Network Meta-Analysis
1 NMA for continuous outcomes
Please: Select an outcome to proceed.
Code
# Read data
data_pim <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "P | Im") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2),
n = list(N1, N2),
mean = list(Mean1, Mean2),
sd = list(SD1, SD2),
studlab = StudyID,
data = data_pim
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 33
Number of pairwise comparisons: m = 33
Number of treatments: n = 12
Number of designs: d = 11
Number of networks: 2
Details on subnetworks:
subnetwork k m n
1 5 5 4
2 28 28 8
There are two sub-networks:
Subnet 1:
- 5 studies
- 5 comparisons
- 4 treatments
Subnet 2:
- 28 studies
- 28 comparisons
- 8 treatments
There are two treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 5 studies, 5 comparisons and 4 treatments.
Code
Code
[1] "MnT" "Bal" "Cry" "WlNi"
[1] 4
Code
[1] 5
Code
Number of studies: k = 5
Number of pairwise comparisons: m = 5
Number of observations: o = 232
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -1.2500 [-2.2645; -0.2355] -2.41 0.0157
Cry -6.5000 [-8.0223; -4.9777] -8.37 < 0.0001
MnT 0.0100 [-1.6642; 1.6842] 0.01 0.9907
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.4690; tau = 0.6849; I^2 = 58.5% [0.0%; 88.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Albers2018 MnT WlNi 0.0100 0.5105
Buskila2001 Bal WlNi -1.7000 0.4818
Neumann2001 Bal WlNi -0.2100 0.5836
Ozkurt2011 Bal WlNi -1.8500 0.6816
Kiyak2022 Cry WlNi -6.5000 0.3664
Number of treatment arms (by study):
narms
Albers2018 2
Buskila2001 2
Neumann2001 2
Ozkurt2011 2
Kiyak2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 MnT WlNi 0.0100 [-1.6642; 1.6842]
Buskila2001 Bal WlNi -1.2500 [-2.2645; -0.2355]
Neumann2001 Bal WlNi -1.2500 [-2.2645; -0.2355]
Ozkurt2011 Bal WlNi -1.2500 [-2.2645; -0.2355]
Kiyak2022 Cry WlNi -6.5000 [-8.0223; -4.9777]
Number of studies: k = 5
Number of pairwise comparisons: m = 5
Number of observations: o = 232
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -1.2500 [-2.2645; -0.2355] -2.41 0.0157
Cry -6.5000 [-8.0223; -4.9777] -8.37 < 0.0001
MnT 0.0100 [-1.6642; 1.6842] 0.01 0.9907
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.4690; tau = 0.6849; I^2 = 58.5% [0.0%; 88.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Bal .
5.2500 [ 3.4206; 7.0794] Cry
-1.2600 [-3.2176; 0.6976] -6.5100 [-8.7728; -4.2472]
-1.2500 [-2.2645; -0.2355] -6.5000 [-8.0223; -4.9777]
. -1.2500 [-2.2645; -0.2355]
. -6.5000 [-8.0223; -4.9777]
MnT 0.0100 [-1.6642; 1.6842]
0.0100 [-1.6642; 1.6842] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Cry 1.0000
Bal 0.6295
MnT 0.1996
WlNi 0.1708
Q statistics to assess homogeneity / consistency
Q df p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:Bal 4.82 2 0.0898
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0.6849 0.4690
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Bal:Cry 0 0 5.2500 . 5.2500 . . .
Bal:MnT 0 0 -1.2600 . -1.2600 . . .
Bal:WlNi 3 1.00 -1.2500 -1.2500 . . . .
Cry:MnT 0 0 -6.5100 . -6.5100 . . .
Cry:WlNi 1 1.00 -6.5000 -6.5000 . . . .
MnT:WlNi 1 1.00 0.0100 0.0100 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet is more robust, containing 28 studies, 28 comparisons and 8 treatments. This is the main analysis network.
Code
Code
[1] "Acu" "CBT" "rTMS" "tDCS" "PbT" "Elec" "MfT"
[1] "PlaSh" "tDCS"
Code
[1] "Acu" "CBT" "rTMS" "tDCS" "PbT" "Elec" "MfT" "PlaSh"
[1] 8
Code
[1] 28
[1] 28
Code
Number of studies: k = 28
Number of pairwise comparisons: m = 28
Number of observations: o = 1074
Number of treatments: n = 8
Number of designs: d = 8
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0541 [-1.3868; 1.2787] -0.08 0.9366
CBT -1.3351 [-2.8528; 0.1826] -1.72 0.0847
Elec -2.8500 [-4.8458; -0.8542] -2.80 0.0051
MfT -0.4900 [-2.2447; 1.2647] -0.55 0.5842
PbT -2.3053 [-3.5414; -1.0691] -3.66 0.0003
PlaSh . . . .
rTMS -1.2459 [-1.8859; -0.6059] -3.82 0.0001
tDCS -1.3183 [-1.8843; -0.7523] -4.57 < 0.0001
Quantifying heterogeneity / inconsistency:
tau^2 = 0.5164; tau = 0.7186; I^2 = 65.7% [46.3%; 78.1%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 61.3 21 < 0.0001
Within designs 60.6 20 < 0.0001
Between designs 0.7 1 0.4031
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Assefi2005 Acu PlaSh 0.6200 0.4939
Babu2007 CBT PlaSh -1.7000 1.0070
Boyer2014 PlaSh rTMS -0.3000 0.7445
Brietzke2019 PlaSh tDCS 1.7900 0.3988
Cheng2019 PlaSh rTMS 0.9000 1.3742
Curatolo2017 PlaSh tDCS 3.2000 0.8829
Fagerlund2015 PlaSh tDCS 0.9600 0.5231
Fregni2006 PlaSh tDCS -0.2800 0.8557
Gur2002a PbT PlaSh -2.0900 0.4526
Gur2002b PbT PlaSh -2.5700 0.6087
Khedr2017 PlaSh tDCS 2.0000 0.3598
Lauretti2013 Elec PlaSh -2.8500 0.7215
Lee2012 PlaSh rTMS 0.5600 1.3631
Maestu2013 PlaSh rTMS -0.4400 0.5614
Mendonça2011 PlaSh tDCS 2.1800 1.1082
Mhalla2011 PlaSh rTMS 1.8300 0.3834
Oka2019 MfT PlaSh -0.4900 0.5340
Passard2007 PlaSh rTMS 1.4400 0.5723
Short2011 PlaSh rTMS 1.0800 0.8475
Stival2013 Acu PlaSh -1.1000 0.8145
Tekin2014 PlaSh rTMS 2.6300 0.4230
Valle2009 PlaSh tDCS 1.2200 0.7126
Yagci2014 PlaSh rTMS 1.1700 1.0040
deMelo2020 PlaSh tDCS -0.3000 1.1882
Forogh2021 rTMS tDCS -1.0600 0.7943
Caumo2023 PlaSh tDCS 0.8100 0.1056
Gungomus2023 CBT PlaSh -1.1000 0.6852
Loreti2023 PlaSh tDCS 1.9900 0.4623
Number of treatment arms (by study):
narms
Assefi2005 2
Babu2007 2
Boyer2014 2
Brietzke2019 2
Cheng2019 2
Curatolo2017 2
Fagerlund2015 2
Fregni2006 2
Gur2002a 2
Gur2002b 2
Khedr2017 2
Lauretti2013 2
Lee2012 2
Maestu2013 2
Mendonça2011 2
Mhalla2011 2
Oka2019 2
Passard2007 2
Short2011 2
Stival2013 2
Tekin2014 2
Valle2009 2
Yagci2014 2
deMelo2020 2
Forogh2021 2
Caumo2023 2
Gungomus2023 2
Loreti2023 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Assefi2005 Acu PlaSh -0.0541 [-1.3868; 1.2787]
Babu2007 CBT PlaSh -1.3351 [-2.8528; 0.1826]
Boyer2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Brietzke2019 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Cheng2019 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Curatolo2017 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Fagerlund2015 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Fregni2006 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Gur2002a PbT PlaSh -2.3053 [-3.5414; -1.0691]
Gur2002b PbT PlaSh -2.3053 [-3.5414; -1.0691]
Khedr2017 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Lauretti2013 Elec PlaSh -2.8500 [-4.8458; -0.8542]
Lee2012 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Maestu2013 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Mendonça2011 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Mhalla2011 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Oka2019 MfT PlaSh -0.4900 [-2.2447; 1.2647]
Passard2007 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Short2011 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Stival2013 Acu PlaSh -0.0541 [-1.3868; 1.2787]
Tekin2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Valle2009 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Yagci2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
deMelo2020 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Forogh2021 rTMS tDCS 0.0724 [-0.7466; 0.8914]
Caumo2023 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Gungomus2023 CBT PlaSh -1.3351 [-2.8528; 0.1826]
Loreti2023 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Number of studies: k = 28
Number of pairwise comparisons: m = 28
Number of observations: o = 1074
Number of treatments: n = 8
Number of designs: d = 8
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0541 [-1.3868; 1.2787] -0.08 0.9366
CBT -1.3351 [-2.8528; 0.1826] -1.72 0.0847
Elec -2.8500 [-4.8458; -0.8542] -2.80 0.0051
MfT -0.4900 [-2.2447; 1.2647] -0.55 0.5842
PbT -2.3053 [-3.5414; -1.0691] -3.66 0.0003
PlaSh . . . .
rTMS -1.2459 [-1.8859; -0.6059] -3.82 0.0001
tDCS -1.3183 [-1.8843; -0.7523] -4.57 < 0.0001
Quantifying heterogeneity / inconsistency:
tau^2 = 0.5164; tau = 0.7186; I^2 = 65.7% [46.3%; 78.1%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 61.3 21 < 0.0001
Within designs 60.6 20 < 0.0001
Between designs 0.7 1 0.4031
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
1.2810 [-0.7388; 3.3008] CBT
2.7959 [ 0.3961; 5.1958] 1.5149 [-0.9924; 4.0222]
0.4359 [-1.7675; 2.6394] -0.8451 [-3.1651; 1.4749]
2.2512 [ 0.4335; 4.0689] 0.9702 [-0.9872; 2.9276]
-0.0541 [-1.3868; 1.2787] -1.3351 [-2.8528; 0.1826]
1.1918 [-0.2866; 2.6703] -0.0892 [-1.7363; 1.5579]
1.2643 [-0.1836; 2.7122] -0.0168 [-1.6366; 1.6031]
. .
. .
Elec .
-2.3600 [-5.0175; 0.2975] MfT
-0.5447 [-2.8923; 1.8029] 1.8153 [-0.3312; 3.9617]
-2.8500 [-4.8458; -0.8542] -0.4900 [-2.2447; 1.2647]
-1.6041 [-3.7000; 0.4918] 0.7559 [-1.1119; 2.6237]
-1.5317 [-3.6062; 0.5428] 0.8283 [-1.0154; 2.6721]
. -0.0541 [-1.3868; 1.2787]
. -1.3351 [-2.8528; 0.1826]
. -2.8500 [-4.8458; -0.8542]
. -0.4900 [-2.2447; 1.2647]
PbT -2.3053 [-3.5414; -1.0691]
-2.3053 [-3.5414; -1.0691] PlaSh
-1.0594 [-2.4514; 0.3326] 1.2459 [ 0.6059; 1.8859]
-0.9869 [-2.3465; 0.3726] 1.3183 [ 0.7523; 1.8843]
. .
. .
. .
. .
. .
1.1307 [ 0.4612; 1.8002] 1.4065 [ 0.8208; 1.9921]
rTMS -1.0600 [-3.1593; 1.0393]
0.0724 [-0.7466; 0.8914] tDCS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Elec 0.9088
PbT 0.8510
tDCS 0.5685
CBT 0.5639
rTMS 0.5361
MfT 0.2985
Acu 0.1582
PlaSh 0.1151
Q statistics to assess homogeneity / consistency
Q df p-value
Total 61.30 21 < 0.0001
Within designs 60.60 20 < 0.0001
Between designs 0.70 1 0.4031
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:tDCS 30.32 9 0.0004
PlaSh:rTMS 26.38 8 0.0009
PlaSh:Acu 3.26 1 0.0710
PlaSh:PbT 0.40 1 0.5269
PlaSh:CBT 0.24 1 0.6223
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.4031)
Detached design Q df p-value
PlaSh:rTMS 0.00 0 --
PlaSh:tDCS 0.00 0 --
rTMS:tDCS 0.00 0 --
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 1.30 1 0.2544 0.7336 0.5382
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
rTMS:PlaSh 9 0.91 -1.2459 -1.1307 -2.4665 1.3357 1.15 0.2509
tDCS:PlaSh 10 0.93 -1.3183 -1.4065 -0.0707 -1.3357 -1.15 0.2509
rTMS:tDCS 1 0.15 0.0724 -1.0600 0.2757 -1.3357 -1.15 0.2509
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_psh <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "P | Sh") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_psh,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of treatments: n = 27
Number of designs: d = 53
Number of networks: 1
There are network:
Network:
- 106 studies
- 120 comparisons
- 27 treatments
The network is fully connected.
1.0.1 Network
Select the procedures performed
The network contain 106 studies, 120 comparisons and 28 treatments.
