04069
307 Block 4  sub.trial.number5 - sub.trial.number16   -9.9807676 27.04069
308 Block 4  sub.trial.number5 - sub.trial.number17  -17.8385875 27.04069
309 Block 4  sub.trial.number5 - sub.trial.number18 -117.4926159 27.04069
310 Block 4   sub.trial.number6 - sub.trial.number7 -121.6908918 20.66022
311 Block 4   sub.trial.number6 - sub.trial.number8  -19.9469093 20.66022
312 Block 4   sub.trial.number6 - sub.trial.number9  -52.8703229 20.66022
313 Block 4  sub.trial.number6 - sub.trial.number10  -26.2598196 20.66022
314 Block 4  sub.trial.number6 - sub.trial.number11  -10.3648524 20.66022
315 Block 4  sub.trial.number6 - sub.trial.number12   -1.0103666 20.66022
316 Block 4  sub.trial.number6 - sub.trial.number13 -147.5899546 27.04069
317 Block 4  sub.trial.number6 - sub.trial.number14  -97.9264475 27.04069
318 Block 4  sub.trial.number6 - sub.trial.number15   12.3626520 27.04069
319 Block 4  sub.trial.number6 - sub.trial.number16    2.1730786 27.04069
320 Block 4  sub.trial.number6 - sub.trial.number17   -5.6847413 27.04069
321 Block 4  sub.trial.number6 - sub.trial.number18 -105.3387698 27.04069
322 Block 4   sub.trial.number7 - sub.trial.number8  101.7439825 22.80819
323 Block 4   sub.trial.number7 - sub.trial.number9   68.8205689 22.80819
324 Block 4  sub.trial.number7 - sub.trial.number10   95.4310722 22.80819
325 Block 4  sub.trial.number7 - sub.trial.number11  111.3260394 22.80819
326 Block 4  sub.trial.number7 - sub.trial.number12  120.6805252 22.80819
327 Block 4  sub.trial.number7 - sub.trial.number13  -25.8990628 28.71792
328 Block 4  sub.trial.number7 - sub.trial.number14   23.7644443 28.71792
329 Block 4  sub.trial.number7 - sub.trial.number15  134.0535438 28.71792
330 Block 4  sub.trial.number7 - sub.trial.number16  123.8639704 28.71792
331 Block 4  sub.trial.number7 - sub.trial.number17  116.0061505 28.71792
332 Block 4  sub.trial.number7 - sub.trial.number18   16.3521220 28.71792
333 Block 4   sub.trial.number8 - sub.trial.number9  -32.9234136 22.80819
334 Block 4  sub.trial.number8 - sub.trial.number10   -6.3129103 22.80819
335 Block 4  sub.trial.number8 - sub.trial.number11    9.5820569 22.80819
336 Block 4  sub.trial.number8 - sub.trial.number12   18.9365427 22.80819
337 Block 4  sub.trial.number8 - sub.trial.number13 -127.6430453 28.71792
338 Block 4  sub.trial.number8 - sub.trial.number14  -77.9795382 28.71792
339 Block 4  sub.trial.number8 - sub.trial.number15   32.3095613 28.71792
340 Block 4  sub.trial.number8 - sub.trial.number16   22.1199879 28.71792
341 Block 4  sub.trial.number8 - sub.trial.number17   14.2621680 28.71792
342 Block 4  sub.trial.number8 - sub.trial.number18  -85.3918605 28.71792
343 Block 4  sub.trial.number9 - sub.trial.number10   26.6105033 22.80819
344 Block 4  sub.trial.number9 - sub.trial.number11   42.5054705 22.80819
345 Block 4  sub.trial.number9 - sub.trial.number12   51.8599562 22.80819
346 Block 4  sub.trial.number9 - sub.trial.number13  -94.7196317 28.71792
347 Block 4  sub.trial.number9 - sub.trial.number14  -45.0561246 28.71792
348 Block 4  sub.trial.number9 - sub.trial.number15   65.2329749 28.71792
349 Block 4  sub.trial.number9 - sub.trial.number16   55.0434014 28.71792
350 Block 4  sub.trial.number9 - sub.trial.number17   47.1855815 28.71792
351 Block 4  sub.trial.number9 - sub.trial.number18  -52.4684469 28.71792
352 Block 4 sub.trial.number10 - sub.trial.number11   15.8949672 22.80819
353 Block 4 sub.trial.number10 - sub.trial.number12   25.2494530 22.80819
354 Block 4 sub.trial.number10 - sub.trial.number13 -121.3301350 28.71792
355 Block 4 sub.trial.number10 - sub.trial.number14  -71.6666279 28.71792
356 Block 4 sub.trial.number10 - sub.trial.number15   38.6224716 28.71792
357 Block 4 sub.trial.number10 - sub.trial.number16   28.4328981 28.71792
358 Block 4 sub.trial.number10 - sub.trial.number17   20.5750782 28.71792
359 Block 4 sub.trial.number10 - sub.trial.number18  -79.0789502 28.71792
360 Block 4 sub.trial.number11 - sub.trial.number12    9.3544858 22.80819
361 Block 4 sub.trial.number11 - sub.trial.number13 -137.2251022 28.71792
362 Block 4 sub.trial.number11 - sub.trial.number14  -87.5615951 28.71792
363 Block 4 sub.trial.number11 - sub.trial.number15   22.7275044 28.71792
364 Block 4 sub.trial.number11 - sub.trial.number16   12.5379310 28.71792
365 Block 4 sub.trial.number11 - sub.trial.number17    4.6801111 28.71792
366 Block 4 sub.trial.number11 - sub.trial.number18  -94.9739174 28.71792
367 Block 4 sub.trial.number12 - sub.trial.number13 -146.5795880 28.71792
368 Block 4 sub.trial.number12 - sub.trial.number14  -96.9160809 28.71792
369 Block 4 sub.trial.number12 - sub.trial.number15   13.3730187 28.71792
370 Block 4 sub.trial.number12 - sub.trial.number16    3.1834452 28.71792
371 Block 4 sub.trial.number12 - sub.trial.number17   -4.6743747 28.71792
372 Block 4 sub.trial.number12 - sub.trial.number18 -104.3284031 28.71792
373 Block 4 sub.trial.number13 - sub.trial.number14   49.6635071 33.56663
374 Block 4 sub.trial.number13 - sub.trial.number15  159.9526066 33.56663
375 Block 4 sub.trial.number13 - sub.trial.number16  149.7630332 33.56663
376 Block 4 sub.trial.number13 - sub.trial.number17  141.9052133 33.56663
377 Block 4 sub.trial.number13 - sub.trial.number18   42.2511848 33.56663
378 Block 4 sub.trial.number14 - sub.trial.number15  110.2890995 33.56663
379 Block 4 sub.trial.number14 - sub.trial.number16  100.0995261 33.56663
380 Block 4 sub.trial.number14 - sub.trial.number17   92.2417062 33.56663
381 Block 4 sub.trial.number14 - sub.trial.number18   -7.4123223 33.56663
382 Block 4 sub.trial.number15 - sub.trial.number16  -10.1895735 33.56663
383 Block 4 sub.trial.number15 - sub.trial.number17  -18.0473934 33.56663
384 Block 4 sub.trial.number15 - sub.trial.number18 -117.7014218 33.56663
385 Block 4 sub.trial.number16 - sub.trial.number17   -7.8578199 33.56663
386 Block 4 sub.trial.number16 - sub.trial.number18 -107.5118483 33.56663
387 Block 4 sub.trial.number17 - sub.trial.number18  -99.6540284 33.56663
388 Block 5   sub.trial.number1 - sub.trial.number2  424.1398601 27.84154
389 Block 5   sub.trial.number1 - sub.trial.number3  437.0541958 27.84154
390 Block 5   sub.trial.number1 - sub.trial.number4  417.5541958 27.84154
391 Block 5   sub.trial.number1 - sub.trial.number5  390.4580420 27.84154
392 Block 5   sub.trial.number1 - sub.trial.number6  398.3601399 27.84154
393 Block 5   sub.trial.number1 - sub.trial.number7  253.9467010 32.28864
394 Block 5   sub.trial.number1 - sub.trial.number8  370.8790539 32.28864
395 Block 5   sub.trial.number1 - sub.trial.number9  167.7261127 32.28864
