Weighted Matrix computed with inverse Distances
## Loading required package: Matrix
##
## Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = mydata, listw = listw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.9544 -4.1300 -0.2163 5.0070 22.1583
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 25.66912 6.49873 3.9499 7.819e-05
## INC -0.68652 0.26260 -2.6143 0.008940
## HOVAL -0.20245 0.07307 -2.7706 0.005595
##
## Rho: 0.09928, LR test value: 29.89, p-value: 4.5754e-08
## Asymptotic standard error: 0.0131
## z-value: 7.58, p-value: 3.4417e-14
## Wald statistic: 57.46, p-value: 3.4528e-14
##
## Log likelihood: -172.4 for lag model
## ML residual variance (sigma squared): 64.47, (sigma: 8.029)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: 354.9, (AIC for lm: 382.8)
## LM test for residual autocorrelation
## test value: 0.01792, p-value: 0.89353
##
## Call:
## errorsarlm(formula = CRIME ~ INC + HOVAL, data = mydata, listw = listw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.55680 -3.24142 0.12039 6.33597 23.13540
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.856475 8.219319 2.7808 0.005422
## INC -0.642584 0.277641 -2.3144 0.020644
## HOVAL -0.198204 0.074467 -2.6616 0.007776
##
## Lambda: 0.1256, LR test value: 25.77, p-value: 3.8361e-07
## Asymptotic standard error: 0.003476
## z-value: 36.13, p-value: < 2.22e-16
## Wald statistic: 1306, p-value: < 2.22e-16
##
## Log likelihood: -174.5 for error model
## ML residual variance (sigma squared): 65.25, (sigma: 8.078)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: 359, (AIC for lm: 382.8)
You can also embed plots, for example:
moran.test(CRIME, listw)
##
## Moran's I test under randomisation
##
## data: CRIME
## weights: listw
##
## Moran I statistic standard deviate = 9.68, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.2044123 -0.0208333 0.0005414
moran.plot(CRIME, listw)
##
## Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = mydata, listw = listw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.68762 -7.01341 -0.83503 8.40003 27.44614
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 51.627459 11.817848 4.3686 1.250e-05
## INC -1.384654 0.334827 -4.1354 3.543e-05
## HOVAL -0.281171 0.098167 -2.8642 0.004181
##
## Rho: 0.3754, LR test value: 1.942, p-value: 0.16342
## Asymptotic standard error: 0.2688
## z-value: 1.397, p-value: 0.16254
## Wald statistic: 1.95, p-value: 0.16254
##
## Log likelihood: -186.4 for lag model
## ML residual variance (sigma squared): 117.1, (sigma: 10.82)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: 382.8, (AIC for lm: 382.8)
## LM test for residual autocorrelation
## test value: 1.492, p-value: 0.22187
##
## Call:
## errorsarlm(formula = CRIME ~ INC + HOVAL, data = mydata, listw = listw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.85406 -6.71581 -0.46122 8.91963 28.71276
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 67.311097 4.836926 13.9161 < 2.2e-16
## INC -1.538356 0.330112 -4.6601 3.161e-06
## HOVAL -0.268478 0.098726 -2.7194 0.006539
##
## Lambda: 0.1823, LR test value: 0.1482, p-value: 0.70022
## Asymptotic standard error: 0.4012
## z-value: 0.4544, p-value: 0.64953
## Wald statistic: 0.2065, p-value: 0.64953
##
## Log likelihood: -187.3 for error model
## ML residual variance (sigma squared): 122.2, (sigma: 11.05)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: 384.6, (AIC for lm: 382.8)
moran.test(CRIME, listw)
##
## Moran's I test under randomisation
##
## data: CRIME
## weights: listw
##
## Moran I statistic standard deviate = 5.619, p-value = 9.629e-09
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.167362 -0.020833 0.001122
moran.plot(CRIME, listw)