Code
Code
[1] "MnT" "McT" "WBV" "MfT" "ManTh" "AqET" "CBT" "ReET"
[9] "Bal" "Acu" "AeET" "FlET" "MiET" "MasTh" "PbTh" "rTMS"
[17] "tDCS" "DryN" "Elec" "MasT" "HtT" "Cry" "PbT" "FlexEx"
[1] "WlNi" "WBV" "PlaSh" "Bal" "FlET" "AqET" "ReET" "ManTh"
[9] "CBT" "McT" "MasT" "Elec" "MiET" "Plt" "HtT" "FlexEx"
Code
[1] "MnT" "McT" "WBV" "MfT" "ManTh" "AqET" "CBT" "ReET"
[9] "Bal" "Acu" "AeET" "FlET" "MiET" "MasTh" "PbTh" "rTMS"
[17] "tDCS" "DryN" "Elec" "MasT" "HtT" "Cry" "PbT" "FlexEx"
[25] "WlNi" "PlaSh" "Plt"
[1] 27
Code
[1] 120
Code
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of observations: o = 6143
Number of treatments: n = 27
Number of designs: d = 53
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -1.3839 [-2.5896; -0.1783] -2.25 0.0245
AeET -1.2086 [-2.0827; -0.3346] -2.71 0.0067
AqET -1.8413 [-2.7839; -0.8986] -3.83 0.0001
Bal -2.8847 [-4.3709; -1.3984] -3.80 0.0001
CBT -0.7147 [-1.2553; -0.1740] -2.59 0.0096
Cry -1.9000 [-4.2920; 0.4920] -1.56 0.1195
DryN -3.3305 [-4.8468; -1.8142] -4.31 < 0.0001
Elec -1.6758 [-3.0833; -0.2683] -2.33 0.0196
FlET -0.5039 [-1.6815; 0.6738] -0.84 0.4017
FlexEx -0.5589 [-2.6868; 1.5689] -0.51 0.6067
HtT -1.2291 [-3.5457; 1.0874] -1.04 0.2984
ManTh -2.5304 [-4.5731; -0.4877] -2.43 0.0152
MasT -1.3100 [-2.6708; 0.0508] -1.89 0.0592
MasTh -3.3378 [-5.2250; -1.4506] -3.47 0.0005
McT -1.2167 [-1.8929; -0.5406] -3.53 0.0004
MfT -1.8893 [-3.4052; -0.3733] -2.44 0.0146
MiET -0.8110 [-1.5615; -0.0606] -2.12 0.0342
MnT -1.6825 [-3.1520; -0.2131] -2.24 0.0248
PbT -2.4965 [-5.0988; 0.1058] -1.88 0.0601
PbTh -4.7147 [-7.9324; -1.4970] -2.87 0.0041
PlaSh -0.1965 [-1.2575; 0.8645] -0.36 0.7166
Plt -1.7711 [-3.2552; -0.2870] -2.34 0.0193
ReET -1.2674 [-2.3388; -0.1960] -2.32 0.0204
rTMS -1.4710 [-2.9354; -0.0066] -1.97 0.0490
tDCS -1.5891 [-3.0801; -0.0980] -2.09 0.0367
WBV -1.7159 [-3.2907; -0.1411] -2.14 0.0327
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 1.1798; tau = 1.0862; I^2 = 83.6% [80.3%; 86.4%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 531.18 87 < 0.0001
Within designs 285.41 53 < 0.0001
Between designs 245.77 34 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 MnT WlNi -2.0900 0.6365 1.2589 2
Alentorn-Geli2008 McT WBV 1.8100 0.7468 1.5867 3 *
Alentorn-Geli2008 McT WlNi -1.2900 0.7892 1.6431 3 *
Alentorn-Geli2008 WBV WlNi -3.1000 0.8292 1.7054 3 *
Alfano2001 MfT PlaSh -0.6200 0.5434 1.2145 2
Alptug2023 ManTh WlNi -3.4000 0.6919 1.2878 2
Altan2004 AqET Bal 0.1800 0.6504 1.2660 2
Ang2010 CBT WlNi 0.1000 0.6426 1.2620 2
Arakaki2021 FlET ReET 2.1800 0.8189 1.3603 2
Ardic2007 Bal WlNi -4.2500 0.6931 1.2885 2
Assefi2005 Acu PlaSh 0.6100 0.5069 1.1986 2
Assis2006 AeET AqET 0.5000 0.5320 1.2095 2
Assumpçao2018 FlET ReET 0.2000 1.0224 1.8271 3 *
Assumpçao2018 FlET WlNi -1.8000 1.0018 1.7937 3 *
Assumpçao2018 ReET WlNi -2.0000 1.0408 1.8591 3 *
Atan2020 MiET WlNi -3.6000 0.4812 1.1880 2
Audoux2023 ManTh MasTh 1.8000 0.8445 1.3759 2
Baelz2022 Acu PlaSh -0.7000 0.8905 1.4046 2
Barranengoa-Cuadra2021 CBT WlNi -2.6000 0.3939 1.1554 2
Bircan2008 AeET ReET -0.4600 0.6518 1.2667 2
Boggiss2022 CBT PbTh 4.0000 1.1997 1.6184 2
Bongi2010 CBT WlNi -2.8300 0.5312 1.2091 2
Bongi2012 CBT McT 0.6500 0.3294 1.1351 2
Bourgault2015 McT WlNi -0.1300 0.5563 1.2204 2
Boyer2014 PlaSh rTMS -1.2000 0.8003 1.3492 2
Bressan2008 AeET FlET 0.4700 1.1193 1.5597 2
Brietzke2019 PlaSh tDCS 2.4800 0.3776 1.1500 2
Calandre2009 AqET WlNi 0.0000 0.5134 1.2014 2
Cao2020 Acu MasT -0.2200 0.3452 1.1397 2
Carretero2009 PlaSh rTMS -1.2000 0.8010 1.3496 2
Carson2010 McT WlNi -1.0200 0.5934 1.2377 2
Casanueva2014 DryN WlNi -1.5000 0.3493 1.1410 2
Castro-Sanchez2019 DryN MasT -2.9300 0.4500 1.1757 2
Castro-Sanchez2020 DryN Elec -2.6800 0.4366 1.1707 2
Caumo2023 PlaSh tDCS 1.6600 0.1140 1.0922 2
Ceballos-Laita2020 McT MiET -2.1600 0.8359 1.3706 2
Colbert1999 MfT PlaSh -1.8100 0.8309 1.3676 2
Collado-Mateo2017 MiET WlNi -1.3300 0.4507 1.1760 2
Coste2021 MnT PlaSh -0.2900 0.6548 1.2683 2
Da Costa2005 MiET WlNi -0.9400 0.6066 1.2441 2
Dailey2019 Elec PlaSh -1.3000 0.3488 1.1408 2
daSilva2008 AqET Elec 3.2000 1.1908 1.6118 2
deMedeiros2020 AqET Plt -0.6000 0.6063 1.2440 2
Ekici2008 MasT Plt 0.4200 0.4772 1.1864 2
Ekici2017 MasT Plt 0.3800 0.5255 1.2067 2
Espi-Lopes2016 MiET WlNi -0.2800 0.9255 1.4270 2
Evcik2002 Bal WlNi -3.4000 1.7701 2.0768 2
Fernandes2016 AeET AqET 0.5000 0.6362 1.2588 2
Fitzgibbon2018 PlaSh rTMS 0.4800 0.8369 1.3712 2
Franco2023 AeET Plt 1.2000 0.5585 1.2214 2
Friedberg2019 CBT WlNi -0.5500 0.3803 1.1509 2
Giannotti2014 McT WlNi -0.2500 0.8210 1.3616 2
Goldway2019 CBT PlaSh 0.8200 0.7901 1.3432 2
Gomez-Hernandez2019 AeET MiET 1.0100 0.1025 1.0910 2
Gowans1999 McT WlNi -0.3000 0.6841 1.2837 2
Gunther1994 Bal CBT -1.1200 1.1934 1.6137 2
Hargrove2012 PlaSh tDCS 1.4000 0.6895 1.2865 2
Harris2005 Acu PlaSh -0.3100 0.6954 1.2897 2
Harte2013 Acu PlaSh 0.5800 0.5773 1.2301 2
Hsu2010 CBT WlNi -0.5800 0.6751 1.2789 2
Izquierdo-Alventosa2020 MiET WlNi -0.1200 0.7797 1.3371 2
Jamison2021 Elec PlaSh -0.6200 0.2762 1.1208 2
Jensen2012 CBT WlNi -1.0900 0.8702 1.3918 2
Jones2002 McT ReET 0.5300 0.5654 1.2246 2
Jones2012 CBT McT 1.1000 0.5460 1.2157 2
Karatay2018 Acu PlaSh -2.5200 0.5807 1.2317 2
Kayo2012 AeET ReET -0.9700 0.7347 1.6206 3 *
Kayo2012 AeET WlNi -1.6000 0.7111 1.5877 3 *
Kayo2012 ReET WlNi -0.6300 0.6963 1.5685 3 *
Lami2018 CBT WlNi -0.0800 0.3222 1.1330 2
Lauche2016 MasT PlaSh -0.9200 0.4103 1.1611 2
Lee2024 CBT McT -0.5000 0.3579 1.1436 2
Lopes-Rodrigues2012 AqET FlET -2.5300 0.5685 1.2260 2
Lopes-Rodrigues2013 AqET FlET -2.1600 0.4565 1.1782 2
Luciano2014 CBT WlNi -1.7700 0.2840 1.1227 2
Lynch2012 McT WlNi -1.5700 0.3863 1.1528 2
Maestu2013 PlaSh rTMS 2.0000 0.6998 1.2921 2
McCrae2019 CBT WlNi -0.4900 0.6214 1.2514 2
Menzies2014 CBT WlNi -0.5000 0.5384 1.2123 2
Mhalla2011 PlaSh rTMS 2.1200 0.3835 1.1519 2
Mingorance2021.2 WBV WlNi -0.5100 0.1736 1.1000 2
Mist2018 Acu CBT -1.6000 0.1918 1.1030 2
Nadal-Nicolas2020 MasT PlaSh -2.9000 0.9876 1.4681 2
Norrengaard1997 AeET HtT 1.0000 1.1510 2.0716 3 *
Norrengaard1997 AeET MiET 1.0000 1.1426 2.0454 3 *
Norrengaard1997 HtT MiET 0.0000 0.5714 1.3535 3 *
Oka2019 MfT PlaSh -0.5500 0.6779 1.2804 2
Paolucci2016 MfT PlaSh -2.5000 0.4369 1.1708 2
Paolucci2022 CBT MiET -1.5000 0.9648 1.4528 2
Park2021 FlET ReET -0.0400 0.6996 1.2920 2
Parra-Delgado2013 CBT WlNi -0.0600 0.1291 1.0939 2
Redondo2004 CBT MiET 0.4000 0.8083 1.3540 2
Rivera2018 Cry WlNi -1.9000 0.5565 1.2204 2
Rodriguez-Mansilla2021 McT MiET -0.6300 0.5229 1.4766 3 *
Rodriguez-Mansilla2021 MiET WlNi -0.5200 0.4364 1.3981 3 *
Rodriguez-Mansilla2021 McT WlNi -1.1500 0.5830 1.5501 3 *
Ruaro2014 PbT PlaSh -2.3000 0.5385 1.2124 2
Samartin-Veiga2022 PlaSh tDCS 0.3100 0.7259 1.3064 2
Sarmento2020 McT PlaSh -3.7000 0.8544 1.3820 2
Schachter2003 AeET WlNi -1.2600 0.5078 1.1990 2
Schulze2023 FlexEx MasTh 2.4500 0.2841 1.3761 3 *
Schulze2023 MasTh WlNi -2.6800 0.2735 1.3697 3 *
Schulze2023 FlexEx WlNi -0.2300 0.2841 1.3761 3 *
Sencan2004 AeET PlaSh -2.1500 0.4530 1.1769 2
Sevimli2015 AeET AqET 0.0200 0.2773 1.3607 3 *
Sevimli2015 AeET MiET -2.4200 0.3318 1.3960 3 *
Sevimli2015 AqET MiET -2.4400 0.3388 1.4013 3 *
Silva2019 CBT ReET 1.0400 0.5562 1.2203 2
Sutbeyaz2009 MfT PlaSh -2.7600 0.4486 1.1752 2
Tanwar2020 PlaSh rTMS 3.9000 0.2989 1.1266 2
To2017 PlaSh tDCS 0.8100 0.4671 1.1824 2
Tomas-Carus2007b&c AqET WlNi -2.0000 0.7472 1.3184 2
Torres2015 CBT MnT 1.6700 0.5133 1.2014 2
Udina-Cortés2020 Elec PlaSh -1.9000 0.5940 1.2380 2
Ugurlu2017 Acu PlaSh -2.8900 0.4682 1.1828 2
Valim2003 AeET FlET 0.3000 0.6728 1.2777 2
Vas2016 Acu PlaSh -1.4800 0.3803 1.1509 2
Verkaik2013 CBT WlNi 0.0400 0.5154 1.2023 2
Wicksell2013 CBT WlNi -0.4000 0.3706 1.1477 2
Wong2018 McT WlNi -1.7000 0.5833 1.2329 2
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Alptug2023 2
Altan2004 2
Ang2010 2
Arakaki2021 2
Ardic2007 2
Assefi2005 2
Assis2006 2
Assumpçao2018 3
Atan2020 2
Audoux2023 2
Baelz2022 2
Barranengoa-Cuadra2021 2
Bircan2008 2
Boggiss2022 2
Bongi2010 2
Bongi2012 2
Bourgault2015 2
Boyer2014 2
Bressan2008 2
Brietzke2019 2
Calandre2009 2
Cao2020 2
Carretero2009 2
Carson2010 2
Casanueva2014 2
Castro-Sanchez2019 2
Castro-Sanchez2020 2
Caumo2023 2
Ceballos-Laita2020 2
Colbert1999 2
Collado-Mateo2017 2
Coste2021 2
Da Costa2005 2
Dailey2019 2
daSilva2008 2
deMedeiros2020 2
Ekici2008 2
Ekici2017 2
Espi-Lopes2016 2
Evcik2002 2
Fernandes2016 2
Fitzgibbon2018 2
Franco2023 2
Friedberg2019 2
Giannotti2014 2
Goldway2019 2
Gomez-Hernandez2019 2
Gowans1999 2
Gunther1994 2
Hargrove2012 2
Harris2005 2
Harte2013 2
Hsu2010 2
Izquierdo-Alventosa2020 2
Jamison2021 2
Jensen2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kayo2012 3
Lami2018 2
Lauche2016 2
Lee2024 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Maestu2013 2
McCrae2019 2
Menzies2014 2
Mhalla2011 2
Mingorance2021.2 2
Mist2018 2
Nadal-Nicolas2020 2
Norrengaard1997 3
Oka2019 2
Paolucci2016 2
Paolucci2022 2
Park2021 2
Parra-Delgado2013 2
Redondo2004 2
Rivera2018 2
Rodriguez-Mansilla2021 3
Ruaro2014 2
Samartin-Veiga2022 2
Sarmento2020 2
Schachter2003 2
Schulze2023 3
Sencan2004 2
Sevimli2015 3
Silva2019 2
Sutbeyaz2009 2
Tanwar2020 2
To2017 2
Tomas-Carus2007b&c 2
Torres2015 2
Udina-Cortés2020 2
Ugurlu2017 2
Valim2003 2
Vas2016 2
Verkaik2013 2
Wicksell2013 2
Wong2018 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 MnT WlNi -1.6825 [-3.1520; -0.2131]
Alentorn-Geli2008 McT WBV 0.4991 [-1.1457; 2.1440]
Alentorn-Geli2008 McT WlNi -1.2167 [-1.8929; -0.5406]
Alentorn-Geli2008 WBV WlNi -1.7159 [-3.2907; -0.1411]
Alfano2001 MfT PlaSh -1.6928 [-2.7756; -0.6099]
Alptug2023 ManTh WlNi -2.5304 [-4.5731; -0.4877]
Altan2004 AqET Bal 1.0434 [-0.5280; 2.6148]
Ang2010 CBT WlNi -0.7147 [-1.2553; -0.1740]
Arakaki2021 FlET ReET 0.7635 [-0.4207; 1.9478]
Ardic2007 Bal WlNi -2.8847 [-4.3709; -1.3984]
Assefi2005 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Assis2006 AeET AqET 0.6326 [-0.3013; 1.5665]
Assumpçao2018 FlET ReET 0.7635 [-0.4207; 1.9478]
Assumpçao2018 FlET WlNi -0.5039 [-1.6815; 0.6738]
Assumpçao2018 ReET WlNi -1.2674 [-2.3388; -0.1960]
Atan2020 MiET WlNi -0.8110 [-1.5615; -0.0606]
Audoux2023 ManTh MasTh 0.8074 [-1.2921; 2.9069]
Baelz2022 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Barranengoa-Cuadra2021 CBT WlNi -0.7147 [-1.2553; -0.1740]
Bircan2008 AeET ReET 0.0588 [-1.0576; 1.1752]
Boggiss2022 CBT PbTh 4.0000 [ 0.8280; 7.1720]
Bongi2010 CBT WlNi -0.7147 [-1.2553; -0.1740]
Bongi2012 CBT McT 0.5021 [-0.2507; 1.2549]
Bourgault2015 McT WlNi -1.2167 [-1.8929; -0.5406]
Boyer2014 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
Bressan2008 AeET FlET -0.7048 [-1.8382; 0.4286]
Brietzke2019 PlaSh tDCS 1.3926 [ 0.3449; 2.4402]
Calandre2009 AqET WlNi -1.8413 [-2.7839; -0.8986]
Cao2020 Acu MasT -0.0740 [-1.3556; 1.2077]
Carretero2009 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
Carson2010 McT WlNi -1.2167 [-1.8929; -0.5406]
Casanueva2014 DryN WlNi -3.3305 [-4.8468; -1.8142]
Castro-Sanchez2019 DryN MasT -2.0205 [-3.5873; -0.4537]
Castro-Sanchez2020 DryN Elec -1.6547 [-3.2336; -0.0758]
Caumo2023 PlaSh tDCS 1.3926 [ 0.3449; 2.4402]
Ceballos-Laita2020 McT MiET -0.4057 [-1.3220; 0.5106]
Colbert1999 MfT PlaSh -1.6928 [-2.7756; -0.6099]
Collado-Mateo2017 MiET WlNi -0.8110 [-1.5615; -0.0606]
Coste2021 MnT PlaSh -1.4860 [-3.0555; 0.0835]
Da Costa2005 MiET WlNi -0.8110 [-1.5615; -0.0606]
Dailey2019 Elec PlaSh -1.4793 [-2.6248; -0.3338]