396 Block 5  sub.trial.number1 - sub.trial.number10  294.2496422 32.28864
397 Block 5  sub.trial.number1 - sub.trial.number11  454.9437598 32.28864
398 Block 5  sub.trial.number1 - sub.trial.number12  407.4114069 32.28864
399 Block 5  sub.trial.number1 - sub.trial.number13  -34.7957822 43.30840
400 Block 5  sub.trial.number1 - sub.trial.number14  295.9442178 43.30840
401 Block 5  sub.trial.number1 - sub.trial.number15  453.7708844 43.30840
402 Block 5  sub.trial.number1 - sub.trial.number16  422.2442178 43.30840
403 Block 5  sub.trial.number1 - sub.trial.number17  391.5308844 43.30840
404 Block 5  sub.trial.number1 - sub.trial.number18  439.1308844 43.30840
405 Block 5   sub.trial.number2 - sub.trial.number3   12.9143357 27.84154
406 Block 5   sub.trial.number2 - sub.trial.number4   -6.5856643 27.84154
407 Block 5   sub.trial.number2 - sub.trial.number5  -33.6818182 27.84154
408 Block 5   sub.trial.number2 - sub.trial.number6  -25.7797203 27.84154
409 Block 5   sub.trial.number2 - sub.trial.number7 -170.1931592 32.28864
410 Block 5   sub.trial.number2 - sub.trial.number8  -53.2608062 32.28864
411 Block 5   sub.trial.number2 - sub.trial.number9 -256.4137474 32.28864
412 Block 5  sub.trial.number2 - sub.trial.number10 -129.8902180 32.28864
413 Block 5  sub.trial.number2 - sub.trial.number11   30.8038997 32.28864
414 Block 5  sub.trial.number2 - sub.trial.number12  -16.7284533 32.28864
415 Block 5  sub.trial.number2 - sub.trial.number13 -458.9356424 43.30840
416 Block 5  sub.trial.number2 - sub.trial.number14 -128.1956424 43.30840
417 Block 5  sub.trial.number2 - sub.trial.number15   29.6310243 43.30840
418 Block 5  sub.trial.number2 - sub.trial.number16   -1.8956424 43.30840
419 Block 5  sub.trial.number2 - sub.trial.number17  -32.6089757 43.30840
420 Block 5  sub.trial.number2 - sub.trial.number18   14.9910243 43.30840
421 Block 5   sub.trial.number3 - sub.trial.number4  -19.5000000 27.84154
422 Block 5   sub.trial.number3 - sub.trial.number5  -46.5961538 27.84154
423 Block 5   sub.trial.number3 - sub.trial.number6  -38.6940559 27.84154
424 Block 5   sub.trial.number3 - sub.trial.number7 -183.1074948 32.28864
425 Block 5   sub.trial.number3 - sub.trial.number8  -66.1751419 32.28864
426 Block 5   sub.trial.number3 - sub.trial.number9 -269.3280831 32.28864
427 Block 5  sub.trial.number3 - sub.trial.number10 -142.8045536 32.28864
428 Block 5  sub.trial.number3 - sub.trial.number11   17.8895640 32.28864
429 Block 5  sub.trial.number3 - sub.trial.number12  -29.6427889 32.28864
430 Block 5  sub.trial.number3 - sub.trial.number13 -471.8499780 43.30840
431 Block 5  sub.trial.number3 - sub.trial.number14 -141.1099780 43.30840
432 Block 5  sub.trial.number3 - sub.trial.number15   16.7166886 43.30840
433 Block 5  sub.trial.number3 - sub.trial.number16  -14.8099780 43.30840
434 Block 5  sub.trial.number3 - sub.trial.number17  -45.5233114 43.30840
435 Block 5  sub.trial.number3 - sub.trial.number18    2.0766886 43.30840
436 Block 5   sub.trial.number4 - sub.trial.number5  -27.0961538 27.84154
437 Block 5   sub.trial.number4 - sub.trial.number6  -19.1940559 27.84154
438 Block 5   sub.trial.number4 - sub.trial.number7 -163.6074948 32.28864
439 Block 5   sub.trial.number4 - sub.trial.number8  -46.6751419 32.28864
440 Block 5   sub.trial.number4 - sub.trial.number9 -249.8280831 32.28864
441 Block 5  sub.trial.number4 - sub.trial.number10 -123.3045536 32.28864
442 Block 5  sub.trial.number4 - sub.trial.number11   37.3895640 32.28864
443 Block 5  sub.trial.number4 - sub.trial.number12  -10.1427889 32.28864
444 Block 5  sub.trial.number4 - sub.trial.number13 -452.3499780 43.30840
445 Block 5  sub.trial.number4 - sub.trial.number14 -121.6099780 43.30840
446 Block 5  sub.trial.number4 - sub.trial.number15   36.2166886 43.30840
447 Block 5  sub.trial.number4 - sub.trial.number16    4.6900220 43.30840
448 Block 5  sub.trial.number4 - sub.trial.number17  -26.0233114 43.30840
449 Block 5  sub.trial.number4 - sub.trial.number18   21.5766886 43.30840
450 Block 5   sub.trial.number5 - sub.trial.number6    7.9020979 27.84154
451 Block 5   sub.trial.number5 - sub.trial.number7 -136.5113410 32.28864
452 Block 5   sub.trial.number5 - sub.trial.number8  -19.5789880 32.28864
453 Block 5   sub.trial.number5 - sub.trial.number9 -222.7319292 32.28864
454 Block 5  sub.trial.number5 - sub.trial.number10  -96.2083998 32.28864
455 Block 5  sub.trial.number5 - sub.trial.number11   64.4857178 32.28864
456 Block 5  sub.trial.number5 - sub.trial.number12   16.9533649 32.28864
457 Block 5  sub.trial.number5 - sub.trial.number13 -425.2538242 43.30840
458 Block 5  sub.trial.number5 - sub.trial.number14  -94.5138242 43.30840
459 Block 5  sub.trial.number5 - sub.trial.number15   63.3128425 43.30840
460 Block 5  sub.trial.number5 - sub.trial.number16   31.7861758 43.30840
461 Block 5  sub.trial.number5 - sub.trial.number17    1.0728425 43.30840
462 Block 5  sub.trial.number5 - sub.trial.number18   48.6728425 43.30840
463 Block 5   sub.trial.number6 - sub.trial.number7 -144.4134389 32.28864
464 Block 5   sub.trial.number6 - sub.trial.number8  -27.4810859 32.28864
465 Block 5   sub.trial.number6 - sub.trial.number9 -230.6340271 32.28864
466 Block 5  sub.trial.number6 - sub.trial.number10 -104.1104977 32.28864
467 Block 5  sub.trial.number6 - sub.trial.number11   56.5836199 32.28864
468 Block 5  sub.trial.number6 - sub.trial.number12    9.0512670 32.28864
469 Block 5  sub.trial.number6 - sub.trial.number13 -433.1559221 43.30840
470 Block 5  sub.trial.number6 - sub.trial.number14 -102.4159221 43.30840
471 Block 5  sub.trial.number6 - sub.trial.number15   55.4107446 43.30840
472 Block 5  sub.trial.number6 - sub.trial.number16   23.8840779 43.30840
473 Block 5  sub.trial.number6 - sub.trial.number17   -6.8292554 43.30840
474 Block 5  sub.trial.number6 - sub.trial.number18   40.7707446 43.30840
475 Block 5   sub.trial.number7 - sub.trial.number8  116.9323529 36.11202
476 Block 5   sub.trial.number7 - sub.trial.number9  -86.2205882 36.11202
477 Block 5  sub.trial.number7 - sub.trial.number10   40.3029412 36.11202
478 Block 5  sub.trial.number7 - sub.trial.number11  200.9970588 36.11202
479 Block 5  sub.trial.number7 - sub.trial.number12  153.4647059 36.11202
480 Block 5  sub.trial.number7 - sub.trial.number13 -288.7424832 46.20778
481 Block 5  sub.trial.number7 - sub.trial.number14   41.9975168 46.20778
482 Block 5  sub.trial.number7 - sub.trial.number15  199.8241835 46.20778
483 Block 5  sub.trial.number7 - sub.trial.number16  168.2975168 46.20778
484 Block 5  sub.trial.number7 - sub.trial.number17  137.5841835 46.20778
