You are simulating the pressure experienced by a submarine at a certain depth. The pressure increases linearly with depth and is influenced by water density and gravity.

First we define the variables and come up with the math for all of them!

# Define variables
depth <- 300       # in meters
density <- 1025    # in kg/m^3
gravity <- 9.8     # in m/s^2

Now, I am doing the math for raw pressure!

# Compute raw pressure
raw_pressure <- density * gravity * depth
print(raw_pressure)
[1] 3013500

More math!

# Adjust pressure by subtracting 100,000 (air compression)
adjusted_pressure <- raw_pressure - 100000

Square root!

# Take square root of adjusted pressure
sqrt_adjusted <- sqrt(adjusted_pressure)

Stress estimate!

# Raise to the power of 1.1 for hull stress estimate
hull_stress <- sqrt_adjusted^1.1

Printing all the math!

# Print results
cat("Raw Pressure (Pa):", raw_pressure, "\n")
Raw Pressure (Pa): 3013500 
cat("Adjusted Pressure (Pa):", adjusted_pressure, "\n")
Adjusted Pressure (Pa): 2913500 
cat("Square Root of Adjusted Pressure:", sqrt_adjusted, "\n")
Square Root of Adjusted Pressure: 1706.898 
cat("Final Hull Stress Estimate:", hull_stress, "\n")
Final Hull Stress Estimate: 3592.76 
LS0tCnRpdGxlOiAiQWxleGFuZGVyIFJvbWVybyBTdWJtYXJpbmUgUHJlc3N1cmUgU2ltdWxhdGlvbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKWW91IGFyZSBzaW11bGF0aW5nIHRoZSBwcmVzc3VyZSBleHBlcmllbmNlZCBieSBhIHN1Ym1hcmluZSBhdCBhIGNlcnRhaW4gZGVwdGguIFRoZSBwcmVzc3VyZSBpbmNyZWFzZXMgbGluZWFybHkgd2l0aCBkZXB0aCBhbmQgaXMgaW5mbHVlbmNlZCBieSB3YXRlciBkZW5zaXR5IGFuZCBncmF2aXR5LgoKCkZpcnN0IHdlIGRlZmluZSB0aGUgdmFyaWFibGVzIGFuZCBjb21lIHVwIHdpdGggdGhlIG1hdGggZm9yIGFsbCBvZiB0aGVtIQpgYGB7cn0KIyBEZWZpbmUgdmFyaWFibGVzCmRlcHRoIDwtIDMwMCAgICAgICAjIGluIG1ldGVycwpkZW5zaXR5IDwtIDEwMjUgICAgIyBpbiBrZy9tXjMKZ3Jhdml0eSA8LSA5LjggICAgICMgaW4gbS9zXjIKYGBgCgpOb3csIEkgYW0gZG9pbmcgdGhlIG1hdGggZm9yIHJhdyBwcmVzc3VyZSEKYGBge3J9CiMgQ29tcHV0ZSByYXcgcHJlc3N1cmUKcmF3X3ByZXNzdXJlIDwtIGRlbnNpdHkgKiBncmF2aXR5ICogZGVwdGgKcHJpbnQocmF3X3ByZXNzdXJlKQpgYGAKTW9yZSBtYXRoIQpgYGB7cn0KIyBBZGp1c3QgcHJlc3N1cmUgYnkgc3VidHJhY3RpbmcgMTAwLDAwMCAoYWlyIGNvbXByZXNzaW9uKQphZGp1c3RlZF9wcmVzc3VyZSA8LSByYXdfcHJlc3N1cmUgLSAxMDAwMDAKYGBgCgpTcXVhcmUgcm9vdCEKYGBge3J9CiMgVGFrZSBzcXVhcmUgcm9vdCBvZiBhZGp1c3RlZCBwcmVzc3VyZQpzcXJ0X2FkanVzdGVkIDwtIHNxcnQoYWRqdXN0ZWRfcHJlc3N1cmUpCmBgYAoKU3RyZXNzIGVzdGltYXRlIQpgYGB7cn0KIyBSYWlzZSB0byB0aGUgcG93ZXIgb2YgMS4xIGZvciBodWxsIHN0cmVzcyBlc3RpbWF0ZQpodWxsX3N0cmVzcyA8LSBzcXJ0X2FkanVzdGVkXjEuMQpgYGAKClByaW50aW5nIGFsbCB0aGUgbWF0aCEKYGBge3J9CiMgUHJpbnQgcmVzdWx0cwpjYXQoIlJhdyBQcmVzc3VyZSAoUGEpOiIsIHJhd19wcmVzc3VyZSwgIlxuIikKY2F0KCJBZGp1c3RlZCBQcmVzc3VyZSAoUGEpOiIsIGFkanVzdGVkX3ByZXNzdXJlLCAiXG4iKQpjYXQoIlNxdWFyZSBSb290IG9mIEFkanVzdGVkIFByZXNzdXJlOiIsIHNxcnRfYWRqdXN0ZWQsICJcbiIpCmNhdCgiRmluYWwgSHVsbCBTdHJlc3MgRXN0aW1hdGU6IiwgaHVsbF9zdHJlc3MsICJcbiIpCmBgYAoK