daSilva2008 AqET Elec -0.1655 [-1.6690; 1.3381]
deMedeiros2020 AqET Plt -0.0701 [-1.5399; 1.3997]
Ekici2008 MasT Plt 0.4611 [-0.8989; 1.8212]
Ekici2017 MasT Plt 0.4611 [-0.8989; 1.8212]
Espi-Lopes2016 MiET WlNi -0.8110 [-1.5615; -0.0606]
Evcik2002 Bal WlNi -2.8847 [-4.3709; -1.3984]
Fernandes2016 AeET AqET 0.6326 [-0.3013; 1.5665]
Fitzgibbon2018 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
Franco2023 AeET Plt 0.5625 [-0.8819; 2.0069]
Friedberg2019 CBT WlNi -0.7147 [-1.2553; -0.1740]
Giannotti2014 McT WlNi -1.2167 [-1.8929; -0.5406]
Goldway2019 CBT PlaSh -0.5182 [-1.5817; 0.5453]
Gomez-Hernandez2019 AeET MiET -0.3976 [-1.3464; 0.5512]
Gowans1999 McT WlNi -1.2167 [-1.8929; -0.5406]
Gunther1994 Bal CBT -2.1700 [-3.6985; -0.6414]
Hargrove2012 PlaSh tDCS 1.3926 [ 0.3449; 2.4402]
Harris2005 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Harte2013 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Hsu2010 CBT WlNi -0.7147 [-1.2553; -0.1740]
Izquierdo-Alventosa2020 MiET WlNi -0.8110 [-1.5615; -0.0606]
Jamison2021 Elec PlaSh -1.4793 [-2.6248; -0.3338]
Jensen2012 CBT WlNi -0.7147 [-1.2553; -0.1740]
Jones2002 McT ReET 0.0507 [-1.1123; 1.2136]
Jones2012 CBT McT 0.5021 [-0.2507; 1.2549]
Karatay2018 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Kayo2012 AeET ReET 0.0588 [-1.0576; 1.1752]
Kayo2012 AeET WlNi -1.2086 [-2.0827; -0.3346]
Kayo2012 ReET WlNi -1.2674 [-2.3388; -0.1960]
Lami2018 CBT WlNi -0.7147 [-1.2553; -0.1740]
Lauche2016 MasT PlaSh -1.1135 [-2.2973; 0.0703]
Lee2024 CBT McT 0.5021 [-0.2507; 1.2549]
Lopes-Rodrigues2012 AqET FlET -1.3374 [-2.4821; -0.1927]
Lopes-Rodrigues2013 AqET FlET -1.3374 [-2.4821; -0.1927]
Luciano2014 CBT WlNi -0.7147 [-1.2553; -0.1740]
Lynch2012 McT WlNi -1.2167 [-1.8929; -0.5406]
Maestu2013 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
McCrae2019 CBT WlNi -0.7147 [-1.2553; -0.1740]
Menzies2014 CBT WlNi -0.7147 [-1.2553; -0.1740]
Mhalla2011 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
Mingorance2021.2 WBV WlNi -1.7159 [-3.2907; -0.1411]
Mist2018 Acu CBT -0.6692 [-1.8633; 0.5248]
Nadal-Nicolas2020 MasT PlaSh -1.1135 [-2.2973; 0.0703]
Norrengaard1997 AeET HtT 0.0205 [-2.2977; 2.3387]
Norrengaard1997 AeET MiET -0.3976 [-1.3464; 0.5512]
Norrengaard1997 HtT MiET -0.4181 [-2.6570; 1.8208]
Oka2019 MfT PlaSh -1.6928 [-2.7756; -0.6099]
Paolucci2016 MfT PlaSh -1.6928 [-2.7756; -0.6099]
Paolucci2022 CBT MiET 0.0964 [-0.7508; 0.9435]
Park2021 FlET ReET 0.7635 [-0.4207; 1.9478]
Parra-Delgado2013 CBT WlNi -0.7147 [-1.2553; -0.1740]
Redondo2004 CBT MiET 0.0964 [-0.7508; 0.9435]
Rivera2018 Cry WlNi -1.9000 [-4.2920; 0.4920]
Rodriguez-Mansilla2021 McT MiET -0.4057 [-1.3220; 0.5106]
Rodriguez-Mansilla2021 MiET WlNi -0.8110 [-1.5615; -0.0606]
Rodriguez-Mansilla2021 McT WlNi -1.2167 [-1.8929; -0.5406]
Ruaro2014 PbT PlaSh -2.3000 [-4.6762; 0.0762]
Samartin-Veiga2022 PlaSh tDCS 1.3926 [ 0.3449; 2.4402]
Sarmento2020 McT PlaSh -1.0202 [-2.1790; 0.1386]
Schachter2003 AeET WlNi -1.2086 [-2.0827; -0.3346]
Schulze2023 FlexEx MasTh 2.7789 [ 0.6511; 4.9068]
Schulze2023 MasTh WlNi -3.3378 [-5.2250; -1.4506]
Schulze2023 FlexEx WlNi -0.5589 [-2.6868; 1.5689]
Sencan2004 AeET PlaSh -1.0121 [-2.1765; 0.1522]
Sevimli2015 AeET AqET 0.6326 [-0.3013; 1.5665]
Sevimli2015 AeET MiET -0.3976 [-1.3464; 0.5512]
Sevimli2015 AqET MiET -1.0302 [-2.0941; 0.0337]
Silva2019 CBT ReET 0.5527 [-0.5641; 1.6695]
Sutbeyaz2009 MfT PlaSh -1.6928 [-2.7756; -0.6099]
Tanwar2020 PlaSh rTMS 1.2745 [ 0.2651; 2.2838]
To2017 PlaSh tDCS 1.3926 [ 0.3449; 2.4402]
Tomas-Carus2007b&c AqET WlNi -1.8413 [-2.7839; -0.8986]
Torres2015 CBT MnT 0.9679 [-0.4990; 2.4347]
Udina-Cortés2020 Elec PlaSh -1.4793 [-2.6248; -0.3338]
Ugurlu2017 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Valim2003 AeET FlET -0.7048 [-1.8382; 0.4286]
Vas2016 Acu PlaSh -1.1874 [-2.0078; -0.3671]
Verkaik2013 CBT WlNi -0.7147 [-1.2553; -0.1740]
Wicksell2013 CBT WlNi -0.7147 [-1.2553; -0.1740]
Wong2018 McT WlNi -1.2167 [-1.8929; -0.5406]
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of observations: o = 6143
Number of treatments: n = 27
Number of designs: d = 53
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -1.3839 [-2.5896; -0.1783] -2.25 0.0245
AeET -1.2086 [-2.0827; -0.3346] -2.71 0.0067
AqET -1.8413 [-2.7839; -0.8986] -3.83 0.0001
Bal -2.8847 [-4.3709; -1.3984] -3.80 0.0001
CBT -0.7147 [-1.2553; -0.1740] -2.59 0.0096
Cry -1.9000 [-4.2920; 0.4920] -1.56 0.1195
DryN -3.3305 [-4.8468; -1.8142] -4.31 < 0.0001
Elec -1.6758 [-3.0833; -0.2683] -2.33 0.0196
FlET -0.5039 [-1.6815; 0.6738] -0.84 0.4017
FlexEx -0.5589 [-2.6868; 1.5689] -0.51 0.6067
HtT -1.2291 [-3.5457; 1.0874] -1.04 0.2984
ManTh -2.5304 [-4.5731; -0.4877] -2.43 0.0152
MasT -1.3100 [-2.6708; 0.0508] -1.89 0.0592
MasTh -3.3378 [-5.2250; -1.4506] -3.47 0.0005
McT -1.2167 [-1.8929; -0.5406] -3.53 0.0004
MfT -1.8893 [-3.4052; -0.3733] -2.44 0.0146
MiET -0.8110 [-1.5615; -0.0606] -2.12 0.0342
MnT -1.6825 [-3.1520; -0.2131] -2.24 0.0248
PbT -2.4965 [-5.0988; 0.1058] -1.88 0.0601
PbTh -4.7147 [-7.9324; -1.4970] -2.87 0.0041
PlaSh -0.1965 [-1.2575; 0.8645] -0.36 0.7166
Plt -1.7711 [-3.2552; -0.2870] -2.34 0.0193
ReET -1.2674 [-2.3388; -0.1960] -2.32 0.0204
rTMS -1.4710 [-2.9354; -0.0066] -1.97 0.0490
tDCS -1.5891 [-3.0801; -0.0980] -2.09 0.0367
WBV -1.7159 [-3.2907; -0.1411] -2.14 0.0327
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 1.1798; tau = 1.0862; I^2 = 83.6% [80.3%; 86.4%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 531.18 87 < 0.0001
Within designs 285.41 53 < 0.0001
Between designs 245.77 34 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
-0.1753 [-1.4889; 1.1383] AeET
0.4573 [-0.9197; 1.8344] 0.6326 [-0.3013; 1.5665]
1.5007 [-0.3553; 3.3568] 1.6760 [ 0.0392; 3.3128]
-0.6692 [-1.8633; 0.5248] -0.4939 [-1.4502; 0.4624]
0.5161 [-2.1626; 3.1948] 0.6914 [-1.8553; 3.2381]
1.9466 [ 0.3028; 3.5903] 2.1219 [ 0.4820; 3.7618]
0.2919 [-1.0809; 1.6646] 0.4672 [-1.0220; 1.9564]
-0.8801 [-2.4493; 0.6891] -0.7048 [-1.8382; 0.4286]
-0.8250 [-3.2707; 1.6207] -0.6497 [-2.9501; 1.6506]
-0.1548 [-2.7097; 2.4001] 0.0205 [-2.2977; 2.3387]
1.1465 [-1.2255; 3.5184] 1.3218 [-0.9001; 3.5436]
-0.0740 [-1.3556; 1.2077] 0.1013 [-1.3128; 1.5155]
1.9539 [-0.2856; 4.1934] 2.1292 [ 0.0494; 4.2090]
-0.1672 [-1.4649; 1.1306] 0.0081 [-1.0239; 1.0402]
0.5053 [-0.8532; 1.8638] 0.6806 [-0.9094; 2.2707]
-0.5729 [-1.9180; 0.7722] -0.3976 [-1.3464; 0.5512]
0.2986 [-1.4013; 1.9985] 0.4739 [-1.1699; 2.1177]
1.1126 [-1.4013; 3.6264] 1.2879 [-1.3583; 3.9340]
3.3308 [-0.0585; 6.7200] 3.5061 [ 0.1931; 6.8190]
-1.1874 [-2.0078; -0.3671] -1.0121 [-2.1765; 0.1522]
0.3872 [-1.2167; 1.9911] 0.5625 [-0.8819; 2.0069]
-0.1165 [-1.6291; 1.3961] 0.0588 [-1.0576; 1.1752]
0.0870 [-1.2136; 1.3877] 0.2623 [-1.2786; 1.8033]
0.2051 [-1.1255; 1.5358] 0.3804 [-1.1859; 1.9468]
0.3319 [-1.6368; 2.3007] 0.5073 [-1.2828; 2.2973]
-1.3839 [-2.5896; -0.1783] -1.2086 [-2.0827; -0.3346]
. .
0.3190 [-1.0302; 1.6682] .
AqET 0.1800 [-2.3014; 2.6614]
1.0434 [-0.5280; 2.6148] Bal
-1.1266 [-2.1531; -0.1001] -2.1700 [-3.6985; -0.6414]
0.0587 [-2.5123; 2.6298] -0.9847 [-3.8008; 1.8315]
1.4892 [-0.1806; 3.1591] 0.4458 [-1.6376; 2.5292]
-0.1655 [-1.6690; 1.3381] -1.2089 [-3.1923; 0.7745]
-1.3374 [-2.4821; -0.1927] -2.3808 [-4.1805; -0.5811]
-1.2823 [-3.6096; 1.0449] -2.3257 [-4.9213; 0.2698]
-0.6121 [-3.0199; 1.7957] -1.6555 [-4.3743; 1.0632]
0.6891 [-1.5606; 2.9388] -0.3543 [-2.8805; 2.1719]
-0.5313 [-1.9903; 0.9277] -1.5747 [-3.5252; 0.3758]
1.4966 [-0.6130; 3.6061] 0.4532 [-1.9490; 2.8554]
-0.6245 [-1.7281; 0.4791] -1.6679 [-3.2757; -0.0602]
0.0480 [-1.5987; 1.6947] -0.9954 [-3.0658; 1.0750]
-1.0302 [-2.0941; 0.0337] -2.0736 [-3.6969; -0.4503]
-0.1587 [-1.8471; 1.5297] -1.2021 [-3.2610; 0.8568]
0.6552 [-2.0253; 3.3358] -0.3882 [-3.3479; 2.5716]
2.8734 [-0.4605; 6.2073] 1.8300 [-1.6910; 5.3511]
-1.6448 [-2.8854; -0.4041] -2.6882 [-4.4528; -0.9235]
-0.0701 [-1.5399; 1.3997] -1.1135 [-3.1279; 0.9008]
-0.5739 [-1.8040; 0.6563] -1.6173 [-3.3891; 0.1546]
-0.3703 [-1.9696; 1.2291] -1.4137 [-3.4466; 0.6192]
-0.2522 [-1.8760; 1.3716] -1.2956 [-3.3478; 0.7566]
-0.1254 [-1.9519; 1.7011] -1.1688 [-3.3294; 0.9919]
-1.8413 [-2.7839; -0.8986] -2.8847 [-4.3709; -1.3984]
-1.6000 [-3.7619; 0.5619] .
. .
. .
-1.1200 [-4.2829; 2.0429] .
CBT .
1.1853 [-1.2670; 3.6377] Cry
2.6158 [ 1.0551; 4.1766] 1.4305 [-1.4016; 4.2626]
0.9611 [-0.4650; 2.3872] -0.2242 [-2.9996; 2.5512]
-0.2108 [-1.4499; 1.0282] -1.3961 [-4.0624; 1.2701]
-0.1558 [-2.3512; 2.0397] -1.3411 [-4.5426; 1.8604]
0.5145 [-1.8350; 2.8639] -0.6709 [-4.0008; 2.6590]
1.8157 [-0.2973; 3.9288] 0.6304 [-2.5151; 3.7759]
0.5953 [-0.7861; 1.9767] -0.5900 [-3.3420; 2.1620]
2.6231 [ 0.6600; 4.5863] 1.4378 [-1.6090; 4.4847]
0.5021 [-0.2507; 1.2549] -0.6833 [-3.1690; 1.8025]
1.1746 [-0.3432; 2.6923] -0.0107 [-2.8427; 2.8212]
0.0964 [-0.7508; 0.9435] -1.0890 [-3.5959; 1.4180]
0.9679 [-0.4990; 2.4347] -0.2175 [-3.0248; 2.5899]
1.7818 [-0.8215; 4.3852] 0.5965 [-2.9381; 4.1311]
4.0000 [ 0.8280; 7.1720] 2.8147 [-1.1947; 6.8241]
-0.5182 [-1.5817; 0.5453] -1.7035 [-4.3203; 0.9133]
1.0564 [-0.4629; 2.5757] -0.1289 [-2.9439; 2.6861]
0.5527 [-0.5641; 1.6695] -0.6326 [-3.2536; 1.9884]
0.7563 [-0.7099; 2.2225] -0.4290 [-3.2337; 2.3756]
0.8744 [-0.6185; 2.3673] -0.3109 [-3.1296; 2.5077]
1.0012 [-0.6499; 2.6522] -0.1841 [-3.0480; 2.6797]
-0.7147 [-1.2553; -0.1740] -1.9000 [-4.2920; 0.4920]
. .
. .
. 3.2000 [ 0.0410; 6.3590]
. .
. .
. .
DryN -2.6800 [-4.9745; -0.3855]
-1.6547 [-3.2336; -0.0758] Elec
-2.8266 [-4.6661; -0.9872] -1.1719 [-2.8813; 0.5374]
-2.7716 [-5.3844; -0.1587] -1.1169 [-3.6681; 1.4343]
-2.1013 [-4.8312; 0.6285] -0.4466 [-3.1001; 2.2068]
-0.8001 [-3.3441; 1.7439] 0.8546 [-1.6260; 3.3353]
-2.0205 [-3.5873; -0.4537] -0.3658 [-1.8961; 1.1645]
0.0073 [-2.4135; 2.4282] 1.6620 [-0.6922; 4.0163]
-2.1137 [-3.7344; -0.4931] -0.4590 [-1.9541; 1.0360]
-1.4412 [-3.3106; 0.4281] 0.2135 [-1.3628; 1.7897]
-2.5194 [-4.1679; -0.8710] -0.8648 [-2.3918; 0.6623]
-1.6479 [-3.6605; 0.3647] 0.0068 [-1.8591; 1.8726]
-0.8340 [-3.6568; 1.9888] 0.8207 [-1.8172; 3.4586]
1.3842 [-2.1509; 4.9193] 3.0389 [-0.4389; 6.5167]
-3.1340 [-4.6578; -1.6102] -1.4793 [-2.6248; -0.3338]
-1.5594 [-3.4144; 0.2957] 0.0953 [-1.6769; 1.8676]
-2.0631 [-3.8585; -0.2677] -0.4084 [-2.0821; 1.2653]
-1.8595 [-3.6873; -0.0317] -0.2048 [-1.7315; 1.3219]
-1.7414 [-3.5906; 0.1078] -0.0867 [-1.6391; 1.4656]
-1.6146 [-3.7932; 0.5640] 0.0401 [-2.0598; 2.1400]
-3.3305 [-4.8468; -1.8142] -1.6758 [-3.0833; -0.2683]
. .
0.3683 [-1.5690; 2.3055] .
-2.3377 [-4.0027; -0.6726] .
. .
. .
. .
. .
. .
FlET .
0.0551 [-2.3769; 2.4871] FlexEx
0.7253 [-1.7824; 3.2329] 0.6702 [-2.4753; 3.8157]
2.0265 [-0.3313; 4.3844] 1.9715 [-0.6813; 4.6243]
0.8061 [-0.8552; 2.4675] 0.7511 [-1.7747; 3.2768]
2.8340 [ 0.6095; 5.0585] 2.7789 [ 0.6511; 4.9068]
0.7129 [-0.5816; 2.0074] 0.6578 [-1.5749; 2.8905]
1.3854 [-0.4262; 3.1970] 1.3303 [-1.2823; 3.9430]
0.3072 [-0.9798; 1.5941] 0.2521 [-2.0042; 2.5084]
1.1787 [-0.6560; 3.0134] 1.1236 [-1.4623; 3.7095]
1.9926 [-0.7923; 4.7776] 1.9376 [-1.4239; 5.2991]
4.2108 [ 0.8055; 7.6162] 4.1558 [ 0.2981; 8.0134]
-0.3074 [-1.7597; 1.1450] -0.3624 [-2.7401; 2.0153]
1.2673 [-0.4355; 2.9700] 1.2122 [-1.3821; 3.8065]
0.7635 [-0.4207; 1.9478] 0.7085 [-1.6739; 3.0909]
0.9671 [-0.8015; 2.7358] 0.9121 [-1.6710; 3.4951]
1.0852 [-0.7056; 2.8760] 1.0301 [-1.5681; 3.6284]
1.2120 [-0.7435; 3.1676] 1.1570 [-1.4902; 3.8042]
-0.5039 [-1.6815; 0.6738] -0.5589 [-2.6868; 1.5689]
. .