485 Block 5  sub.trial.number7 - sub.trial.number18  185.1841835 46.20778
486 Block 5   sub.trial.number8 - sub.trial.number9 -203.1529412 36.11202
487 Block 5  sub.trial.number8 - sub.trial.number10  -76.6294118 36.11202
488 Block 5  sub.trial.number8 - sub.trial.number11   84.0647059 36.11202
489 Block 5  sub.trial.number8 - sub.trial.number12   36.5323529 36.11202
490 Block 5  sub.trial.number8 - sub.trial.number13 -405.6748361 46.20778
491 Block 5  sub.trial.number8 - sub.trial.number14  -74.9348361 46.20778
492 Block 5  sub.trial.number8 - sub.trial.number15   82.8918305 46.20778
493 Block 5  sub.trial.number8 - sub.trial.number16   51.3651639 46.20778
494 Block 5  sub.trial.number8 - sub.trial.number17   20.6518305 46.20778
495 Block 5  sub.trial.number8 - sub.trial.number18   68.2518305 46.20778
496 Block 5  sub.trial.number9 - sub.trial.number10  126.5235294 36.11202
497 Block 5  sub.trial.number9 - sub.trial.number11  287.2176471 36.11202
498 Block 5  sub.trial.number9 - sub.trial.number12  239.6852941 36.11202
499 Block 5  sub.trial.number9 - sub.trial.number13 -202.5218950 46.20778
500 Block 5  sub.trial.number9 - sub.trial.number14  128.2181050 46.20778
501 Block 5  sub.trial.number9 - sub.trial.number15  286.0447717 46.20778
502 Block 5  sub.trial.number9 - sub.trial.number16  254.5181050 46.20778
503 Block 5  sub.trial.number9 - sub.trial.number17  223.8047717 46.20778
504 Block 5  sub.trial.number9 - sub.trial.number18  271.4047717 46.20778
505 Block 5 sub.trial.number10 - sub.trial.number11  160.6941176 36.11202
506 Block 5 sub.trial.number10 - sub.trial.number12  113.1617647 36.11202
507 Block 5 sub.trial.number10 - sub.trial.number13 -329.0454244 46.20778
508 Block 5 sub.trial.number10 - sub.trial.number14    1.6945756 46.20778
509 Block 5 sub.trial.number10 - sub.trial.number15  159.5212423 46.20778
510 Block 5 sub.trial.number10 - sub.trial.number16  127.9945756 46.20778
511 Block 5 sub.trial.number10 - sub.trial.number17   97.2812423 46.20778
512 Block 5 sub.trial.number10 - sub.trial.number18  144.8812423 46.20778
513 Block 5 sub.trial.number11 - sub.trial.number12  -47.5323529 36.11202
514 Block 5 sub.trial.number11 - sub.trial.number13 -489.7395420 46.20778
515 Block 5 sub.trial.number11 - sub.trial.number14 -158.9995420 46.20778
516 Block 5 sub.trial.number11 - sub.trial.number15   -1.1728754 46.20778
517 Block 5 sub.trial.number11 - sub.trial.number16  -32.6995420 46.20778
518 Block 5 sub.trial.number11 - sub.trial.number17  -63.4128754 46.20778
519 Block 5 sub.trial.number11 - sub.trial.number18  -15.8128754 46.20778
520 Block 5 sub.trial.number12 - sub.trial.number13 -442.2071891 46.20778
521 Block 5 sub.trial.number12 - sub.trial.number14 -111.4671891 46.20778
522 Block 5 sub.trial.number12 - sub.trial.number15   46.3594776 46.20778
523 Block 5 sub.trial.number12 - sub.trial.number16   14.8328109 46.20778
524 Block 5 sub.trial.number12 - sub.trial.number17  -15.8805224 46.20778
525 Block 5 sub.trial.number12 - sub.trial.number18   31.7194776 46.20778
526 Block 5 sub.trial.number13 - sub.trial.number14  330.7400000 54.36828
527 Block 5 sub.trial.number13 - sub.trial.number15  488.5666667 54.36828
528 Block 5 sub.trial.number13 - sub.trial.number16  457.0400000 54.36828
529 Block 5 sub.trial.number13 - sub.trial.number17  426.3266667 54.36828
530 Block 5 sub.trial.number13 - sub.trial.number18  473.9266667 54.36828
531 Block 5 sub.trial.number14 - sub.trial.number15  157.8266667 54.36828
532 Block 5 sub.trial.number14 - sub.trial.number16  126.3000000 54.36828
533 Block 5 sub.trial.number14 - sub.trial.number17   95.5866667 54.36828
534 Block 5 sub.trial.number14 - sub.trial.number18  143.1866667 54.36828
535 Block 5 sub.trial.number15 - sub.trial.number16  -31.5266667 54.36828
536 Block 5 sub.trial.number15 - sub.trial.number17  -62.2400000 54.36828
537 Block 5 sub.trial.number15 - sub.trial.number18  -14.6400000 54.36828
538 Block 5 sub.trial.number16 - sub.trial.number17  -30.7133333 54.36828
539 Block 5 sub.trial.number16 - sub.trial.number18   16.8866667 54.36828
540 Block 5 sub.trial.number17 - sub.trial.number18   47.6000000 54.36828
           df       t.ratio      p.value
1    4340.010  17.763887655 4.154063e-08
2    4340.010  19.091626980 4.154063e-08
3    4340.010  18.422984799 4.154063e-08
4    4340.010  17.295609700 4.154063e-08
5    4340.010  16.831573984 4.154063e-08
6    4340.010   1.327739325 7.696499e-01
7    4340.010   0.659097143 9.862602e-01
8    4340.010  -0.468277955 9.972040e-01
9    4340.010  -0.932313672 9.382289e-01
10   4340.010  -0.668642182 9.853366e-01
11   4340.010  -1.796017281 4.683787e-01
12   4340.010  -2.260052997 2.108759e-01
13   4340.010  -1.127375099 8.701355e-01
14   4340.010  -1.591410815 6.042998e-01
15   4340.010  -0.464035716 9.973226e-01
16   7520.061  17.992846261 1.102529e-11
17   7520.061  19.845032207 1.102529e-11
18   7520.061  21.744165000 1.102529e-11
19   7520.061  14.882347050 1.102529e-11
20   7520.061  17.234315144 1.102529e-11
21   7520.061  14.384238061 1.102529e-11
22   7520.061  16.356694544 1.102529e-11
23   7520.061  14.843470731 1.102529e-11
24   7520.061  16.520860873 1.102529e-11
25   7520.061  18.858557913 1.102529e-11
26   7520.061  17.556250435 1.102529e-11
27   7520.061   1.852185946 7.886741e-01
28   7520.061   3.751318739 9.675150e-03
29   7520.061  -3.110499211 7.999513e-02
30   7520.061  -0.758531117 9.998326e-01
31   7520.061  -3.608608200 1.624098e-02
32   7520.061  -1.636151718 8.958497e-01
33   7520.061  -3.149375530 7.152987e-02
34   7520.061  -1.471985388 9.481939e-01
35   7520.061   0.865711652 9.994008e-01
36   7520.061  -0.436595826 9.999994e-01
37   7520.061   1.899132792 7.600809e-01
38   7520.061  -4.962685157 4.556011e-05
39   7520.061  -2.610717063 2.735640e-01
40   7520.061  -5.460794147 3.191053e-06
41   7520.061  -3.488337664 2.462097e-02
42   7520.061  -5.001561476 3.736124e-05
43   7520.061  -3.324171334 4.210590e-02
44   7520.061  -0.986474294 9.979908e-01
45   7520.061  -2.288781773 4.846822e-01
46   7520.061  -6.861817950 4.952138e-10
47   7520.061  -4.509849856 4.087299e-04
48   7520.061  -7.359926939 2.453093e-11
49   7520.061  -5.387470456 4.794434e-06
50   7520.061  -6.900694269 3.802234e-10
51   7520.061  -5.223304127 1.169726e-05
52   7520.061  -2.885607087 1.460960e-01
53   7520.061  -4.187914565 1.698301e-03
54   7520.061   2.351968094 4.394462e-01
55   7520.061  -0.498108990 9.999977e-01
56   7520.061   1.474347493 9.476111e-01
57   7520.061  -0.038876319 1.000000e+00
58   7520.061   1.638513823 8.949133e-01
59   7520.061   3.976210863 4.062463e-03
60   7520.061   2.673903384 2.394561e-01
61   7520.061  -2.850077084 1.595315e-01
62   7520.061  -0.877620601 9.993183e-01
63   7520.061  -2.390844413 4.122947e-01
64   7520.061  -0.713454271 9.999086e-01
65   7520.061   1.624242769 9.004893e-01
66   7520.061   0.321935290 1.000000e+00
67   7520.061   1.972456483 7.123719e-01
68   7520.061   0.459232670 9.999990e-01
69   7520.061   2.136622813 5.961694e-01
70   7520.061   4.474319853 4.810155e-04
71   7520.061   3.172012374 6.695127e-02
72   7520.061  -1.513223812 9.373352e-01
73   7520.061   0.164166330 1.000000e+00
74   7520.061   2.501863370 3.386797e-01
75   7520.061   1.199555891 9.891079e-01
76   7520.061   1.677390142 8.787358e-01
77   7520.061   4.015087182 3.474941e-03
78   7520.061   2.712779703 2.198890e-01
79   7520.061   2.337697040 4.495557e-01
80   7520.061   1.035389561 9.969012e-01
81   7520.061  -1.302307479 9.790150e-01
82  10160.152  16.140505549 0.000000e+00
83  10160.152  17.501409486 0.000000e+00
84  10160.152  18.426785799 0.000000e+00
85  10160.152  13.203680432 0.000000e+00
86  10160.152  14.262287217 0.000000e+00
87  10160.152  14.538339361 0.000000e+00
88  10160.152  15.294387416 0.000000e+00
89  10160.152  12.878277209 0.000000e+00
90  10160.152  12.238282661 0.000000e+00
91  10160.152  13.817604357 0.000000e+00
92  10160.152  16.838396061 0.000000e+00
93  10160.152   4.580495038 6.610884e-04
94  10160.152  11.631072576 0.000000e+00
95  10160.152  14.108740841 0.000000e+00
96  10160.152  16.845458671 0.000000e+00
97  10160.152  14.883186560 0.000000e+00
98  10160.152  14.185208855 0.000000e+00
99  10160.152   1.360903938 9.969461e-01
100 10160.152   2.286280250 6.935538e-01
101 10160.152  -2.936825117 2.322340e-01
102 10160.152  -1.878218332 9.201094e-01
103 10160.152  -1.602166187 9.815309e-01
104 10160.152  -0.846118132 9.999951e-01
105 10160.152  -3.262228339 9.997556e-02
106 10160.152  -3.902222887 1.168805e-02
107 10160.152  -2.322901192 6.665623e-01
108 10160.152   0.697890512 9.999997e-01
109 10160.152 -11.560010511 0.000000e+00
110 10160.152  -4.509432973 9.166441e-04
111 10160.152  -2.031764707 8.540145e-01
112 10160.152   0.704953122 9.999997e-01
113 10160.152  -1.257318989 9.988349e-01
114 10160.152  -1.955296694 8.900765e-01
115 10160.152   0.925376313 9.999817e-01
116 10160.152  -4.297729055 2.343743e-03
117 10160.152  -3.239122269 1.067745e-01
118 10160.152  -2.963070125 2.184732e-01
119 10160.152  -2.207022070 7.492485e-01
120 10160.152  -4.623132277 5.418670e-04
121 10160.152  -5.263126825 2.154568e-05
122 10160.152  -3.683805129 2.599727e-02
123 10160.152  -0.663013425 9.999999e-01
124 10160.152 -12.920914448 0.000000e+00
125 10160.152  -5.870336911 6.804162e-07
126 10160.152  -3.392668645 6.785209e-02
127 10160.152  -0.655950815 9.999999e-01
128 10160.152  -2.618222927 4.398318e-01
129 10160.152  -3.316200632 8.544335e-02
130 10160.152  -5.223105367 2.669938e-05
131 10160.152  -4.164498582 4.116430e-03
132 10160.152  -3.888446438 1.231610e-02
133 10160.152  -3.132398383 1.430330e-01
134 10160.152  -5.548508590 4.450338e-06
135 10160.152  -6.188503138 9.578123e-08
136 10160.152  -4.609181442 5.784295e-04
137 10160.152  -1.588389738 9.830903e-01
138 10160.152 -13.846290761 0.000000e+00
139 10160.152  -6.795713224 1.404560e-09
140 10160.152  -4.318044958 2.146774e-03
141 10160.152  -1.581327128 9.838481e-01
142 10160.152  -3.543599239 4.191861e-02
143 10160.152  -4.241576944 2.979577e-03
144 10160.152   1.058606785 9.998784e-01
145 10160.152   1.334658930 9.975785e-01
146 10160.152   2.090706985 8.220388e-01
147 10160.152  -0.325403222 1.000000e+00
148 10160.152  -0.965397770 9.999665e-01
149 10160.152   0.613923925 1.000000e+00
150 10160.152   3.634715629 3.083032e-02
151 10160.152  -8.623185394 0.000000e+00
152 10160.152  -1.572607856 9.847460e-01
153 10160.152   0.905060410 9.999868e-01
154 10160.152   3.641778240 3.008962e-02
155 10160.152   1.679506128 9.705528e-01
156 10160.152   0.981528423 9.999576e-01
157 10160.152   0.276052144 1.000000e+00
158 10160.152   1.032100199 9.999143e-01
159 10160.152  -1.384010008 9.962781e-01
160 10160.152  -2.024004556 8.579573e-01
161 10160.152  -0.444682860 1.000000e+00
162 10160.152   2.576108844 4.716176e-01
163 10160.152  -9.681792179 0.000000e+00
164 10160.152  -2.631214642 4.301633e-01
165 10160.152  -0.153546376 1.000000e+00
166 10160.152   2.583171454 4.662444e-01
167 10160.152   0.620899343 1.000000e+00
168 10160.152  -0.077078362 1.000000e+00
169 10160.152   0.756048055 9.999991e-01
170 10160.152  -1.660062152 9.736944e-01
171 10160.152  -2.300056700 6.834795e-01
172 10160.152  -0.720735004 9.999996e-01
173 10160.152   2.300056700 6.834795e-01
174 10160.152  -9.957844323 0.000000e+00
175 10160.152  -2.907266786 2.483986e-01
176 10160.152  -0.429598520 1.000000e+00
177 10160.152   2.307119310 6.782764e-01
178 10160.152   0.344847198 1.000000e+00
179 10160.152  -0.353130507 1.000000e+00
180 10160.152  -2.416110207 5.955059e-01
181 10160.152  -3.056104755 1.741941e-01
182 10160.152  -1.476783059 9.922214e-01
183 10160.152   1.544008645 9.874139e-01
184 10160.152 -10.713892378 0.000000e+00
185 10160.152  -3.663314841 2.792665e-02
186 10160.152  -1.185646575 9.994482e-01
187 10160.152   1.551071255 9.867931e-01
188 10160.152  -0.411200857 1.000000e+00
189 10160.152  -1.109178562 9.997710e-01
190 10160.152  -0.639994548 9.999999e-01
191 10160.152   0.939327148 9.999773e-01
192 10160.152   3.960118852 9.354451e-03
193 10160.152  -8.297782171 0.000000e+00
194 10160.152  -1.247204634 9.989471e-01
195 10160.152   1.230463632 9.991122e-01
196 10160.152   3.967181462 9.100979e-03
197 10160.152   2.004909350 8.673888e-01
198 10160.152   1.306931645 9.981214e-01
199 10160.152   1.579321695 9.840583e-01
200 10160.152   4.600113400 6.034365e-04
201 10160.152  -7.657787623 0.000000e+00
202 10160.152  -0.607210086 1.000000e+00
203 10160.152   1.870458180 9.227867e-01
204 10160.152   4.607176010 5.838738e-04
205 10160.152   2.644903898 4.200555e-01
206 10160.152   1.946926193 8.936442e-01
207 10160.152   3.020791704 1.901768e-01
208 10160.152  -9.237109319 0.000000e+00
209 10160.152  -2.186531781 7.629175e-01
210 10160.152   0.291136484 1.000000e+00
211 10160.152   3.027854314 1.869000e-01
212 10160.152   1.065582203 9.998670e-01
213 10160.152   0.367604498 1.000000e+00
214 10160.152 -12.257901023 0.000000e+00
215 10160.152  -5.207323486 2.904227e-05
216 10160.152  -2.729655220 3.596236e-01
217 10160.152   0.007062610 1.000000e+00
218 10160.152  -1.955209501 8.901140e-01
219 10160.152  -2.653187206 4.139814e-01
220 10160.152   7.050577537 0.000000e+00
221 10160.152   9.528245803 0.000000e+00