1.0000 [-2.1019; 4.1019] .
. .
. .
. .
. .
. .
. .
. .
. .
HtT .
1.3013 [-1.7873; 4.3898] ManTh
0.0808 [-2.5407; 2.7024] -1.2204 [-3.6749; 1.2340]
2.1087 [-0.8793; 5.0967] 0.8074 [-1.2921; 2.9069]
-0.0124 [-2.3894; 2.3646] -1.3137 [-3.4654; 0.8381]
0.6601 [-2.0516; 3.3719] -0.6411 [-3.1849; 1.9026]
-0.4181 [-2.6570; 1.8208] -1.7194 [-3.8956; 0.4568]
0.4534 [-2.2626; 3.1694] -0.8479 [-3.3642; 1.6685]
1.2674 [-2.1717; 4.7065] -0.0339 [-3.3422; 3.2744]
3.4855 [-0.4618; 7.4328] 2.1843 [-1.6271; 5.9956]
-1.0326 [-3.5188; 1.4535] -2.3339 [-4.6357; -0.0321]
0.5420 [-2.1217; 3.2057] -0.7593 [-3.2842; 1.7656]
0.0383 [-2.4414; 2.5179] -1.2630 [-3.5696; 1.0436]
0.2418 [-2.4414; 2.9251] -1.0594 [-3.5728; 1.4540]
0.3599 [-2.3380; 3.0578] -0.9413 [-3.4704; 1.5877]
0.4867 [-2.3066; 3.2800] -0.8145 [-3.3938; 1.7648]
-1.2291 [-3.5457; 1.0874] -2.5304 [-4.5731; -0.4877]
-0.2200 [-2.4539; 2.0139] .
. .
. .
. .
. .
. .
-2.9300 [-5.2344; -0.6256] .
. .
. .
. 2.4500 [ 0.2495; 4.6505]
. .
. 1.8000 [-0.8967; 4.4967]
MasT .
2.0279 [-0.2988; 4.3545] MasTh
-0.0932 [-1.5476; 1.3612] -2.1211 [-4.1258; -0.1164]
0.5793 [-1.0251; 2.1836] -1.4486 [-3.8693; 0.9721]
-0.4989 [-1.9769; 0.9790] -2.5268 [-4.5577; -0.4959]
0.3726 [-1.4777; 2.2228] -1.6553 [-4.0471; 0.7365]
1.1865 [-1.4682; 3.8413] -0.8413 [-4.0559; 2.3732]
3.4047 [-0.0550; 6.8644] 1.3769 [-2.3534; 5.1072]
-1.1135 [-2.2973; 0.0703] -3.1413 [-5.3063; -0.9763]
0.4611 [-0.8989; 1.8212] -1.5667 [-3.9676; 0.8341]
-0.0426 [-1.6685; 1.5833] -2.0704 [-4.2406; 0.0997]
0.1610 [-1.3947; 1.7167] -1.8669 [-4.2556; 0.5219]
0.2791 [-1.3017; 1.8599] -1.7488 [-4.1539; 0.6564]
0.4059 [-1.6636; 2.4754] -1.6220 [-4.0799; 0.8360]
-1.3100 [-2.6708; 0.0508] -3.3378 [-5.2250; -1.4506]
. .
. .
. .
. .
0.3908 [-0.9254; 1.7070] .
. .
. .
. .
. .
. .
. .
. .
. .
. .
McT .
0.6725 [-0.9135; 2.2585] MfT
-0.4057 [-1.3220; 0.5106] -1.0782 [-2.7047; 0.5483]
0.4658 [-1.1073; 2.0389] -0.2067 [-2.1135; 1.7001]
1.2798 [-1.3639; 3.9235] 0.6072 [-2.0040; 3.2185]
3.4979 [ 0.2379; 6.7580] 2.8254 [-0.6910; 6.3418]
-1.0202 [-2.1790; 0.1386] -1.6928 [-2.7756; -0.6099]
0.5544 [-1.0239; 2.1327] -0.1181 [-1.9740; 1.7378]
0.0507 [-1.1123; 1.2136] -0.6218 [-2.3877; 1.1440]
0.2542 [-1.2825; 1.7910] -0.4183 [-1.8986; 1.0620]
0.3723 [-1.1899; 1.9345] -0.3002 [-1.8069; 1.2065]
0.4991 [-1.1457; 2.1440] -0.1734 [-2.3453; 1.9986]
-1.2167 [-1.8929; -0.5406] -1.8893 [-3.4052; -0.3733]
. .
-0.3099 [-1.6897; 1.0699] .
-2.4400 [-4.6701; -0.2099] .
. .
-0.4832 [-2.4245; 1.4582] 1.6700 [-0.6847; 4.0247]
. .
. .
. .
. .
. .
0.0000 [-2.4055; 2.4055] .
. .
. .
. .
-1.2974 [-3.0715; 0.4768] .
. .
MiET .
0.8715 [-0.7423; 2.4853] MnT
1.6855 [-0.9827; 4.3536] 0.8140 [-2.0338; 3.6617]
3.9036 [ 0.6205; 7.1868] 3.0321 [-0.4626; 6.5268]
-0.6145 [-1.8282; 0.5991] -1.4860 [-3.0555; 0.0835]
0.9601 [-0.6101; 2.5303] 0.0886 [-1.9008; 2.0780]
0.4564 [-0.7574; 1.6702] -0.4151 [-2.1853; 1.3551]
0.6599 [-0.9185; 2.2384] -0.2116 [-2.0776; 1.6545]
0.7780 [-0.8252; 2.3813] -0.0935 [-1.9805; 1.7936]
0.9048 [-0.8264; 2.6361] 0.0333 [-2.1122; 2.1789]
-0.8110 [-1.5615; -0.0606] -1.6825 [-3.1520; -0.2131]
. .
. .
. .
. .
. 4.0000 [ 0.8280; 7.1720]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
PbT .
2.2182 [-1.8853; 6.3217] PbTh
-2.3000 [-4.6762; 0.0762] -4.5182 [-7.8637; -1.1727]
-0.7254 [-3.5393; 2.0885] -2.9436 [-6.4606; 0.5735]
-1.2291 [-3.9844; 1.5262] -3.4473 [-6.8101; -0.0845]
-1.0255 [-3.6072; 1.5562] -3.2437 [-6.7382; 0.2507]
-0.9074 [-3.5043; 1.6895] -3.1256 [-6.6313; 0.3801]
-0.7806 [-3.8123; 2.2511] -2.9988 [-6.5747; 0.5771]
-2.4965 [-5.0988; 0.1058] -4.7147 [-7.9324; -1.4970]
-0.9964 [-1.9109; -0.0820] .
-2.1500 [-4.4566; 0.1566] 1.2000 [-1.1938; 3.5938]
. -0.6000 [-3.0381; 1.8381]
. .
0.8200 [-1.8126; 3.4526] .
. .
. .
-1.2324 [-2.5488; 0.0840] .
. .
. .
. .
. .
-1.6819 [-3.4669; 0.1030] 0.4003 [-1.2578; 2.0584]
. .
-3.7000 [-6.4086; -0.9914] .
-1.6928 [-2.7756; -0.6099] .
. .
-0.2900 [-2.7758; 2.1958] .
-2.3000 [-4.6762; 0.0762] .
. .
PlaSh .
1.5746 [ 0.0674; 3.0819] Plt
1.0709 [-0.3239; 2.4657] -0.5037 [-2.2002; 1.1928]
1.2745 [ 0.2651; 2.2838] -0.3001 [-2.1141; 1.5138]
1.3926 [ 0.3449; 2.4402] -0.1821 [-2.0177; 1.6535]
1.5194 [-0.3634; 3.4021] -0.0552 [-2.2093; 2.0988]
-0.1965 [-1.2575; 0.8645] -1.7711 [-3.2552; -0.2870]
. .
-0.7062 [-2.4919; 1.0795] .
. .
. .
1.0400 [-1.3518; 3.4318] .
. .
. .
. .
0.7829 [-0.7720; 2.3378] .
. .
. .
. .
. .
. .
0.5300 [-1.8701; 2.9301] .
. .
. .
. .
. .
. .
. 1.2745 [ 0.2651; 2.2838]
. .
ReET .
0.2036 [-1.5181; 1.9253] rTMS
0.3217 [-1.4228; 2.0661] 0.1181 [-1.3367; 1.5729]
0.4485 [-1.4393; 2.3363] 0.2449 [-1.8913; 2.3812]
-1.2674 [-2.3388; -0.1960] -1.4710 [-2.9354; -0.0066]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 1.8100 [-0.7735; 4.3935]
. .
. .
. .
. .
. .
1.3926 [ 0.3449; 2.4402] .
. .
. .
. .
tDCS .
0.1268 [-2.0278; 2.2814] WBV
-1.5891 [-3.0801; -0.0980] -1.7159 [-3.2907; -0.1411]
.
-1.4165 [-3.1429; 0.3099]
-0.9074 [-2.6479; 0.8331]
-4.0137 [-6.1597; -1.8678]
-0.8331 [-1.4820; -0.1841]
-1.9000 [-4.2920; 0.4920]
-1.5000 [-3.7363; 0.7363]
.
-1.8000 [-4.6961; 1.0961]
-0.2300 [-2.4305; 1.9705]
.
-3.4000 [-5.9241; -0.8759]
.
-2.6800 [-4.8754; -0.4846]
-0.9506 [-1.8191; -0.0822]
.
-1.2193 [-2.2171; -0.2214]
-2.0900 [-4.5575; 0.3775]
.
.
.
.
-1.2106 [-3.1301; 0.7089]
.
.
-1.5284 [-3.2078; 0.1511]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
PbTh 0.9408
DryN 0.8917
MasTh 0.8728
Bal 0.8252
ManTh 0.7280
PbT 0.7060
AqET 0.6133
MfT 0.6115
Cry 0.5764
Plt 0.5752
WBV 0.5497
Elec 0.5463
MnT 0.5445
tDCS 0.5171
rTMS 0.4780
Acu 0.4492
MasT 0.4229
ReET 0.4168
HtT 0.4137
McT 0.3968
AeET 0.3916
MiET 0.2523
FlexEx 0.2474
CBT 0.2149
FlET 0.1766
PlaSh 0.0916
WlNi 0.0495
Q statistics to assess homogeneity / consistency
Q df p-value
Total 531.18 87 < 0.0001
Within designs 285.41 53 < 0.0001
Between designs 245.77 34 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:rTMS 71.74 5 < 0.0001
WlNi:CBT 83.37 12 < 0.0001
Acu:PlaSh 42.88 6 < 0.0001
WlNi:MiET 24.29 4 < 0.0001
MfT:PlaSh 15.09 4 0.0045
CBT:McT 8.27 2 0.0160
PlaSh:tDCS 11.61 4 0.0205
WlNi:AqET 4.87 1 0.0274
FlET:ReET 4.25 1 0.0393
MasT:PlaSh 3.43 1 0.0641
Elec:PlaSh 4.93 2 0.0851
CBT:MiET 2.28 1 0.1312
WlNi:McT 7.93 5 0.1600
AqET:FlET 0.26 1 0.6118
WlNi:Bal 0.20 1 0.6548
AeET:FlET 0.02 1 0.8964
MasT:Plt 0.00 1 0.9551
AeET:AqET 0.00 1 1.0000
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
AeET:AqET:MiET 153.82 32 < 0.0001
AeET:MiET 165.62 33 < 0.0001
WlNi:DryN 216.35 33 < 0.0001
Acu:CBT 223.60 33 < 0.0001
AeET:PlaSh 232.23 33 < 0.0001
WlNi:WBV 233.52 33 < 0.0001
Acu:PlaSh 234.22 33 < 0.0001
AqET:Elec 234.46 33 < 0.0001
DryN:MasT 234.65 33 < 0.0001
McT:PlaSh 234.80 33 < 0.0001
WlNi:McT:WBV 233.46 32 < 0.0001
McT:MiET 236.20 33 < 0.0001
AqET:FlET 237.29 33 < 0.0001
WlNi:Bal 237.95 33 < 0.0001
DryN:Elec 238.39 33 < 0.0001
WlNi:AqET 238.49 33 < 0.0001
MnT:PlaSh 240.05 33 < 0.0001
ManTh:MasTh 240.76 33 < 0.0001
WlNi:ManTh 240.76 33 < 0.0001
AeET:FlET 241.03 33 < 0.0001
WlNi:McT:MiET 238.70 32 < 0.0001
CBT:MiET 241.04 33 < 0.0001
AqET:Bal 241.49 33 < 0.0001
WlNi:CBT 242.01 33 < 0.0001
CBT:McT 242.90 33 < 0.0001
CBT:PlaSh 243.18 33 < 0.0001
WlNi:MiET 243.35 33 < 0.0001
Acu:MasT 243.53 33 < 0.0001
CBT:MnT 244.03 33 < 0.0001
McT:ReET 244.32 33 < 0.0001
AeET:ReET 244.46 33 < 0.0001
CBT:ReET 244.55 33 < 0.0001
Bal:CBT 244.55 33 < 0.0001
AeET:Plt 244.58 33 < 0.0001
WlNi:FlET:ReET 242.25 32 < 0.0001
AeET:AqET 244.64 33 < 0.0001
Elec:PlaSh 244.65 33 < 0.0001
WlNi:AeET 244.67 33 < 0.0001
MasT:PlaSh 244.90 33 < 0.0001
WlNi:AeET:ReET 242.65 32 < 0.0001
WlNi:MnT 245.04 33 < 0.0001
AqET:Plt 245.14 33 < 0.0001
MasT:Plt 245.67 33 < 0.0001
FlET:ReET 245.74 33 < 0.0001
WlNi:McT 245.77 33 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 43.86 34 0.1199 0.9850 0.9702
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:CBT 1 0.31 -0.6692 -1.6000 -0.2606 -1.3394 -1.01 0.3114
Acu:MasT 1 0.33 -0.0740 -0.2200 -0.0023 -0.2177 -0.16 0.8757
Acu:PlaSh 7 0.80 -1.1874 -0.9964 -1.9752 0.9788 0.93 0.3541
AeET:AqET 3 0.48 0.6326 0.3190 0.9212 -0.6021 -0.63 0.5279
AeET:FlET 2 0.34 -0.7048 0.3683 -1.2632 1.6315 1.34 0.1807
AeET:HtT 1 0.56 0.0205 1.0000 -1.2188 2.2188 0.93 0.3516
AeET:MiET 3 0.47 -0.3976 -0.3099 -0.4762 0.1664 0.17 0.8638
AeET:PlaSh 1 0.25 -1.0121 -2.1500 -0.6230 -1.5270 -1.12 0.2627
AeET:Plt 1 0.36 0.5625 1.2000 0.1975 1.0025 0.65 0.5128
AeET:ReET 2 0.39 0.0588 -0.7062 0.5496 -1.2558 -1.08 0.2820
AeET:WlNi 2 0.26 -1.2086 -1.4165 -1.1370 -0.2795 -0.27 0.7843
AqET:Bal 1 0.40 1.0434 0.1800 1.6214 -1.4414 -0.88 0.3782
AqET:Elec 1 0.23 -0.1655 3.2000 -1.1512 4.3512 2.37 0.0176
AqET:FlET 2 0.47 -1.3374 -2.3377 -0.4409 -1.8967 -1.62 0.1049
AqET:MiET 1 0.23 -1.0302 -2.4400 -0.6148 -1.8252 -1.41 0.1586
AqET:Plt 1 0.36 -0.0701 -0.6000 0.2323 -0.8323 -0.53 0.5934
AqET:WlNi 2 0.29 -1.8413 -0.9074 -2.2289 1.3215 1.25 0.2109
Bal:CBT 1 0.23 -2.1700 -1.1200 -2.4899 1.3699 0.74 0.4574
Bal:WlNi 2 0.48 -2.8847 -4.0137 -1.8437 -2.1700 -1.43 0.1528
CBT:McT 3 0.33 0.5021 0.3908 0.5562 -0.1654 -0.20 0.8399
CBT:MiET 2 0.19 0.0964 -0.4832 0.2327 -0.7159 -0.65 0.5155
CBT:MnT 1 0.39 0.9679 1.6700 0.5226 1.1474 0.75 0.4550
CBT:PlaSh 1 0.16 -0.5182 0.8200 -0.7792 1.5992 1.09 0.2761
CBT:ReET 1 0.22 0.5527 1.0400 0.4169 0.6231 0.45 0.6516
CBT:WlNi 13 0.69 -0.7147 -0.8331 -0.4461 -0.3870 -0.65 0.5180
DryN:Elec 1 0.47 -1.6547 -2.6800 -0.7324 -1.9476 -1.21 0.2274
DryN:MasT 1 0.46 -2.0205 -2.9300 -1.2385 -1.6915 -1.05 0.2915
DryN:WlNi 1 0.46 -3.3305 -1.5000 -4.8881 3.3881 2.18 0.0291
Elec:PlaSh 3 0.76 -1.4793 -1.2324 -2.2494 1.0170 0.75 0.4556
FlET:ReET 3 0.58 0.7635 0.7829 0.7368 0.0462 0.04 0.9699
FlET:WlNi 1 0.17 -0.5039 -1.8000 -0.2471 -1.5529 -0.96 0.3370
FlexEx:MasTh 1 0.94 2.7789 2.4500 7.5136 -5.0636 -1.15 0.2504
FlexEx:WlNi 1 0.94 -0.5589 -0.2300 -5.2936 5.0636 1.15 0.2504
HtT:MiET 1 0.87 -0.4181 0.0000 -3.1260 3.1260 0.93 0.3516
ManTh:MasTh 1 0.61 0.8074 1.8000 -0.7200 2.5200 1.15 0.2504
ManTh:WlNi 1 0.65 -2.5304 -3.4000 -0.8800 -2.5200 -1.15 0.2504
MasT:PlaSh 2 0.44 -1.1135 -1.6819 -0.6671 -1.0148 -0.83 0.4043
MasT:Plt 2 0.67 0.4611 0.4003 0.5862 -0.1858 -0.13 0.9000
MasTh:WlNi 1 0.74 -3.3378 -2.6800 -5.2000 2.5200 1.15 0.2504
McT:MiET 2 0.27 -0.4057 -1.2974 -0.0814 -1.2160 -1.15 0.2500
McT:PlaSh 1 0.18 -1.0202 -3.7000 -0.4199 -3.2801 -2.15 0.0319
McT:ReET 1 0.23 0.0507 0.5300 -0.0964 0.6264 0.45 0.6545
McT:WBV 1 0.41 0.4991 1.8100 -0.3944 2.2044 1.29 0.1972
McT:WlNi 8 0.61 -1.2167 -0.9506 -1.6265 0.6758 0.96 0.3385
MiET:WlNi 6 0.57 -0.8110 -1.2193 -0.2796 -0.9397 -1.22 0.2238
MnT:PlaSh 1 0.40 -1.4860 -0.2900 -2.2789 1.9889 1.22 0.2240
MnT:WlNi 1 0.35 -1.6825 -2.0900 -1.4586 -0.6314 -0.40 0.6870
ReET:WlNi 2 0.31 -1.2674 -1.2106 -1.2931 0.0825 0.07 0.9443
WBV:WlNi 2 0.88 -1.7159 -1.5284 -3.0817 1.5534 0.63 0.5288
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_lg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "P | Lg") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_lg,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 25
Number of pairwise comparisons: m = 29
Number of treatments: n = 15
Number of designs: d = 16
Number of networks: 3
Details on subnetworks:
subnetwork k m n
1 20 24 9
2 1 1 2
3 4 4 4
There are three sub-networks:
Subnet 1:
- 20 studies - 24 comparisons - 9 treatments
Subnet 2:
- 1 studies
- 1 comparisons
- 2 treatments
Subnet 3:
- 4 studies
- 4 comparisons
- 4 treatments
There are Three treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
the first subnet contains 20 studies, 24 comparisons and 9 treatments.
Code
Code
[1] "AeET" "AqET" "ReET" "McT" "CBT" "MiET" "WlNi" "FlET"
[9] "FlexEx"
[1] 9
Code
[1] 24
Code
Number of studies: k = 20
Number of pairwise comparisons: m = 24
Number of observations: o = 1270
Number of treatments: n = 9
Number of designs: d = 12
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -1.3607 [-2.1240; -0.5974] -3.49 0.0005
AqET -1.4645 [-2.2660; -0.6631] -3.58 0.0003
CBT -0.2492 [-1.5519; 1.0535] -0.37 0.7077
FlET -0.1807 [-2.2805; 1.9192] -0.17 0.8661
FlexEx 1.6208 [-1.1658; 4.4074] 1.14 0.2543
McT -0.4904 [-1.8095; 0.8287] -0.73 0.4662
MiET -1.1425 [-2.4020; 0.1170] -1.78 0.0754
ReET -2.4558 [-4.0166; -0.8949] -3.08 0.0020
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.6311; tau = 0.7944; I^2 = 67.2% [43.7%; 80.9%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 42.69 14 < 0.0001
Within designs 31.37 8 0.0001
Between designs 11.32 6 0.0789
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 0.5000 0.4574 0.9167 2
Andrade2019 AqET WlNi -1.0000 0.6137 1.0039 2
Assis2006 AeET AqET 0.0000 0.5601 0.9720 2
Baptista2012 AeET WlNi -2.9000 0.3860 0.8832 2
Hakkinen2001 ReET WlNi -3.9200 1.1181 1.3716 2
Kayo2012 AeET ReET 0.3700 0.7979 1.4272 3 *
Kayo2012 AeET WlNi -1.3700 0.7203 1.2892 3 *
Kayo2012 ReET WlNi -1.7400 0.7288 1.3018 3 *
Larsson2015 McT MiET 1.6100 0.4798 0.9280 2
Letieri2013 AqET WlNi -2.0800 0.3616 0.8728 2
Mannerkorpi2000 McT WlNi -0.5000 0.6372 1.0184 2
Mengshoel1992 AeET WlNi -0.6500 0.8641 1.1738 2
Munguia-Izquierdo 2007 AqET WlNi -0.9700 0.5334 0.9569 2
Rooks2007 CBT McT 1.0000 0.5752 1.2481 3 *
Rooks2007 CBT MiET 0.9000 0.5016 1.1373 3 *
Rooks2007 McT MiET -0.1000 0.4732 1.1051 3 *
Sanudo2015 MiET WlNi -0.3000 0.7371 1.0837 2
Schachter2003 AeET WlNi -0.0400 0.4272 0.9020 2
Tomas-Carus2008 AqET WlNi -1.3000 0.5888 0.9888 2
Valim2003 AeET FlET -1.1800 0.6042 0.9981 2
Valkeinen2008 MiET WlNi -1.7100 1.4134 1.6213 2
Williams2010 CBT WlNi -0.6000 0.2855 0.8442 2
Hernando-Garijo2021 AeET WlNi -1.5400 0.6724 1.0408 2
Saranya2022 CBT FlexEx -1.8700 0.9740 1.2569 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Hakkinen2001 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mengshoel1992 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2015 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Valkeinen2008 2
Williams2010 2
Hernando-Garijo2021 2
Saranya2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Acosta-Gallego2018 AeET AqET 0.1039 [-0.8083; 1.0160]
Andrade2019 AqET WlNi -1.4645 [-2.2660; -0.6631]
Assis2006 AeET AqET 0.1039 [-0.8083; 1.0160]
Baptista2012 AeET WlNi -1.3607 [-2.1240; -0.5974]
Hakkinen2001 ReET WlNi -2.4558 [-4.0166; -0.8949]
Kayo2012 AeET ReET 1.0951 [-0.5371; 2.7273]
Kayo2012 AeET WlNi -1.3607 [-2.1240; -0.5974]
Kayo2012 ReET WlNi -2.4558 [-4.0166; -0.8949]
Larsson2015 McT MiET 0.6521 [-0.5045; 1.8087]
Letieri2013 AqET WlNi -1.4645 [-2.2660; -0.6631]
Mannerkorpi2000 McT WlNi -0.4904 [-1.8095; 0.8287]
Mengshoel1992 AeET WlNi -1.3607 [-2.1240; -0.5974]
Munguia-Izquierdo 2007 AqET WlNi -1.4645 [-2.2660; -0.6631]
Rooks2007 CBT McT 0.2412 [-1.2075; 1.6899]
Rooks2007 CBT MiET 0.8933 [-0.5067; 2.2933]
Rooks2007 McT MiET 0.6521 [-0.5045; 1.8087]
Sanudo2015 MiET WlNi -1.1425 [-2.4020; 0.1170]
Schachter2003 AeET WlNi -1.3607 [-2.1240; -0.5974]
Tomas-Carus2008 AqET WlNi -1.4645 [-2.2660; -0.6631]
Valim2003 AeET FlET -1.1800 [-3.1362; 0.7762]
Valkeinen2008 MiET WlNi -1.1425 [-2.4020; 0.1170]
Williams2010 CBT WlNi -0.2492 [-1.5519; 1.0535]
Hernando-Garijo2021 AeET WlNi -1.3607 [-2.1240; -0.5974]
Saranya2022 CBT FlexEx -1.8700 [-4.3334; 0.5934]
Number of studies: k = 20
Number of pairwise comparisons: m = 24
Number of observations: o = 1270
Number of treatments: n = 9
Number of designs: d = 12
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -1.3607 [-2.1240; -0.5974] -3.49 0.0005
AqET -1.4645 [-2.2660; -0.6631] -3.58 0.0003
CBT -0.2492 [-1.5519; 1.0535] -0.37 0.7077
FlET -0.1807 [-2.2805; 1.9192] -0.17 0.8661
FlexEx 1.6208 [-1.1658; 4.4074] 1.14 0.2543
McT -0.4904 [-1.8095; 0.8287] -0.73 0.4662
MiET -1.1425 [-2.4020; 0.1170] -1.78 0.0754
ReET -2.4558 [-4.0166; -0.8949] -3.08 0.0020
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.6311; tau = 0.7944; I^2 = 67.2% [43.7%; 80.9%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 42.69 14 < 0.0001
Within designs 31.37 8 0.0001
Between designs 11.32 6 0.0789
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 0.2646 [-1.0425; 1.5718]
0.1039 [-0.8083; 1.0160] AqET
-1.1114 [-2.6213; 0.3984] -1.2153 [-2.7448; 0.3142]
-1.1800 [-3.1362; 0.7762] -1.2839 [-3.4423; 0.8745]
-2.9814 [-5.8707; -0.0922] -3.0853 [-5.9849; -0.1857]
-0.8702 [-2.3942; 0.6538] -0.9741 [-2.5176; 0.5693]
-0.2181 [-1.6909; 1.2546] -0.3220 [-1.8149; 1.1709]
1.0951 [-0.5371; 2.7273] 0.9912 [-0.7289; 2.7114]
-1.3607 [-2.1240; -0.5974] -1.4645 [-2.2660; -0.6631]
. -1.1800 [-3.1362; 0.7762]
. .
CBT .
-0.0686 [-2.5396; 2.4025] FlET
-1.8700 [-4.3334; 0.5934] -1.8014 [-5.2907; 1.6878]
0.2412 [-1.2075; 1.6899] 0.3098 [-2.1700; 2.7895]
0.8933 [-0.5067; 2.2933] 0.9619 [-1.4868; 3.4105]
2.2066 [ 0.1735; 4.2396] 2.2751 [-0.2726; 4.8228]
-0.2492 [-1.5519; 1.0535] -0.1807 [-2.2805; 1.9192]
. .
. .
-1.8700 [-4.3334; 0.5934] 1.0000 [-0.9223; 2.9223]
. .
FlexEx .
2.1112 [-0.7466; 4.9690] McT
2.7633 [-0.0702; 5.5968] 0.6521 [-0.5045; 1.8087]
4.0766 [ 0.8826; 7.2706] 1.9654 [-0.0782; 4.0089]
1.6208 [-1.1658; 4.4074] -0.4904 [-1.8095; 0.8287]
. 0.3700 [-1.8368; 2.5768]
. .
0.9000 [-0.9414; 2.7414] .
. .
. .
0.7519 [-0.5320; 2.0357] .
MiET .
1.3133 [-0.6924; 3.3189] ReET
-1.1425 [-2.4020; 0.1170] -2.4558 [-4.0166; -0.8949]
-1.3622 [-2.2362; -0.4883]
-1.3827 [-2.3150; -0.4505]
-0.6000 [-2.2546; 1.0546]
.
.
-0.5000 [-2.4960; 1.4960]
-0.7354 [-2.5013; 1.0305]
-2.5725 [-4.2338; -0.9112]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
ReET 0.9479
AqET 0.7591
AeET 0.7217
MiET 0.6619
McT 0.4152
FlET 0.3492
CBT 0.3410
WlNi 0.2415
FlexEx 0.0624
Q statistics to assess homogeneity / consistency
Q df p-value
Total 42.69 14 < 0.0001
Within designs 31.37 8 0.0001
Between designs 11.32 6 0.0789
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:AeET 25.80 3 < 0.0001
WlNi:AqET 4.31 3 0.2296
WlNi:MiET 0.78 1 0.3764
AeET:AqET 0.48 1 0.4893
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.0789)
Detached design Q df p-value
McT:MiET 4.96 5 0.4202
CBT:McT:MiET 5.18 4 0.2691
WlNi:ReET 8.61 5 0.1256
WlNi:MiET 9.85 5 0.0797
WlNi:CBT 9.92 5 0.0776
WlNi:AeET:ReET 8.60 4 0.0719
AeET:AqET 10.97 5 0.0520
WlNi:AqET 10.97 5 0.0520
WlNi:AeET 11.16 5 0.0482
WlNi:McT 11.31 5 0.0455
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 3.31 6 0.7686 0.9355 0.8752
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
AeET:AqET 2 0.49 0.1039 0.2646 -0.0487 0.3134 0.34 0.7364
AeET:CBT 0 0 -1.1114 . -1.1114 . . .
AeET:FlET 1 1.00 -1.1800 -1.1800 . . . .
AeET:FlexEx 0 0 -2.9814 . -2.9814 . . .
AeET:McT 0 0 -0.8702 . -0.8702 . . .
AeET:MiET 0 0 -0.2181 . -0.2181 . . .
AeET:ReET 1 0.55 1.0951 0.3700 1.9709 -1.6009 -0.96 0.3386
AeET:WlNi 5 0.76 -1.3607 -1.3622 -1.3555 -0.0067 -0.01 0.9942
AqET:CBT 0 0 -1.2153 . -1.2153 . . .
AqET:FlET 0 0 -1.2839 . -1.2839 . . .
AqET:FlexEx 0 0 -3.0853 . -3.0853 . . .
AqET:McT 0 0 -0.9741 . -0.9741 . . .
AqET:MiET 0 0 -0.3220 . -0.3220 . . .
AqET:ReET 0 0 0.9912 . 0.9912 . . .
AqET:WlNi 4 0.74 -1.4645 -1.3827 -1.6961 0.3134 0.34 0.7364
CBT:FlET 0 0 -0.0686 . -0.0686 . . .
CBT:FlexEx 1 1.00 -1.8700 -1.8700 . . . .
CBT:McT 1 0.57 0.2412 1.0000 -0.7563 1.7563 1.18 0.2392
CBT:MiET 1 0.58 0.8933 0.9000 0.8841 0.0159 0.01 0.9912
CBT:ReET 0 0 2.2066 . 2.2066 . . .
CBT:WlNi 1 0.62 -0.2492 -0.6000 0.3229 -0.9229 -0.67 0.5003
FlET:FlexEx 0 0 -1.8014 . -1.8014 . . .
FlET:McT 0 0 0.3098 . 0.3098 . . .
FlET:MiET 0 0 0.9619 . 0.9619 . . .
FlET:ReET 0 0 2.2751 . 2.2751 . . .
FlET:WlNi 0 0 -0.1807 . -0.1807 . . .
FlexEx:McT 0 0 2.1112 . 2.1112 . . .
FlexEx:MiET 0 0 2.7633 . 2.7633 . . .
FlexEx:ReET 0 0 4.0766 . 4.0766 . . .
FlexEx:WlNi 0 0 1.6208 . 1.6208 . . .
McT:MiET 2 0.81 0.6521 0.7519 0.2222 0.5296 0.35 0.7256
McT:ReET 0 0 1.9654 . 1.9654 . . .
McT:WlNi 1 0.44 -0.4904 -0.5000 -0.4830 -0.0170 -0.01 0.9900
MiET:ReET 0 0 1.3133 . 1.3133 . . .
MiET:WlNi 2 0.51 -1.1425 -0.7354 -1.5641 0.8287 0.64 0.5192
ReET:WlNi 2 0.88 -2.4558 -2.5725 -1.5768 -0.9957 -0.40 0.6875
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet contains 1 studies, 1 comparisons and 2 treatments. Due to its limited size, the analysis will be simplified.
Code
Code
[1] "DryN"
[1] "MasT"
Code
[1] "DryN" "MasT"
[1] 2
Code
[1] 1
[1] 1
Code
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 59
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'MD', comparison: 'DryN' vs 'MasT'):
MD 95%-CI z p-value
DryN -1.0600 [-3.2020; 1.0820] -0.97 0.3321
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Castro-Sanchez2011 DryN MasT -1.0600 1.0929
Number of treatment arms (by study):
narms
Castro-Sanchez2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Castro-Sanchez2011 DryN MasT -1.0600 [-3.2020; 1.0820]
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 59
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'MD', comparison: 'DryN' vs 'MasT'):
MD 95%-CI z p-value
DryN -1.0600 [-3.2020; 1.0820] -0.97 0.3321
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Select the procedures performed
the third subnet contains 4 studies, 4 comparisons and 4 treatments.