222 10160.152  12.264963633 0.000000e+00
223 10160.152  10.302691522 0.000000e+00
224 10160.152   9.604713817 0.000000e+00
225 10160.152   2.477668266 5.476547e-01
226 10160.152   5.214386096 2.797030e-05
227 10160.152   3.252113984 1.029078e-01
228 10160.152   2.554136279 4.884264e-01
229 10160.152   2.736717830 3.547761e-01
230 10160.152   0.774445718 9.999987e-01
231 10160.152   0.076468013 1.000000e+00
232 10160.152  -1.962272111 8.870460e-01
233 10160.152  -2.660249817 4.088286e-01
234 10160.152  -0.697977705 9.999997e-01
235  8216.147  18.741681389 2.576184e-11
236  8216.147  20.772172741 2.576184e-11
237  8216.147  21.173239461 2.576184e-11
238  8216.147  18.570792757 2.576184e-11
239  8216.147  17.904265736 2.576184e-11
240  8227.555   9.912091674 2.171174e-11
241  8227.555  14.836722887 2.154854e-11
242  8227.555  13.243157684 2.154854e-11
243  8227.555  14.531164227 2.154854e-11
244  8227.555  15.300515392 2.154854e-11
245  8227.555  15.753292957 2.154854e-11
246  8233.016   6.615472982 6.037801e-09
247  8233.016   8.452094131 2.721845e-11
248  8233.016  12.530728614 2.703748e-11
249  8233.016  12.153904922 2.703748e-11
250  8233.016  11.863312512 2.703748e-11
251  8233.016   8.177976803 2.730027e-11
252  8216.147   2.030491352 8.546467e-01
253  8216.147   2.431558072 5.835341e-01
254  8216.147  -0.170888631 1.000000e+00
255  8216.147  -0.837415653 9.999958e-01
256  8227.555  -6.629203240 5.502187e-09
257  8227.555  -1.704572026 9.660761e-01
258  8227.555  -3.298137229 9.014678e-02
259  8227.555  -2.010130687 8.648292e-01
260  8227.555  -1.240779522 9.990127e-01
261  8227.555  -0.788001957 9.999983e-01
262  8233.016  -6.022770558 2.719980e-07
263  8233.016  -4.186149410 3.768489e-03
264  8233.016  -0.107514927 1.000000e+00
265  8233.016  -0.484338619 1.000000e+00
266  8233.016  -0.774931029 9.999987e-01
267  8233.016  -4.460266738 1.147962e-03
268  8216.147   0.401066720 1.000000e+00
269  8216.147  -2.201379983 7.530318e-01
270  8216.147  -2.867907005 2.710529e-01
271  8227.555  -8.421302656 2.173484e-11
272  8227.555  -3.496671442 4.890473e-02
273  8227.555  -5.090236645 5.398380e-05
274  8227.555  -3.802230103 1.700941e-02
275  8227.555  -3.032878938 1.846441e-01
276  8227.555  -2.580101373 4.686016e-01
277  8233.016  -7.392009726 5.144063e-11
278  8233.016  -5.555388577 4.304909e-06
279  8233.016  -1.476754094 9.922191e-01
280  8233.016  -1.853577786 9.283802e-01
281  8233.016  -2.144170196 7.900603e-01
282  8233.016  -5.829505905 8.749315e-07
283  8216.147  -2.602446703 4.516901e-01
284  8216.147  -3.268973725 9.810340e-02
285  8227.555  -8.775281723 2.168909e-11
286  8227.555  -3.850650509 1.421599e-02
287  8227.555  -5.444215712 8.039844e-06
288  8227.555  -4.156209170 4.267342e-03
289  8227.555  -3.386858005 6.911352e-02
290  8227.555  -2.934080440 2.337546e-01
291  8233.016  -7.662464589 3.025336e-11
292  8233.016  -5.825843441 8.941999e-07
293  8233.016  -1.747208958 9.573255e-01
294  8233.016  -2.124032650 8.024142e-01
295  8233.016  -2.414625060 5.966609e-01
296  8233.016  -6.099960768 1.688268e-07
297  8216.147  -0.666527022 9.999999e-01
298  8227.555  -6.478377965 1.498856e-08
299  8227.555  -1.553746751 9.865454e-01
300  8227.555  -3.147311954 1.375155e-01
301  8227.555  -1.859305412 9.265090e-01
302  8227.555  -1.089954247 9.998189e-01
303  8227.555  -0.637176682 9.999999e-01
304  8233.016  -5.907533718 5.483345e-07
305  8233.016  -4.070912570 6.043549e-03
306  8233.016   0.007721913 1.000000e+00
307  8233.016  -0.369101779 1.000000e+00
308  8233.016  -0.659694189 9.999999e-01
309  8233.016  -4.345029898 1.912965e-03
310  8227.555  -5.890105237 6.089849e-07
311  8227.555  -0.965474023 9.999664e-01
312  8227.555  -2.559039226 4.846855e-01
313  8227.555  -1.271032684 9.986654e-01
314  8227.555  -0.501681519 1.000000e+00
315  8227.555  -0.048903954 1.000000e+00
316  8233.016  -5.458068665 7.442768e-06
317  8233.016  -3.621447516 3.229250e-02
318  8233.016   0.457186967 1.000000e+00
319  8233.016   0.080363275 1.000000e+00
320  8233.016  -0.210229135 1.000000e+00
321  8233.016  -3.895564844 1.200262e-02
322  8216.147   4.460852243 1.144970e-03
323  8216.147   3.017361634 1.918339e-01
324  8216.147   4.184069683 3.801378e-03
325  8216.147   4.880966917 1.564210e-04
326  8216.147   5.291103987 1.861662e-05
327  8228.550  -0.901843407 9.999874e-01
328  8228.550   0.827512855 9.999965e-01
329  8228.550   4.667941289 4.399336e-04
330  8228.550   4.313125375 2.197370e-03
331  8228.550   4.039504545 6.853915e-03
332  8228.550   0.569404906 1.000000e+00
333  8216.147  -1.443490609 9.939652e-01
334  8216.147  -0.276782561 1.000000e+00
335  8216.147   0.420114674 1.000000e+00
336  8216.147   0.830251743 9.999963e-01
337  8228.550  -4.444718315 1.230976e-03
338  8228.550  -2.715362054 3.695655e-01
339  8228.550   1.125066380 9.997228e-01
340  8228.550   0.770250467 9.999988e-01
341  8228.550   0.496629636 1.000000e+00
342  8228.550  -2.973470002 2.132252e-01
343  8216.147   1.166708049 9.995522e-01
344  8216.147   1.863605283 9.250823e-01
345  8216.147   2.273742353 7.026231e-01
346  8228.550  -3.298276698 9.011000e-02
347  8228.550  -1.568920437 9.851069e-01
348  8228.550   2.271507998 7.042310e-01
349  8228.550   1.916692084 9.058882e-01
350  8228.550   1.643071253 9.762124e-01
351  8228.550  -1.827028385 9.366216e-01
352  8216.147   0.696897234 9.999997e-01
353  8216.147   1.107034304 9.997767e-01
354  8228.550  -4.224893507 3.203269e-03
355  8228.550  -2.495537246 5.337662e-01
356  8228.550   1.344891189 9.973450e-01
357  8228.550   0.990075275 9.999520e-01
358  8228.550   0.716454444 9.999996e-01
359  8228.550  -2.753645194 3.433280e-01
360  8216.147   0.410137070 1.000000e+00
361  8228.550  -4.778379610 2.589828e-04
362  8228.550  -3.049023349 1.773697e-01
363  8228.550   0.791405086 9.999982e-01
364  8228.550   0.436589172 1.000000e+00
365  8228.550   0.162968341 1.000000e+00
366  8228.550  -3.307131297 8.780135e-02
367  8228.550  -5.104116545 5.022300e-05
368  8228.550  -3.374760283 7.171590e-02
369  8228.550   0.465668151 1.000000e+00
370  8228.550   0.110852237 1.000000e+00
371  8228.550  -0.162768593 1.000000e+00
372  8228.550  -3.632868232 3.105345e-02
373  8216.147   1.479549904 9.920550e-01
374  8216.147   4.765226573 2.760553e-04
375  8216.147   4.461663991 1.140795e-03
376  8216.147   4.227567824 3.167369e-03
377  8216.147   1.258725775 9.988177e-01
378  8216.147   3.285676669 9.348018e-02
379  8216.147   2.982114087 2.088890e-01
380  8216.147   2.748017920 3.471261e-01
381  8216.147  -0.220824129 1.000000e+00
382  8216.147  -0.303562582 1.000000e+00