Code
Code
[1] "MfT" "Acu" "rTMS"
[1] "PlaSh"
Code
[1] "MfT" "Acu" "rTMS" "PlaSh"
[1] 4
Code
[1] 4
[1] 4
Code
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 235
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0800 [-1.4610; 1.3010] -0.11 0.9096
MfT -1.0662 [-2.0393; -0.0931] -2.15 0.0318
PlaSh . . . .
rTMS -1.1700 [-2.0291; -0.3109] -2.67 0.0076
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh -0.8500 0.5572
Colbert1999 MfT PlaSh -1.9000 1.0942
Harris2005 Acu PlaSh -0.0800 0.7046
Mhalla2011 PlaSh rTMS 1.1700 0.4383
Number of treatment arms (by study):
narms
Alfano2001 2
Colbert1999 2
Harris2005 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Alfano2001 MfT PlaSh -1.0662 [-2.0393; -0.0931]
Colbert1999 MfT PlaSh -1.0662 [-2.0393; -0.0931]
Harris2005 Acu PlaSh -0.0800 [-1.4610; 1.3010]
Mhalla2011 PlaSh rTMS 1.1700 [ 0.3109; 2.0291]
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 235
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0800 [-1.4610; 1.3010] -0.11 0.9096
MfT -1.0662 [-2.0393; -0.0931] -2.15 0.0318
PlaSh . . . .
rTMS -1.1700 [-2.0291; -0.3109] -2.67 0.0076
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
0.9862 [-0.7032; 2.6756] MfT
-0.0800 [-1.4610; 1.3010] -1.0662 [-2.0393; -0.0931]
1.0900 [-0.5364; 2.7164] 0.1038 [-1.1943; 1.4019]
-0.0800 [-1.4610; 1.3010] .
-1.0662 [-2.0393; -0.0931] .
PlaSh 1.1700 [ 0.3109; 2.0291]
1.1700 [ 0.3109; 2.0291] rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
rTMS 0.8213
MfT 0.7652
Acu 0.2553
PlaSh 0.1582
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:MfT 0.73 1 0.3925
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:MfT 0 0 0.9862 . 0.9862 . . .
Acu:PlaSh 1 1.00 -0.0800 -0.0800 . . . .
Acu:rTMS 0 0 1.0900 . 1.0900 . . .
MfT:PlaSh 2 1.00 -1.0662 -1.0662 . . . .
MfT:rTMS 0 0 0.1038 . 0.1038 . . .
rTMS:PlaSh 1 1.00 -1.1700 -1.1700 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qim <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Im") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2),
n = list(N1, N2),
mean = list(Mean1, Mean2),
sd = list(SD1, SD2),
studlab = StudyID,
data = data_qim
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of treatments: n = 11
Number of designs: d = 10
Number of networks: 1
There are network:
Network:
- 20 studies
- 20 comparisons
- 11 treatments
The network is fully connected.
1.0.2 Network
Select the procedures performed
The network contain 20 studies, 20 comparisons and 11 treatments.
Code
Code
[1] "MnT" "PbT" "CBT" "rTMS" "tDCS" "HtT" "Bal" "McT" "Cry"
[1] "WlNi" "PlaSh"
Code
[1] "MnT" "PbT" "CBT" "rTMS" "tDCS" "HtT" "Bal" "McT" "Cry"
[10] "WlNi" "PlaSh"
[1] 11
Code
[1] 20
Code
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of observations: o = 886
Number of treatments: n = 11
Number of designs: d = 10
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -15.0330 [-25.0820; -4.9840] -2.93 0.0034
CBT -1.1924 [-25.0968; 22.7120] -0.10 0.9221
Cry -30.1200 [-42.4084; -17.8316] -4.80 < 0.0001
HtT -24.1300 [-35.8403; -12.4197] -4.04 < 0.0001
McT -7.1969 [-15.4843; 1.0906] -1.70 0.0887
MnT 1.6600 [-13.9760; 17.2960] 0.21 0.8352
PbT -3.0576 [-23.6075; 17.4923] -0.29 0.7706
PlaSh 8.4076 [-10.1330; 26.9483] 0.89 0.3741
rTMS -0.1422 [-19.7652; 19.4808] -0.01 0.9887
tDCS -5.7600 [-21.9299; 10.4099] -0.70 0.4851
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 30.3434; tau = 5.5085; I^2 = 63% [29.0%; 80.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 27 10 0.0026
Within designs 27 10 0.0026
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Albers2018 MnT WlNi 1.6600 5.7706
Armagam2006 PbT PlaSh -5.1300 3.5183
Babu2007 CBT PlaSh -9.6000 5.3779
Boyer2014 PlaSh rTMS 1.0000 4.7100
Curatolo2017 PlaSh tDCS 28.2800 8.5783
Fagerlund2015 tDCS WlNi -5.7600 6.1417
Fioravanti2009 HtT WlNi -24.1300 2.3140
Fioravanti2007 Bal WlNi -21.3500 4.2760
Gur2002a PbT PlaSh -17.2800 2.9780
Hamnes2012 McT WlNi -2.7600 2.4785
Lee2012 PlaSh rTMS 1.4000 16.3233
Mhalla2011 PlaSh rTMS 9.3000 3.8196
Ozkurt2011 Bal WlNi -7.6000 5.1841
Passard2007 PlaSh rTMS 10.4000 2.7307
Salaffi2015 McT WlNi -11.4600 2.1713
Short2011 PlaSh rTMS 11.7600 9.8838
Valle2009 PlaSh tDCS 15.3100 11.9744
Yagci2014 PlaSh rTMS 14.0300 6.3821
Loreti2023 PlaSh tDCS 9.6200 1.2652
Kiyak2022 Cry WlNi -30.1200 2.9943
Number of treatment arms (by study):
narms
Albers2018 2
Armagam2006 2
Babu2007 2
Boyer2014 2
Curatolo2017 2
Fagerlund2015 2
Fioravanti2009 2
Fioravanti2007 2
Gur2002a 2
Hamnes2012 2
Lee2012 2
Mhalla2011 2
Ozkurt2011 2
Passard2007 2
Salaffi2015 2
Short2011 2
Valle2009 2
Yagci2014 2
Loreti2023 2
Kiyak2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 MnT WlNi 1.6600 [-13.9760; 17.2960]
Armagam2006 PbT PlaSh -11.4652 [-20.3277; -2.6028]
Babu2007 CBT PlaSh -9.6000 [-24.6886; 5.4886]
Boyer2014 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Curatolo2017 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Fagerlund2015 tDCS WlNi -5.7600 [-21.9299; 10.4099]
Fioravanti2009 HtT WlNi -24.1300 [-35.8403; -12.4197]
Fioravanti2007 Bal WlNi -15.0330 [-25.0820; -4.9840]
Gur2002a PbT PlaSh -11.4652 [-20.3277; -2.6028]
Hamnes2012 McT WlNi -7.1969 [-15.4843; 1.0906]
Lee2012 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Mhalla2011 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Ozkurt2011 Bal WlNi -15.0330 [-25.0820; -4.9840]
Passard2007 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Salaffi2015 McT WlNi -7.1969 [-15.4843; 1.0906]
Short2011 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Valle2009 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Yagci2014 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Loreti2023 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Kiyak2022 Cry WlNi -30.1200 [-42.4084; -17.8316]
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of observations: o = 886
Number of treatments: n = 11
Number of designs: d = 10
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -15.0330 [-25.0820; -4.9840] -2.93 0.0034
CBT -1.1924 [-25.0968; 22.7120] -0.10 0.9221
Cry -30.1200 [-42.4084; -17.8316] -4.80 < 0.0001
HtT -24.1300 [-35.8403; -12.4197] -4.04 < 0.0001
McT -7.1969 [-15.4843; 1.0906] -1.70 0.0887
MnT 1.6600 [-13.9760; 17.2960] 0.21 0.8352
PbT -3.0576 [-23.6075; 17.4923] -0.29 0.7706
PlaSh 8.4076 [-10.1330; 26.9483] 0.89 0.3741
rTMS -0.1422 [-19.7652; 19.4808] -0.01 0.9887
tDCS -5.7600 [-21.9299; 10.4099] -0.70 0.4851
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 30.3434; tau = 5.5085; I^2 = 63% [29.0%; 80.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 27 10 0.0026
Within designs 27 10 0.0026
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Bal .
-13.8406 [-39.7713; 12.0901] CBT
15.0870 [ -0.7871; 30.9611] 28.9276 [ 2.0496; 55.8056]
9.0970 [ -6.3339; 24.5279] 22.9376 [ -3.6810; 49.5563]
-7.8361 [-20.8616; 5.1894] 6.0045 [-19.2957; 31.3047]
-16.6930 [-35.2797; 1.8937] -2.8524 [-31.4164; 25.7117]
-11.9754 [-34.8507; 10.8999] 1.8652 [-15.6335; 19.3640]
-23.4406 [-44.5294; -2.3518] -9.6000 [-24.6886; 5.4886]
-14.8908 [-36.9372; 7.1556] -1.0502 [-17.4506; 15.3502]
-9.2730 [-28.3111; 9.7651] 4.5676 [-13.0379; 22.1731]
-15.0330 [-25.0820; -4.9840] -1.1924 [-25.0968; 22.7120]
. .
. .
Cry .
-5.9900 [-22.9646; 10.9846] HtT
-22.9231 [-37.7450; -8.1013] -16.9331 [-31.2793; -2.5869]
-31.7800 [-51.6669; -11.8931] -25.7900 [-45.3250; -6.2550]
-27.0624 [-51.0061; -3.1186] -21.0724 [-44.7247; 2.5799]
-38.5276 [-60.7709; -16.2844] -32.5376 [-54.4668; -10.6085]
-29.9778 [-53.1310; -6.8247] -23.9878 [-46.8394; -1.1363]
-24.3600 [-44.6694; -4.0506] -18.3700 [-38.3349; 1.5949]
-30.1200 [-42.4084; -17.8316] -24.1300 [-35.8403; -12.4197]
. .
. .
. .
. .
McT .
-8.8569 [-26.5534; 8.8396] MnT
-4.1393 [-26.2973; 18.0188] 4.7176 [-21.1045; 30.5397]
-15.6045 [-35.9130; 4.7041] -6.7476 [-31.0013; 17.5060]
-7.0547 [-28.3560; 14.2466] 1.8022 [-23.2886; 26.8929]
-1.4369 [-19.6069; 16.7331] 7.4200 [-15.0734; 29.9134]
-7.1969 [-15.4843; 1.0906] 1.6600 [-13.9760; 17.2960]
. .
. -9.6000 [-24.6886; 5.4886]
. .
. .
. .
. .
PbT -11.4652 [-20.3277; -2.6028]
-11.4652 [-20.3277; -2.6028] PlaSh
-2.9154 [-13.8630; 8.0321] 8.5498 [ 2.1228; 14.9768]
2.7024 [ -9.9795; 15.3843] 14.1676 [ 5.0963; 23.2389]
-3.0576 [-23.6075; 17.4923] 8.4076 [-10.1330; 26.9483]
. .
. .
. .
. .
. .
. .
. .
8.5498 [ 2.1228; 14.9768] 14.1676 [ 5.0963; 23.2389]
rTMS .
5.6178 [ -5.4995; 16.7352] tDCS
-0.1422 [-19.7652; 19.4808] -5.7600 [-21.9299; 10.4099]
-15.0330 [-25.0820; -4.9840]
.
-30.1200 [-42.4084; -17.8316]
-24.1300 [-35.8403; -12.4197]
-7.1969 [-15.4843; 1.0906]
1.6600 [-13.9760; 17.2960]
.
.
.
-5.7600 [-21.9299; 10.4099]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Cry 0.9676
HtT 0.8962
Bal 0.7418
McT 0.5482
tDCS 0.5346
PbT 0.4432
CBT 0.3815
rTMS 0.3345
WlNi 0.3025
MnT 0.2819
PlaSh 0.0680
Q statistics to assess homogeneity / consistency
Q df p-value
Total 27.00 10 0.0026
Within designs 27.00 10 0.0026
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:McT 6.97 1 0.0083
PbT:PlaSh 6.95 1 0.0084
WlNi:Bal 4.19 1 0.0407
PlaSh:tDCS 4.82 2 0.0896
PlaSh:rTMS 4.07 5 0.5398
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 5.5085 30.3434
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Bal:CBT 0 0 -13.8406 . -13.8406 . . .
Bal:Cry 0 0 15.0870 . 15.0870 . . .
Bal:HtT 0 0 9.0970 . 9.0970 . . .
Bal:McT 0 0 -7.8361 . -7.8361 . . .
Bal:MnT 0 0 -16.6930 . -16.6930 . . .
Bal:PbT 0 0 -11.9754 . -11.9754 . . .
Bal:PlaSh 0 0 -23.4406 . -23.4406 . . .
Bal:rTMS 0 0 -14.8908 . -14.8908 . . .
Bal:tDCS 0 0 -9.2730 . -9.2730 . . .
Bal:WlNi 2 1.00 -15.0330 -15.0330 . . . .
CBT:Cry 0 0 28.9276 . 28.9276 . . .
CBT:HtT 0 0 22.9376 . 22.9376 . . .
CBT:McT 0 0 6.0045 . 6.0045 . . .
CBT:MnT 0 0 -2.8524 . -2.8524 . . .
CBT:PbT 0 0 1.8652 . 1.8652 . . .
CBT:PlaSh 1 1.00 -9.6000 -9.6000 . . . .
CBT:rTMS 0 0 -1.0502 . -1.0502 . . .
CBT:tDCS 0 0 4.5676 . 4.5676 . . .
CBT:WlNi 0 0 -1.1924 . -1.1924 . . .
Cry:HtT 0 0 -5.9900 . -5.9900 . . .
Cry:McT 0 0 -22.9231 . -22.9231 . . .
Cry:MnT 0 0 -31.7800 . -31.7800 . . .
Cry:PbT 0 0 -27.0624 . -27.0624 . . .
Cry:PlaSh 0 0 -38.5276 . -38.5276 . . .
Cry:rTMS 0 0 -29.9778 . -29.9778 . . .
Cry:tDCS 0 0 -24.3600 . -24.3600 . . .
Cry:WlNi 1 1.00 -30.1200 -30.1200 . . . .
HtT:McT 0 0 -16.9331 . -16.9331 . . .
HtT:MnT 0 0 -25.7900 . -25.7900 . . .
HtT:PbT 0 0 -21.0724 . -21.0724 . . .
HtT:PlaSh 0 0 -32.5376 . -32.5376 . . .
HtT:rTMS 0 0 -23.9878 . -23.9878 . . .
HtT:tDCS 0 0 -18.3700 . -18.3700 . . .
HtT:WlNi 1 1.00 -24.1300 -24.1300 . . . .
McT:MnT 0 0 -8.8569 . -8.8569 . . .
McT:PbT 0 0 -4.1393 . -4.1393 . . .
McT:PlaSh 0 0 -15.6045 . -15.6045 . . .
McT:rTMS 0 0 -7.0547 . -7.0547 . . .
McT:tDCS 0 0 -1.4369 . -1.4369 . . .
McT:WlNi 2 1.00 -7.1969 -7.1969 . . . .
MnT:PbT 0 0 4.7176 . 4.7176 . . .
MnT:PlaSh 0 0 -6.7476 . -6.7476 . . .
MnT:rTMS 0 0 1.8022 . 1.8022 . . .
MnT:tDCS 0 0 7.4200 . 7.4200 . . .
MnT:WlNi 1 1.00 1.6600 1.6600 . . . .
PbT:PlaSh 2 1.00 -11.4652 -11.4652 . . . .
PbT:rTMS 0 0 -2.9154 . -2.9154 . . .
PbT:tDCS 0 0 2.7024 . 2.7024 . . .
PbT:WlNi 0 0 -3.0576 . -3.0576 . . .
PlaSh:rTMS 6 1.00 8.5498 8.5498 . . . .
PlaSh:tDCS 3 1.00 14.1676 14.1676 . . . .
PlaSh:WlNi 0 0 8.4076 . 8.4076 . . .
rTMS:tDCS 0 0 5.6178 . 5.6178 . . .
rTMS:WlNi 0 0 -0.1422 . -0.1422 . . .
tDCS:WlNi 1 1.00 -5.7600 -5.7600 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qsh <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Sh") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_qsh,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of treatments: n = 25
Number of designs: d = 49
Number of networks: 1
There are network:
Network:
- 99 studies
- 115 comparisons
- 25 treatments
The network is fully connected.
1.0.3 Network
Select the procedures performed
The network contain 99 studies, 115 comparisons and 26 treatments.
Code
Code
[1] "MnT" "McT" "WBV" "MfT" "AqET" "Bal" "AeET" "FlET"
[9] "ReET" "CBT" "rTMS" "DryN" "MiET" "Elec" "MasT" "tDCS"
[17] "Acu" "PbT" "ManTh" "MasTh" "MiEx" "FlexEx"
[1] "WlNi" "WBV" "PlaSh" "Bal" "AqET" "ReET" "McT" "FlET"
[9] "MasT" "Plt" "CBT" "MiET" "ManTh" "MiEx" "FlexEx"
Code
[1] "MnT" "McT" "WBV" "MfT" "AqET" "Bal" "AeET" "FlET"
[9] "ReET" "CBT" "rTMS" "DryN" "MiET" "Elec" "MasT" "tDCS"
[17] "Acu" "PbT" "ManTh" "MasTh" "MiEx" "FlexEx" "WlNi" "PlaSh"
[25] "Plt"
[1] 25
Code
[1] 115
Code
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of observations: o = 6658
Number of treatments: n = 25
Number of designs: d = 49
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -19.8814 [-31.8617; -7.9011] -3.25 0.0011
AeET -12.1494 [-18.5910; -5.7077] -3.70 0.0002
AqET -13.4467 [-20.4760; -6.4175] -3.75 0.0002
Bal -15.1868 [-25.4178; -4.9557] -2.91 0.0036
CBT -7.3401 [-11.3520; -3.3282] -3.59 0.0003
DryN -18.9003 [-33.3019; -4.4986] -2.57 0.0101
Elec -14.5898 [-30.6576; 1.4781] -1.78 0.0751
FlET -5.1373 [-14.0671; 3.7926] -1.13 0.2595
FlexEx -16.2765 [-32.8737; 0.3206] -1.92 0.0546
ManTh -23.8265 [-40.2174; -7.4355] -2.85 0.0044
MasT -5.1238 [-18.4460; 8.1983] -0.75 0.4510
MasTh -33.8132 [-48.6401; -18.9863] -4.47 < 0.0001
McT -12.7318 [-17.2173; -8.2463] -5.56 < 0.0001
MfT -19.1477 [-33.8644; -4.4310] -2.55 0.0108
MiET -9.0967 [-14.3450; -3.8485] -3.40 0.0007
MiEx -22.0943 [-38.3981; -5.7906] -2.66 0.0079
MnT -6.0107 [-20.6275; 8.6062] -0.81 0.4203
PbT -15.7777 [-36.7570; 5.2016] -1.47 0.1405
PlaSh -3.1777 [-13.4826; 7.1271] -0.60 0.5456
Plt -16.0174 [-28.5529; -3.4819] -2.50 0.0123
ReET -19.7226 [-27.8471; -11.5980] -4.76 < 0.0001
rTMS -11.1423 [-25.2615; 2.9769] -1.55 0.1219
tDCS -7.5281 [-22.4400; 7.3838] -0.99 0.3224
WBV -12.4979 [-21.6558; -3.3401] -2.67 0.0075
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 71.7470; tau = 8.4704; I^2 = 82.7% [79.0%; 85.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 478.62 83 < 0.0001
Within designs 290.45 50 < 0.0001
Between designs 188.18 33 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 MnT WlNi -8.3900 5.6141 10.1619 2
Alentorn-Geli2008 McT WBV 6.4100 6.4532 12.5201 3 *
Alentorn-Geli2008 McT WlNi -9.4400 7.3279 13.6918 3 *
Alentorn-Geli2008 WBV WlNi -15.8500 7.9606 14.9142 3 *
Alfano2001 MfT PlaSh -4.6400 3.5345 9.1782 2
Altan2004 AqET Bal -1.8800 4.7088 9.6912 2
Ardic2007 Bal WlNi -8.6800 4.3832 9.5372 2
Assis2006 AeET AqET 3.0000 5.0248 9.8486 2
Assumpçao2018 FlET ReET 9.1000 9.5318 16.6511 3 *
Assumpçao2018 FlET WlNi -14.8000 8.1936 14.0155 3 *
Assumpçao2018 ReET WlNi -23.9000 8.2018 14.0272 3 *
Astin2003 CBT McT 1.3000 4.1904 9.4502 2
Baumueller2017 CBT WlNi 2.3700 6.6855 10.7909 2
Bongi2012 CBT McT 10.0900 6.8643 10.9025 2
Bongi2010 CBT WlNi -13.9000 5.6413 10.1770 2
Bourgault2015 McT WlNi -1.5700 4.9106 9.7909 2
Boyer2014 PlaSh rTMS 11.6000 4.3853 9.5382 2
Calandre2009 AqET FlET -4.7200 4.2444 9.4743 2
Carson2010 McT WlNi -13.2000 5.0135 9.8429 2
Casanueva2014 DryN WlNi -9.7000 3.3866 9.1223 2
Castro-Sanchez2019 DryN MasT -23.8200 4.3700 9.5312 2
Collado-Mateo2017 MiET PlaSh -6.9300 3.3233 9.0990 2
daCosta2005 MiET WlNi -7.3000 4.2695 9.4856 2
Dailey2019 Elec PlaSh -56.0600 23.1621 24.6623 2
deMedeiros2020 AqET Plt 7.0000 5.0943 9.8843 2
Ekici2017 MasT Plt 6.5600 3.3208 9.0980 2
Espi-Lopes2016 MiET WlNi 1.7600 7.0148 10.9979 2
Evcik2002 Bal WlNi -33.8000 10.9424 13.8378 2
Fernandes2016 AeET AqET 3.4800 4.1605 9.4370 2
Fitzgibbon2018 PlaSh rTMS 3.0700 7.9323 11.6047 2
Fonseca2019 AqET CBT 13.6000 4.3355 9.5154 2
Garcia2006 CBT WlNi -13.8800 9.9308 13.0525 2
Garcia-Martinez2012 MiET WlNi -18.2100 7.4089 11.2534 2
Giannotti2014 McT WlNi 4.5300 5.6870 10.2024 2
Glasgow2017 ReET WlNi -30.0000 7.0456 11.0176 2
Gomez-Hernandez2019 AeET MiET 10.6200 0.8775 8.5157 2
Gowans2001 AqET WlNi -6.7300 5.8527 10.2957 2
Hargrove2012 PlaSh tDCS 9.9000 4.5112 9.5967 2
Jones2002 McT ReET 5.5500 4.8917 9.7814 2
Jones2012 CBT McT 13.4000 6.5801 10.7259 2
Karatay2018 Acu PlaSh -17.1100 4.8992 9.7852 2
Kayo2012 AeET ReET -9.7400 5.4131 12.3649 3 *
Kayo2012 AeET WlNi -16.1300 5.3516 12.2826 3 *
Kayo2012 ReET WlNi -6.3900 5.2328 12.1306 3 *
King2002 CBT McT 11.6000 4.8603 9.7657 2
Kurt2016 Bal MiET -7.1000 2.5883 8.8570 2
Lami2018 CBT WlNi 1.4400 3.3937 9.1249 2
Lauche2016 MasT PlaSh -6.6000 2.8655 8.9419 2
Lopes-Rodrigues2012 AqET FlET -17.0700 4.6996 9.6868 2
Lopes-Rodrigues2013 AqET FlET -14.7900 4.2189 9.4629 2
Luciano2014 CBT WlNi -18.9800 1.5949 8.6192 2
Lynch2012 McT WlNi -17.5200 3.2954 9.0888 2
Mhalla2011 PlaSh rTMS 10.7000 4.4529 9.5695 2
Mist2018 Acu CBT -22.4000 5.0071 9.8396 2
Olivares2011 WBV WlNi -3.7300 3.6133 9.2088 2
Paolucci2016 MfT PlaSh -22.3000 4.2735 9.4874 2
Paolucci2015 MiET WlNi -9.7000 3.6907 9.2395 2
Parra-Delgado2013 CBT WlNi -4.4300 5.5637 10.1342 2
Pereira-Pernambuco2018 McT WlNi -37.5900 3.2725 9.0805 2
Perez-Aranda2019 CBT WlNi -6.8600 2.9360 8.9648 2
Picard2013 CBT WlNi -1.3500 4.6479 9.6618 2
Redondo2004 CBT MiET 4.3600 5.5606 10.1325 2
Richards2002 AeET McT 0.3000 2.6343 8.8705 2
Rivera2018 WBV WlNi -22.0000 4.7523 9.7124 2
Ruaro2014 PbT PlaSh -12.6000 3.8967 9.3237 2
Salaffi2015 McT WlNi -8.2400 2.1713 8.7442 2
Schachter2003 AeET WlNi -10.1900 3.3527 9.1098 2
Schmidt2011 CBT WlNi -3.0300 2.4137 8.8075 2
Sevimli2015 AeET AqET 1.7000 4.6428 11.8469 3 *
Sevimli2015 AeET MiET -26.3000 4.4976 11.6804 3 *
Sevimli2015 AqET MiET -28.0000 4.6973 11.9126 3 *
Silva2019 CBT ReET 25.7400 4.1233 9.4207 2
Simister2018 CBT WlNi -16.2300 3.2949 9.0886 2
Soares2002 CBT WlNi -1.8400 1.6938 8.6381 2
Sutbeyaz2009 MfT PlaSh -21.4000 3.5877 9.1988 2
Tomas-Carus2007b&c AqET WlNi -8.0000 6.1835 10.4872 2
Ugurlu2017 Acu PlaSh -26.0300 3.5736 9.1933 2
Valim2003 AeET FlET -3.3100 4.8020 9.7369 2
Vallejo2015 CBT WlNi -2.7600 4.8915 9.7813 2
Vas2016 Acu PlaSh -8.5000 2.5814 8.8550 2
Verkaik2013 CBT WlNi -3.8000 3.3368 9.1039 2
Wang2018 McT MiET -6.8800 2.9934 8.9837 2
Wicksell2013 CBT WlNi -4.8000 3.6440 9.2209 2
Arakaki2021 FlET ReET 15.7100 5.6273 10.1693 2
Atan2020 MiET WlNi -31.0800 4.3638 9.5284 2
Barranengoa-Cuadra2021 CBT WlNi -24.1000 3.0388 8.9990 2
Ceballos-Laita2020 McT MiET -0.3500 7.7076 11.4522 2
Coste2021 MnT PlaSh -0.8000 4.0600 9.3931 2
Izquierdo-Alventosa2020 MiET WlNi -5.5800 5.9339 10.3421 2
Jamison2021 Elec PlaSh -7.4700 2.4770 8.8251 2
Mingorance2021.2 WBV WlNi -8.2000 2.5870 8.8566 2
Rodriguez-Mansilla2021 McT MiET -0.0800 4.2198 12.0236 3 *
Rodriguez-Mansilla2021 MiET WlNi -11.6600 3.2126 10.9511 3 *
Rodriguez-Mansilla2021 McT WlNi -11.7400 2.9326 10.7426 3 *
Sarmento2020 McT PlaSh -18.0000 9.1302 12.4542 2
Udina-Cortés2020 Elec PlaSh -9.3000 4.5740 9.6264 2
Lacroix2022 PlaSh rTMS 5.1500 3.5083 9.1682 2
Paolucci2022 CBT MiET -8.5000 6.9387 10.9496 2
Park2021 FlET ReET 11.3000 6.5679 10.7184 2
Samartin-Veiga2022 PlaSh tDCS 1.3400 5.3236 10.0044 2
Alptug2023 ManTh WlNi -24.1000 5.9968 10.3783 2
Audoux2023 ManTh MasTh 10.3000 7.1849 11.1072 2
Baelz2022 Acu PlaSh -2.6000 7.3763 11.2320 2
Caumo2023 PlaSh tDCS 1.8800 3.1792 9.0473 2
Franco2023 AeET Plt 4.5000 4.2791 9.4899 2
Rodríguez-Mansilla2023 AeET McT 0.0900 3.2027 11.2562 3 *
Rodríguez-Mansilla2023 AeET WlNi -10.4800 2.6296 10.7871 3 *
Rodríguez-Mansilla2023 McT WlNi -10.5700 2.6113 10.7745 3 *
Patru2021 McT MiEx 11.8000 4.6757 11.9824 3 *
Patru2021 McT WlNi -8.1000 4.5444 11.8201 3 *
Patru2021 MiEx WlNi -19.9000 4.1244 11.3690 3 *
Lee2024 CBT McT 0.1000 2.6946 8.8886 2
Schulze2023 FlexEx MasTh 17.4400 2.1681 10.7182 3 *
Schulze2023 MasTh WlNi -33.6200 2.0780 10.6647 3 *
Schulze2023 FlexEx WlNi -16.1800 2.1603 10.7134 3 *
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Altan2004 2
Ardic2007 2
Assis2006 2
Assumpçao2018 3
Astin2003 2
Baumueller2017 2
Bongi2012 2
Bongi2010 2
Bourgault2015 2
Boyer2014 2
Calandre2009 2
Carson2010 2
Casanueva2014 2
Castro-Sanchez2019 2
Collado-Mateo2017 2
daCosta2005 2
Dailey2019 2
deMedeiros2020 2
Ekici2017 2
Espi-Lopes2016 2
Evcik2002 2
Fernandes2016 2
Fitzgibbon2018 2
Fonseca2019 2
Garcia2006 2
Garcia-Martinez2012 2
Giannotti2014 2
Glasgow2017 2
Gomez-Hernandez2019 2
Gowans2001 2
Hargrove2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kayo2012 3
King2002 2
Kurt2016 2
Lami2018 2
Lauche2016 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Mhalla2011 2
Mist2018 2
Olivares2011 2
Paolucci2016 2
Paolucci2015 2
Parra-Delgado2013 2
Pereira-Pernambuco2018 2
Perez-Aranda2019 2
Picard2013 2
Redondo2004 2
Richards2002 2
Rivera2018 2
Ruaro2014 2
Salaffi2015 2
Schachter2003 2
Schmidt2011 2
Sevimli2015 3
Silva2019 2
Simister2018 2
Soares2002 2
Sutbeyaz2009 2
Tomas-Carus2007b&c 2
Ugurlu2017 2
Valim2003 2
Vallejo2015 2
Vas2016 2
Verkaik2013 2
Wang2018 2
Wicksell2013 2
Arakaki2021 2
Atan2020 2
Barranengoa-Cuadra2021 2
Ceballos-Laita2020 2
Coste2021 2
Izquierdo-Alventosa2020 2
Jamison2021 2
Mingorance2021.2 2
Rodriguez-Mansilla2021 3
Sarmento2020 2
Udina-Cortés2020 2
Lacroix2022 2
Paolucci2022 2
Park2021 2
Samartin-Veiga2022 2
Alptug2023 2
Audoux2023 2
Baelz2022 2
Caumo2023 2
Franco2023 2
Rodríguez-Mansilla2023 3
Patru2021 3
Lee2024 2
Schulze2023 3
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 MnT WlNi -6.0107 [-20.6275; 8.6062]
Alentorn-Geli2008 McT WBV -0.2339 [-10.1539; 9.6861]
Alentorn-Geli2008 McT WlNi -12.7318 [-17.2173; -8.2463]
Alentorn-Geli2008 WBV WlNi -12.4979 [-21.6558; -3.3401]
Alfano2001 MfT PlaSh -15.9700 [-26.4767; -5.4632]
Altan2004 AqET Bal 1.7401 [ -9.3409; 12.8210]
Ardic2007 Bal WlNi -15.1868 [-25.4178; -4.9557]
Assis2006 AeET AqET 1.2974 [ -6.0259; 8.6206]
Assumpçao2018 FlET ReET 14.5853 [ 5.1075; 24.0631]
Assumpçao2018 FlET WlNi -5.1373 [-14.0671; 3.7926]
Assumpçao2018 ReET WlNi -19.7226 [-27.8471; -11.5980]
Astin2003 CBT McT 5.3917 [ 0.2470; 10.5365]
Baumueller2017 CBT WlNi -7.3401 [-11.3520; -3.3282]
Bongi2012 CBT McT 5.3917 [ 0.2470; 10.5365]
Bongi2010 CBT WlNi -7.3401 [-11.3520; -3.3282]
Bourgault2015 McT WlNi -12.7318 [-17.2173; -8.2463]
Boyer2014 PlaSh rTMS 7.9646 [ -1.6874; 17.6166]
Calandre2009 AqET FlET -8.3095 [-16.6617; 0.0427]
Carson2010 McT WlNi -12.7318 [-17.2173; -8.2463]
Casanueva2014 DryN WlNi -18.9003 [-33.3019; -4.4986]
Castro-Sanchez2019 DryN MasT -13.7764 [-28.4456; 0.8927]
Collado-Mateo2017 MiET PlaSh -5.9190 [-16.4771; 4.6391]
daCosta2005 MiET WlNi -9.0967 [-14.3450; -3.8485]
Dailey2019 Elec PlaSh -11.4120 [-23.7403; 0.9162]
deMedeiros2020 AqET Plt 2.5707 [ -9.8486; 14.9900]
Ekici2017 MasT Plt 10.8936 [ -2.8804; 24.6675]