383  8216.147  -0.537658749 1.000000e+00
384  8216.147  -3.506500798 4.737163e-02
385  8216.147  -0.234096168 1.000000e+00
386  8216.147  -3.202938217 1.182013e-01
387  8216.147  -2.968842049 2.155723e-01
388  6291.156  15.234067857 0.000000e+00
389  6291.156  15.697919252 0.000000e+00
390  6291.156  14.997526878 0.000000e+00
391  6291.156  14.024299212 0.000000e+00
392  6291.156  14.308123269 0.000000e+00
393  6302.805   7.864892217 1.707523e-13
394  6302.805  11.486362191 0.000000e+00
395  6302.805   5.194585296 3.143457e-05
396  6302.805   9.113100157 0.000000e+00
397  6302.805  14.089900054 0.000000e+00
398  6302.805  12.617792595 0.000000e+00
399  6307.936  -0.803441878 9.999977e-01
400  6307.936   6.833413793 1.387485e-09
401  6307.936  10.477664486 1.338041e-12
402  6307.936   9.749707169 1.358247e-12
403  6307.936   9.040529888 1.344036e-12
404  6307.936  10.139623829 1.340150e-12
405  6291.156   0.463851395 1.000000e+00
406  6291.156  -0.236540978 1.000000e+00
407  6291.156  -1.209768645 9.992833e-01
408  6291.156  -0.925944588 9.999815e-01
409  6302.805  -5.270991305 2.090515e-05
410  6302.805  -1.649521331 9.752612e-01
411  6302.805  -7.941298227 0.000000e+00
412  6302.805  -4.022783366 7.341984e-03
413  6302.805   0.954016531 9.999716e-01
414  6302.805  -0.518090928 1.000000e+00
415  6307.936 -10.596919825 1.343592e-12
416  6307.936  -2.960064154 2.201508e-01
417  6307.936   0.684186539 9.999998e-01
418  6307.936  -0.043770778 1.000000e+00
419  6307.936  -0.752948059 9.999991e-01
420  6307.936   0.346145882 1.000000e+00
421  6291.156  -0.700392373 9.999997e-01
422  6291.156  -1.673620040 9.715060e-01
423  6291.156  -1.389795983 9.960866e-01
424  6302.805  -5.670956564 2.241659e-06
425  6302.805  -2.049486590 8.447256e-01
426  6302.805  -8.341263486 0.000000e+00
427  6302.805  -4.422748625 1.362806e-03
428  6302.805   0.554051272 1.000000e+00
429  6302.805  -0.918056187 9.999837e-01
430  6307.936 -10.895114533 1.324496e-12
431  6307.936  -3.258258862 1.012380e-01
432  6307.936   0.385991832 1.000000e+00
433  6307.936  -0.341965486 1.000000e+00
434  6307.936  -1.051142766 9.998894e-01
435  6307.936   0.047951174 1.000000e+00
436  6291.156  -0.973227666 9.999623e-01
437  6291.156  -0.689403610 9.999998e-01
438  6302.805  -5.067029057 6.127250e-05
439  6302.805  -1.445559083 9.938617e-01
440  6302.805  -7.737335978 1.203038e-12
441  6302.805  -3.818821117 1.602981e-02
442  6302.805   1.157978780 9.995936e-01
443  6302.805  -0.314128679 1.000000e+00
444  6307.936 -10.444855460 1.339928e-12
445  6307.936  -2.807999789 3.078286e-01
446  6307.936   0.836250904 9.999959e-01
447  6307.936   0.108293587 1.000000e+00
448  6307.936  -0.600883694 1.000000e+00
449  6307.936   0.498210247 1.000000e+00
450  6291.156   0.283824057 1.000000e+00
451  6302.805  -4.227843792 3.172892e-03
452  6302.805  -0.606373818 1.000000e+00
453  6302.805  -6.898150714 8.833267e-10
454  6302.805  -2.979635852 2.102065e-01
455  6302.805   1.997164045 8.710543e-01
456  6302.805   0.525056586 1.000000e+00
457  6307.936  -9.819199609 1.349587e-12
458  6307.936  -2.182343938 7.656327e-01
459  6307.936   1.461906755 9.930381e-01
460  6307.936   0.733949438 9.999994e-01
461  6307.936   0.024772157 1.000000e+00
462  6307.936   1.123866098 9.997263e-01
463  6302.805  -4.472576832 1.090111e-03
464  6302.805  -0.851106858 9.999946e-01
465  6302.805  -7.142883754 1.549019e-10
466  6302.805  -3.224368893 1.114276e-01
467  6302.805   1.752431004 9.561272e-01
468  6302.805   0.280323545 1.000000e+00
469  6307.936 -10.001660700 1.338929e-12
470  6307.936  -2.364805029 6.349509e-01
471  6307.936   1.279445664 9.985501e-01
472  6307.936   0.551488347 1.000000e+00
473  6307.936  -0.157688934 1.000000e+00
474  6307.936   0.941405007 9.999766e-01
475  6291.156   3.238045371 1.072227e-01
476  6291.156  -2.387587093 6.175206e-01
477  6291.156   1.116053418 9.997507e-01
478  6291.156   5.565932606 4.092925e-06
479  6291.156   4.249685122 2.892832e-03
480  6298.140  -6.248785047 6.717486e-08
481  6298.140   0.908884110 9.999859e-01
482  6298.140   4.324470565 2.098790e-03
483  6298.140   3.642190074 3.011556e-02
484  6298.140   2.977511237 2.112712e-01
485  6298.140   4.007640801 7.794834e-03
486  6291.156  -5.625632464 2.910825e-06
487  6291.156  -2.121991954 8.036177e-01
488  6291.156   2.327887235 6.628286e-01
489  6291.156   1.011639750 9.999350e-01
490  6298.140  -8.779362226 0.000000e+00
491  6298.140  -1.621693069 9.791059e-01
492  6298.140   1.793893387 9.459135e-01
493  6298.140   1.111612896 9.997636e-01
494  6298.140   0.446934058 1.000000e+00
495  6298.140   1.477063622 9.921946e-01
496  6291.156   3.503640511 4.786790e-02
497  6291.156   7.953519699 0.000000e+00
498  6291.156   6.637272215 5.287846e-09
499  6298.140  -4.382852758 1.626165e-03
500  6298.140   2.774816399 3.292960e-01
501  6298.140   6.190402854 9.718480e-08
502  6298.140   5.508122363 5.673641e-06
503  6298.140   4.843443525 1.893491e-04
504  6298.140   5.873573089 6.803057e-07
505  6291.156   4.449879189 1.207279e-03
506  6291.156   3.133631704 1.426968e-01
507  6298.140  -7.120996207 1.791504e-10
508  6298.140   0.036672950 1.000000e+00
509  6298.140   3.452259406 5.643161e-02
510  6298.140   2.769978915 3.324900e-01
511  6298.140   2.105300077 8.135383e-01
512  6298.140   3.135429641 1.420180e-01
513  6291.156  -1.316247485 9.979485e-01
514  6298.140 -10.598638251 0.000000e+00
515  6298.140  -3.440969094 5.847840e-02
516  6298.140  -0.025382638 1.000000e+00
517  6298.140  -0.707663129 9.999997e-01
518  6298.140  -1.372341967 9.966241e-01
519  6298.140  -0.342212403 1.000000e+00
520  6298.140  -9.569972663 0.000000e+00
521  6298.140  -2.412303505 5.984652e-01
522  6298.140   1.003282950 9.999421e-01
523  6298.140   0.321002459 1.000000e+00
524  6298.140  -0.343676379 1.000000e+00
525  6298.140   0.686453185 9.999998e-01
526  6291.156   6.083326610 1.896850e-07
527  6291.156   8.986244797 0.000000e+00
528  6291.156   8.406372358 0.000000e+00
529  6291.156   7.841459623 0.000000e+00
530  6291.156   8.716970135 0.000000e+00
531  6291.156   2.902918187 2.509624e-01
532  6291.156   2.323045748 6.664442e-01
533  6291.156   1.758133014 9.548141e-01
534  6291.156   2.633643525 4.284395e-01
535  6291.156  -0.579872438 1.000000e+00
536  6291.156  -1.144785173 9.996505e-01
537  6291.156  -0.269274662 1.000000e+00
538  6291.156  -0.564912735 1.000000e+00
539  6291.156   0.310597777 1.000000e+00
540  6291.156   0.875510512 9.999918e-01
# Optional: Save to CSV
# write.csv(pairwise_pvalues_summary, "RT_pairwise_step_comparisons.csv", row.names = FALSE)

d#7.2 rt and rms comparison

# --- Prepare RT data per step and block ---
rt_stepwise_data <- df_acc %>%
  filter(trial.acc >= 0.8) %>%
  mutate(
    Step = as.numeric(as.character(sub.trial.number)),
    Block = as.numeric(as.character(session))
  ) %>%
  group_by(Block, Step) %>%
  summarise(
    mean_rt = mean(feedback.RT, na.rm = TRUE),
    se_rt = sd(feedback.RT, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )

# --- Prepare RMS stepwise summary (all axes) ---
rms_stepwise_summary <- step_rms_data %>%
  group_by(Block, Step, Axis) %>%
  summarise(
    mean_rms = mean(RMS, na.rm = TRUE),
    se_rms = sd(RMS, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )

# --- Ensure Block types match before joining ---
combined_data_all <- full_join(
  rms_stepwise_summary %>% mutate(Block = as.integer(as.character(Block))),
  rt_stepwise_data %>% mutate(Block = as.integer(Block)),
  by = c("Block", "Step")
) %>%
  mutate(
    Block = factor(Block),
    Step = as.numeric(Step),
    Axis = toupper(Axis)
  )

# --- Function to plot all 3 RMS axes with overlaid RT, per block ---
plot_dual_axis_all_axes <- function(block_num, y1_lim = c(0, 3), y2_lim = c(350, 950)) {
  block_data <- combined_data_all %>% filter(Block == block_num)

  ggplot(block_data, aes(x = Step)) +
    geom_col(aes(y = mean_rms), fill = "steelblue", alpha = 0.7, width = 0.6) +
    geom_errorbar(aes(ymin = mean_rms - se_rms, ymax = mean_rms + se_rms),
                  width = 0.3, color = "steelblue") +
    geom_line(aes(y = rescale(mean_rt, to = y1_lim, from = y2_lim)),
              color = "firebrick", size = 1.2, group = 1) +
    geom_point(aes(y = rescale(mean_rt, to = y1_lim, from = y2_lim)),
               color = "firebrick", size = 2) +
    scale_y_continuous(
      name = "RMS Acceleration (m/s²)",
      limits = y1_lim,
      sec.axis = sec_axis(~rescale(., from = y1_lim, to = y2_lim),
                          name = "Reaction Time (ms)")
    ) +
    facet_wrap(~ Axis, nrow = 1, scales = "fixed") +
    labs(
      title = paste("Block", block_num, "- Stepwise RMS (X/Y/Z) + RT Overlay"),
      x = "Step Number"
    ) +
    theme_minimal(base_size = 13) +
    theme(
      axis.title.y.left = element_text(color = "steelblue"),
      axis.title.y.right = element_text(color = "firebrick"),
      strip.text = element_text(face = "bold")
    )
}

# --- Generate and print plots for Blocks 1 to 5 ---
for (b in 1:5) {
  print(plot_dual_axis_all_axes(b))
}

# -------- 1. Helper: Clean & Extract Significant Step Pairs --------
get_significant_pairs <- function(pw_df, p_thresh = 0.05) {
  pw_df %>%
    filter(p.value < p_thresh) %>%
    transmute(
      Step1_raw = gsub(".*[^0-9]", "", gsub(" - .*", "", contrast)),
      Step2_raw = gsub(".*[^0-9]", "", gsub(".* - ", "", contrast))
    ) %>%
    mutate(
      Step1 = pmin(as.character(Step1_raw), as.character(Step2_raw)),
      Step2 = pmax(as.character(Step1_raw), as.character(Step2_raw))
    ) %>%
    select(Step1, Step2)
}

# -------- 2. Extract RT Significant Pairs (per block) --------
get_rt_significant_pairs <- function(models) {
  list(
    B1 = get_significant_pairs(summary(pairs(emmeans(models$B1, ~ factor(sub.trial.number))))),
    B2 = get_significant_pairs(summary(pairs(emmeans(models$B2, ~ factor(sub.trial.number))))),
    B3 = get_significant_pairs(summary(pairs(emmeans(models$B3, ~ factor(sub.trial.number))))),
    B4 = get_significant_pairs(summary(pairs(emmeans(models$B4, ~ factor(sub.trial.number))))),
    B5 = get_significant_pairs(summary(pairs(emmeans(models$B5, ~ factor(sub.trial.number)))))
  )
}

# -------- 3. Extract RMS Significant Pairs (per block & axis) --------
get_rms_significant_pairs <- function(results_list, block_num, axis_label, p_thresh = 0.05) {
  key <- paste0("Mixed - Block ", block_num, " - Axis ", axis_label)
  if (!key %in% names(results_list)) return(NULL)

  get_significant_pairs(results_list[[key]]$Pairwise, p_thresh) %>%
    mutate(Block = block_num, Axis = axis_label)
}

# -------- 4. Gather All RMS Significant Pairs --------
rms_sig_pairs <- map_dfr(1:5, function(block) {
  map_dfr(c("X", "Y", "Z"), function(axis) {
    get_rms_significant_pairs(stepwise_lmm_diag_results, block, axis)
  })
})

# -------- 5. Define RT Models --------
rt_models <- list(
  B1 = M_B1,
  B2 = M_B2,
  B3 = M_B3,
  B4 = M_B4,
  B5 = M_B5
)

rt_sig_pairs <- get_rt_significant_pairs(rt_models)

# -------- 6. Compare: Match RT + RMS Step Pairs --------
compare_sig_pairs <- function(rt_df, rms_df, block) {
  rt_block <- rt_df[[paste0("B", block)]]
  rms_block <- rms_df %>% filter(Block == block)

  if (nrow(rt_block) == 0 || nrow(rms_block) == 0) return(NULL)

  inner_join(rt_block, rms_block, by = c("Step1", "Step2")) %>%
    mutate(Block = block)
}

# -------- 7. Final Output: Matching Significant Step Pairs --------
matched_sig_pairs <- map_dfr(1:5, function(b) {
  compare_sig_pairs(rt_sig_pairs, rms_sig_pairs, b)
})

# -------- 8. View Output --------
print(matched_sig_pairs)
    Step1 Step2 Block Axis
1       1     2     1    Z
2       1     8     2    X
3       1     9     2    X
4       1     9     2    Z
5       1    10     2    X
6       1    10     2    Y
7       1    10     2    Z
8       1    11     2    X
9       1    11     2    Y
10      1    11     2    Z
11      1    12     2    X
12      1    12     2    Y
13      1    12     2    Z
14      2     7     2    Z
15      3     8     2    X
16      3     9     2    X
17      3     9     2    Y
18      3     9     2    Z
19     10     3     2    X
20     10     3     2    Y
21     10     3     2    Z
22      4     8     2    X
23      4     9     2    X
24      4     9     2    Y
25      4     9     2    Z
26     10     4     2    X
27     10     4     2    Y
28     10     4     2    Z
29     12     4     2    X
30     12     4     2    Y
31     12     4     2    Z
32     11     5     2    X
33     11     5     2    Y
34     11     5     2    Z
35     11     7     2    X
36     11     7     2    Y
37     11     7     2    Z
38      1    16     3    Y
39      1    17     3    X
40      1    17     3    Y
41      1    18     3    X
42      1    18     3    Y
43      1    18     3    Z
44     14     3     3    X
45     14     4     3    X
46     15     4     3    X
47     15     4     3    Y
48     17     4     3    X
49     17     4     3    Y
50     17     4     3    Z
51     18     4     3    X
52     18     4     3    Y
53     18     4     3    Z
54     16     5     3    X
55     16     5     3    Y
56     16     5     3    Z
57     14     8     3    Y
58     16     9     3    X
59     16     9     3    Y
60     10    16     3    Y
61     13    18     3    Y
62     13    18     3    Z
63      1     8     4    Y
64      1     8     4    Z
65      1     9     4    Y
66      1     9     4    Z
67      1    10     4    Y
68      1    10     4    Z
69      1    11     4    Y
70      1    11     4    Z
71      1    12     4    Y
72      1    12     4    Z
73      1    13     4    Y
74      1    13     4    Z
75      1    14     4    Y
76      1    14     4    Z
77      1    15     4    Y
78      1    15     4    Z
79      1    16     4    X
80      1    16     4    Y
81      1    16     4    Z
82      1    17     4    X
83      1    17     4    Y
84      1    17     4    Z
85      1    18     4    X
86      1    18     4    Y
87      1    18     4    Z
88     13     2     4    Y
89     13     2     4    Z
90     14     2     4    X
91     14     2     4    Y
92     14     2     4    Z
93     18     2     4    X
94     18     2     4    Y
95     18     2     4    Z
96      3     8     4    Y
97      3     8     4    Z
98      3     9     4    Y
99      3     9     4    Z
100    10     3     4    Y
101    10     3     4    Z
102    13     3     4    X
103    13     3     4    Y
104    13     3     4    Z
105    14     3     4    X
106    14     3     4    Y
107    14     3     4    Z
108    18     3     4    X
109    18     3     4    Y
110    18     3     4    Z
111     4     8     4    Y
112     4     9     4    Y
113    10     4     4    Y
114    10     4     4    Z
115    13     4     4    Y
116    13     4     4    Z
117    14     4     4    Y
118    14     4     4    Z
119    18     4     4    X
120    18     4     4    Y
121    18     4     4    Z
122    13     5     4    Y
123    13     5     4    Z
124    14     5     4    X
125    14     5     4    Y
126    14     5     4    Z
127    18     5     4    X
128    18     5     4    Y
129    18     5     4    Z
130    14     6     4    X
131    14     6     4    Y
132    14     6     4    Z
133    18     6     4    X
134    18     6     4    Y
135    18     6     4    Z
136    12     7     4    Y
137    12     7     4    Z
138    15     7     4    X
139    15     7     4    Y
140    15     7     4    Z
141    16     7     4    X
142    16     7     4    Y
143    16     7     4    Z
144    17     7     4    X
145    17     7     4    Y
146    17     7     4    Z
147    12    18     4    X
148    12    18     4    Y
149    12    18     4    Z
150    13    16     4    Z
151    13    17     4    Z
152    15    18     4    X
153    15    18     4    Y
154    15    18     4    Z
155     1     8     5    Z
156     1     9     5    Y
157     1     9     5    Z
158     1    10     5    Y
159     1    10     5    Z
160     1    11     5    Z
161     1    12     5    Y
162     1    12     5    Z
163     1    14     5    Y
164     1    14     5    Z
165     1    15     5    X
166     1    15     5    Y
167     1    15     5    Z
168     1    16     5    Y
169     1    16     5    Z
170     1    17     5    X
171     1    17     5    Y
172     1    17     5    Z
173     1    18     5    X
174     1    18     5    Y
175     1    18     5    Z
176     2     9     5    Y
177     2     9     5    Z
178    10     2     5    Y
179    10     2     5    Z
180    13     2     5    Y
181    13     2     5    Z
182     3     9     5    Z
183    10     3     5    Z
184    13     3     5    Z
185     4     9     5    Z
186    10     4     5    Z
187     5     9     5    Z
188    13     5     5    Z
189    15     7     5    Z
190    16     7     5    Y
191    16     7     5    Z
192    18     7     5    X
193    18     7     5    Y
194    18     7     5    Z
195    17     9     5    Z
196    18     9     5    Z
197    13    18     5    Z
# -------- 9. Count Matches, Show Blocks & Axes --------
matched_pair_counts <- matched_sig_pairs %>%
  distinct(Step1, Step2, Block, Axis) %>%  # keep axis info
  group_by(Step1, Step2) %>%
  summarise(
    MatchingBlocks = n_distinct(Block),
    BlocksMatched = paste(sort(unique(Block)), collapse = ", "),
    AxesMatched = paste(sort(unique(Axis)), collapse = ", "),
    .groups = "drop"
  ) %>%
  arrange(desc(MatchingBlocks))

# -------- 10. View Summary --------
print(matched_pair_counts)
# A tibble: 57 × 5
   Step1 Step2 MatchingBlocks BlocksMatched AxesMatched
   <chr> <chr>          <int> <chr>         <chr>      
 1 1     10                 3 2, 4, 5       X, Y, Z    
 2 1     11                 3 2, 4, 5       X, Y, Z    
 3 1     12                 3 2, 4, 5       X, Y, Z    
 4 1     16                 3 3, 4, 5       X, Y, Z    
 5 1     17                 3 3, 4, 5       X, Y, Z    
 6 1     18                 3 3, 4, 5       X, Y, Z    
 7 1     8                  3 2, 4, 5       X, Y, Z    
 8 1     9                  3 2, 4, 5       X, Y, Z    
 9 10    3                  3 2, 4, 5       X, Y, Z    
10 10    4                  3 2, 4, 5       X, Y, Z    
# ℹ 47 more rows
# -------- Filter to Steps of Interest --------
steps_of_interest <- c("3", "4", "9", "10", "7", "14", "13")

step_axis_counts <- matched_sig_pairs %>%
  filter(Step1 %in% steps_of_interest | Step2 %in% steps_of_interest) %>%
  mutate(
    Step = ifelse(Step1 %in% steps_of_interest, Step1, Step2)
  ) %>%
  filter(Step %in% steps_of_interest) %>%
  count(Step, Axis, name = "MatchCount") %>%
  arrange(Step, Axis)

# -------- View Results --------
print(step_axis_counts)
   Step Axis MatchCount
1    10    X          3
2    10    Y          9
3    10    Z         10
4    13    X          1
5    13    Y          7
6    13    Z         12
7    14    X          6
8    14    Y          8
9    14    Z          7
10    3    X          3
11    3    Y          4
12    3    Z          5
13    4    X          7
14    4    Y          8
15    4    Z          6
16    7    X          5
17    7    Y          7
18    7    Z          9
19    9    X          2
20    9    Y          4
21    9    Z          7
# -------- Count step occurrences in matched pairs per axis --------
step_axis_counts_all <- matched_sig_pairs %>%
  # Create one row per step per pair
  select(Step1, Step2, Axis) %>%
  pivot_longer(cols = c(Step1, Step2), names_to = "Position", values_to = "Step") %>%
  count(Step, Axis, name = "MatchCount") %>%
  arrange(as.numeric(Step), Axis)

# -------- View Results --------
print(step_axis_counts_all)
# A tibble: 54 × 3
   Step  Axis  MatchCount
   <chr> <chr>      <int>
 1 1     X             13
 2 1     Y             25
 3 1     Z             27
 4 2     X              2
 5 2     Y              6
 6 2     Z              8
 7 3     X              7
 8 3     Y              8
 9 3     Z             11
10 4     X              9
# ℹ 44 more rows
ggplot(step_axis_counts_all, aes(x = Step, y = MatchCount, fill = Axis)) +
  geom_col(position = "dodge") +
  labs(title = "Stepwise RT–RMS Match Counts by Axis",
       x = "Step", y = "Match Count") +
  theme_minimal()

# -------- Count all step occurrences in matched pairs, by Block and Axis --------
step_block_axis_counts <- matched_sig_pairs %>%
  # Create one row per step per match
  pivot_longer(cols = c(Step1, Step2), names_to = "Position", values_to = "Step") %>%
  count(Step, Block, Axis, name = "MatchCount") %>%
  arrange(as.numeric(Step), Block, Axis)

# -------- View the results --------
print(step_block_axis_counts)
# A tibble: 144 × 4
   Step  Block Axis  MatchCount
   <chr> <int> <chr>      <int>
 1 1         1 Z              1
 2 1         2 X              5
 3 1         2 Y              3
 4 1         2 Z              4
 5 1         3 X              2
 6 1         3 Y              3
 7 1         3 Z              1
 8 1         4 X              3
 9 1         4 Y             11
10 1         4 Z             11
# ℹ 134 more rows
# -------- Mean RT per block --------
mean_rt_per_block <- df_acc %>%
  group_by(session) %>%
  summarise(
    Mean_RT = mean(feedback.RT, na.rm = TRUE),
    SD_RT = sd(feedback.RT, na.rm = TRUE),
    N = n()
  ) %>%
  rename(Block = session) %>%
  arrange(Block)

# -------- View the results --------
print(mean_rt_per_block)
# A tibble: 5 × 4
  Block Mean_RT SD_RT     N
  <fct>   <dbl> <dbl> <int>
1 1        504.  431.  4410
2 2        485.  365.  7596
3 3        509.  397. 10242
4 4        469.  405.  8298
5 5        587.  519.  6372