Espi-Lopes2016 MiET WlNi -9.0967 [-14.3450; -3.8485]
Evcik2002 Bal WlNi -15.1868 [-25.4178; -4.9557]
Fernandes2016 AeET AqET 1.2974 [ -6.0259; 8.6206]
Fitzgibbon2018 PlaSh rTMS 7.9646 [ -1.6874; 17.6166]
Fonseca2019 AqET CBT -6.1066 [-13.6750; 1.4617]
Garcia2006 CBT WlNi -7.3401 [-11.3520; -3.3282]
Garcia-Martinez2012 MiET WlNi -9.0967 [-14.3450; -3.8485]
Giannotti2014 McT WlNi -12.7318 [-17.2173; -8.2463]
Glasgow2017 ReET WlNi -19.7226 [-27.8471; -11.5980]
Gomez-Hernandez2019 AeET MiET -3.0526 [-10.2506; 4.1453]
Gowans2001 AqET WlNi -13.4467 [-20.4760; -6.4175]
Hargrove2012 PlaSh tDCS 4.3504 [ -6.4281; 15.1289]
Jones2002 McT ReET 6.9907 [ -1.6346; 15.6160]
Jones2012 CBT McT 5.3917 [ 0.2470; 10.5365]
Karatay2018 Acu PlaSh -16.7037 [-25.4358; -7.9715]
Kayo2012 AeET ReET 7.5732 [ -1.6669; 16.8132]
Kayo2012 AeET WlNi -12.1494 [-18.5910; -5.7077]
Kayo2012 ReET WlNi -19.7226 [-27.8471; -11.5980]
King2002 CBT McT 5.3917 [ 0.2470; 10.5365]
Kurt2016 Bal MiET -6.0900 [-16.6036; 4.4235]
Lami2018 CBT WlNi -7.3401 [-11.3520; -3.3282]
Lauche2016 MasT PlaSh -1.9461 [-15.2520; 11.3599]
Lopes-Rodrigues2012 AqET FlET -8.3095 [-16.6617; 0.0427]
Lopes-Rodrigues2013 AqET FlET -8.3095 [-16.6617; 0.0427]
Luciano2014 CBT WlNi -7.3401 [-11.3520; -3.3282]
Lynch2012 McT WlNi -12.7318 [-17.2173; -8.2463]
Mhalla2011 PlaSh rTMS 7.9646 [ -1.6874; 17.6166]
Mist2018 Acu CBT -12.5413 [-24.5415; -0.5411]
Olivares2011 WBV WlNi -12.4979 [-21.6558; -3.3401]
Paolucci2016 MfT PlaSh -15.9700 [-26.4767; -5.4632]
Paolucci2015 MiET WlNi -9.0967 [-14.3450; -3.8485]
Parra-Delgado2013 CBT WlNi -7.3401 [-11.3520; -3.3282]
Pereira-Pernambuco2018 McT WlNi -12.7318 [-17.2173; -8.2463]
Perez-Aranda2019 CBT WlNi -7.3401 [-11.3520; -3.3282]
Picard2013 CBT WlNi -7.3401 [-11.3520; -3.3282]
Redondo2004 CBT MiET 1.7566 [ -4.2562; 7.7695]
Richards2002 AeET McT 0.5824 [ -6.4077; 7.5726]
Rivera2018 WBV WlNi -12.4979 [-21.6558; -3.3401]
Ruaro2014 PbT PlaSh -12.6000 [-30.8741; 5.6741]
Salaffi2015 McT WlNi -12.7318 [-17.2173; -8.2463]
Schachter2003 AeET WlNi -12.1494 [-18.5910; -5.7077]
Schmidt2011 CBT WlNi -7.3401 [-11.3520; -3.3282]
Sevimli2015 AeET AqET 1.2974 [ -6.0259; 8.6206]
Sevimli2015 AeET MiET -3.0526 [-10.2506; 4.1453]
Sevimli2015 AqET MiET -4.3500 [-12.2392; 3.5392]
Silva2019 CBT ReET 12.3825 [ 3.8710; 20.8939]
Simister2018 CBT WlNi -7.3401 [-11.3520; -3.3282]
Soares2002 CBT WlNi -7.3401 [-11.3520; -3.3282]
Sutbeyaz2009 MfT PlaSh -15.9700 [-26.4767; -5.4632]
Tomas-Carus2007b&c AqET WlNi -13.4467 [-20.4760; -6.4175]
Ugurlu2017 Acu PlaSh -16.7037 [-25.4358; -7.9715]
Valim2003 AeET FlET -7.0121 [-16.2065; 2.1823]
Vallejo2015 CBT WlNi -7.3401 [-11.3520; -3.3282]
Vas2016 Acu PlaSh -16.7037 [-25.4358; -7.9715]
Verkaik2013 CBT WlNi -7.3401 [-11.3520; -3.3282]
Wang2018 McT MiET -3.6351 [ -9.6881; 2.4180]
Wicksell2013 CBT WlNi -7.3401 [-11.3520; -3.3282]
Arakaki2021 FlET ReET 14.5853 [ 5.1075; 24.0631]
Atan2020 MiET WlNi -9.0967 [-14.3450; -3.8485]
Barranengoa-Cuadra2021 CBT WlNi -7.3401 [-11.3520; -3.3282]
Ceballos-Laita2020 McT MiET -3.6351 [ -9.6881; 2.4180]
Coste2021 MnT PlaSh -2.8329 [-17.1617; 11.4959]
Izquierdo-Alventosa2020 MiET WlNi -9.0967 [-14.3450; -3.8485]
Jamison2021 Elec PlaSh -11.4120 [-23.7403; 0.9162]
Mingorance2021.2 WBV WlNi -12.4979 [-21.6558; -3.3401]
Rodriguez-Mansilla2021 McT MiET -3.6351 [ -9.6881; 2.4180]
Rodriguez-Mansilla2021 MiET WlNi -9.0967 [-14.3450; -3.8485]
Rodriguez-Mansilla2021 McT WlNi -12.7318 [-17.2173; -8.2463]
Sarmento2020 McT PlaSh -9.5541 [-20.1833; 1.0752]
Udina-Cortés2020 Elec PlaSh -11.4120 [-23.7403; 0.9162]
Lacroix2022 PlaSh rTMS 7.9646 [ -1.6874; 17.6166]
Paolucci2022 CBT MiET 1.7566 [ -4.2562; 7.7695]
Park2021 FlET ReET 14.5853 [ 5.1075; 24.0631]
Samartin-Veiga2022 PlaSh tDCS 4.3504 [ -6.4281; 15.1289]
Alptug2023 ManTh WlNi -23.8265 [-40.2174; -7.4355]
Audoux2023 ManTh MasTh 9.9867 [ -6.8526; 26.8260]
Baelz2022 Acu PlaSh -16.7037 [-25.4358; -7.9715]
Caumo2023 PlaSh tDCS 4.3504 [ -6.4281; 15.1289]
Franco2023 AeET Plt 3.8680 [ -8.4000; 16.1360]
Rodríguez-Mansilla2023 AeET McT 0.5824 [ -6.4077; 7.5726]
Rodríguez-Mansilla2023 AeET WlNi -12.1494 [-18.5910; -5.7077]
Rodríguez-Mansilla2023 McT WlNi -12.7318 [-17.2173; -8.2463]
Patru2021 McT MiEx 9.3625 [ -6.9736; 25.6986]
Patru2021 McT WlNi -12.7318 [-17.2173; -8.2463]
Patru2021 MiEx WlNi -22.0943 [-38.3981; -5.7906]
Lee2024 CBT McT 5.3917 [ 0.2470; 10.5365]
Schulze2023 FlexEx MasTh 17.5366 [ 0.9365; 34.1367]
Schulze2023 MasTh WlNi -33.8132 [-48.6401; -18.9863]
Schulze2023 FlexEx WlNi -16.2765 [-32.8737; 0.3206]
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of observations: o = 6658
Number of treatments: n = 25
Number of designs: d = 49
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -19.8814 [-31.8617; -7.9011] -3.25 0.0011
AeET -12.1494 [-18.5910; -5.7077] -3.70 0.0002
AqET -13.4467 [-20.4760; -6.4175] -3.75 0.0002
Bal -15.1868 [-25.4178; -4.9557] -2.91 0.0036
CBT -7.3401 [-11.3520; -3.3282] -3.59 0.0003
DryN -18.9003 [-33.3019; -4.4986] -2.57 0.0101
Elec -14.5898 [-30.6576; 1.4781] -1.78 0.0751
FlET -5.1373 [-14.0671; 3.7926] -1.13 0.2595
FlexEx -16.2765 [-32.8737; 0.3206] -1.92 0.0546
ManTh -23.8265 [-40.2174; -7.4355] -2.85 0.0044
MasT -5.1238 [-18.4460; 8.1983] -0.75 0.4510
MasTh -33.8132 [-48.6401; -18.9863] -4.47 < 0.0001
McT -12.7318 [-17.2173; -8.2463] -5.56 < 0.0001
MfT -19.1477 [-33.8644; -4.4310] -2.55 0.0108
MiET -9.0967 [-14.3450; -3.8485] -3.40 0.0007
MiEx -22.0943 [-38.3981; -5.7906] -2.66 0.0079
MnT -6.0107 [-20.6275; 8.6062] -0.81 0.4203
PbT -15.7777 [-36.7570; 5.2016] -1.47 0.1405
PlaSh -3.1777 [-13.4826; 7.1271] -0.60 0.5456
Plt -16.0174 [-28.5529; -3.4819] -2.50 0.0123
ReET -19.7226 [-27.8471; -11.5980] -4.76 < 0.0001
rTMS -11.1423 [-25.2615; 2.9769] -1.55 0.1219
tDCS -7.5281 [-22.4400; 7.3838] -0.99 0.3224
WBV -12.4979 [-21.6558; -3.3401] -2.67 0.0075
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 71.7470; tau = 8.4704; I^2 = 82.7% [79.0%; 85.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 478.62 83 < 0.0001
Within designs 290.45 50 < 0.0001
Between designs 188.18 33 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
-7.7320 [-20.8393; 5.3753] AeET
-6.4347 [-19.8449; 6.9756] 1.2974 [ -6.0259; 8.6206]
-4.6946 [-20.1360; 10.7468] 3.0374 [ -8.3908; 14.4657]
-12.5413 [-24.5415; -0.5411] -4.8093 [-11.9538; 2.3353]
-0.9811 [-18.5629; 16.6007] 6.7509 [ -8.6379; 22.1396]
-5.2916 [-20.3991; 9.8159] 2.4404 [-14.4369; 19.3177]
-14.7441 [-29.3170; -0.1713] -7.0121 [-16.2065; 2.1823]
-3.6048 [-24.0742; 16.8645] 4.1272 [-13.6762; 21.9306]
3.9451 [-16.3574; 24.2476] 11.6771 [ -5.9342; 29.2884]
-14.7576 [-30.0397; 0.5246] -7.0256 [-20.9429; 6.8918]
13.9318 [ -5.1304; 32.9939] 21.6638 [ 5.4980; 37.8295]
-7.1496 [-19.4383; 5.1392] 0.5824 [ -6.4077; 7.5726]
-0.7337 [-14.3954; 12.9280] 6.9983 [ -8.5981; 22.5948]
-10.7846 [-23.1003; 1.5310] -3.0526 [-10.2506; 4.1453]
2.2129 [-17.8708; 22.2966] 9.9450 [ -7.4120; 27.3019]
-13.8707 [-30.1076; 2.3662] -6.1387 [-21.8597; 9.5823]
-4.1037 [-24.3569; 16.1496] 3.6284 [-17.9772; 25.2339]
-16.7037 [-25.4358; -7.9715] -8.9716 [-20.4980; 2.5547]
-3.8640 [-20.0084; 12.2804] 3.8680 [ -8.4000; 16.1360]
-0.1588 [-14.3194; 14.0017] 7.5732 [ -1.6669; 16.8132]
-8.7391 [-21.7549; 4.2768] -1.0071 [-16.0410; 14.0269]
-12.3533 [-26.2250; 1.5185] -4.6212 [-20.4020; 11.1595]
-7.3835 [-22.4049; 7.6380] 0.3486 [-10.7687; 11.4658]
-19.8814 [-31.8617; -7.9011] -12.1494 [-18.5910; -5.7077]
. .
2.7351 [ -8.1778; 13.6481] .
AqET -1.8800 [-20.8744; 17.1144]
1.7401 [ -9.3409; 12.8210] Bal
-6.1066 [-13.6750; 1.4617] -7.8467 [-18.6240; 2.9306]
5.4535 [-10.1683; 21.0754] 3.7135 [-13.7870; 21.2139]
1.1430 [-15.9832; 18.2693] -0.5970 [-19.3546; 18.1606]
-8.3095 [-16.6617; 0.0427] -10.0495 [-22.8788; 2.7798]
2.8298 [-15.1945; 20.8541] 1.0897 [-18.4074; 20.5869]
10.3797 [ -7.4549; 28.2144] 8.6397 [-10.6823; 27.9616]
-8.3229 [-22.4710; 5.8252] -10.0630 [-26.4943; 6.3684]
20.3664 [ 3.9577; 36.7752] 18.6264 [ 0.6122; 36.6406]
-0.7149 [ -8.5139; 7.0841] -2.4550 [-13.3594; 8.4494]
5.7010 [-10.1645; 21.5665] 3.9609 [-13.6531; 21.5749]
-4.3500 [-12.2392; 3.5392] -6.0900 [-16.6036; 4.4235]
8.6476 [ -8.9904; 26.2856] 6.9075 [-12.2679; 26.0830]
-7.4361 [-23.4161; 8.5440] -9.1761 [-26.8508; 8.4985]
2.3310 [-19.4695; 24.1315] 0.5909 [-22.5133; 23.6951]
-10.2690 [-22.1569; 1.6189] -12.0091 [-26.1463; 2.1282]
2.5707 [ -9.8486; 14.9900] 0.8306 [-14.7469; 16.4081]
6.2758 [ -3.2524; 15.8040] 4.5358 [ -8.1696; 17.2411]
-2.3044 [-17.6173; 13.0084] -4.0445 [-21.1624; 13.0735]
-5.9186 [-21.9653; 10.1281] -7.6587 [-25.4361; 10.1188]
-0.9488 [-12.4410; 10.5434] -2.6889 [-16.3901; 11.0124]
-13.4467 [-20.4760; -6.4175] -15.1868 [-25.4178; -4.9557]
-22.4000 [-41.6853; -3.1147] .
. .
13.6000 [ -5.0499; 32.2499] .
. .
CBT .
11.5602 [ -3.2648; 26.3851] DryN
7.2497 [ -8.9564; 23.4557] -4.3105 [-24.6724; 16.0514]
-2.2028 [-11.5842; 7.1785] -13.7630 [-30.4276; 2.9016]
8.9364 [ -8.1387; 26.0116] -2.6237 [-24.5981; 19.3506]
16.4864 [ -0.3884; 33.3611] 4.9262 [-16.8928; 26.7452]
-2.2163 [-15.8466; 11.4141] -13.7764 [-28.4456; 0.8927]
26.4731 [ 11.1130; 41.8331] 14.9129 [ -5.7569; 35.5828]
5.3917 [ 0.2470; 10.5365] -6.1684 [-21.0990; 8.7621]
11.8076 [ -3.0599; 26.6751] 0.2475 [-19.0661; 19.5610]
1.7566 [ -4.2562; 7.7695] -9.8035 [-24.8882; 5.2812]
14.7542 [ -1.8978; 31.4062] 3.1941 [-18.5093; 24.8975]
-1.3294 [-16.2784; 13.6196] -12.8896 [-32.7282; 6.9490]
8.4376 [-12.6477; 29.5230] -3.1225 [-27.5472; 21.3021]
-4.1624 [-14.6814; 6.3567] -15.7225 [-31.9281; 0.4831]
8.6773 [ -4.1961; 21.5507] -2.8829 [-20.0663; 14.3006]
12.3825 [ 3.8710; 20.8939] 0.8223 [-15.5503; 17.1949]
3.8022 [-10.4741; 18.0785] -7.7579 [-26.6202; 11.1043]
0.1880 [-14.8727; 15.2488] -11.3721 [-30.8348; 8.0906]
5.1578 [ -4.7724; 15.0881] -6.4023 [-23.4503; 10.6457]
-7.3401 [-11.3520; -3.3282] -18.9003 [-33.3019; -4.4986]
. .
. -3.3100 [-22.3939; 15.7739]
. -12.1240 [-22.9189; -1.3290]
. .
. .
. .
Elec .
-9.4525 [-27.5156; 8.6106] FlET
1.6868 [-21.4139; 24.7875] 11.1393 [ -7.7077; 29.9862]
9.2367 [-13.7163; 32.1897] 18.6892 [ 0.0236; 37.3548]
-9.4660 [-27.6053; 8.6733] -0.0134 [-15.4237; 15.3969]
19.2234 [ -2.6401; 41.0869] 28.6759 [ 11.3676; 45.9843]
-1.8579 [-18.1357; 14.4198] 7.5946 [ -1.9047; 17.0939]
4.5579 [-11.6401; 20.7560] 14.0105 [ -2.8620; 30.8829]
-5.4930 [-21.7244; 10.7384] 3.9595 [ -5.8022; 13.7211]
7.5046 [-15.2479; 30.2570] 16.9571 [ -1.5090; 35.4231]
-8.5791 [-27.4815; 10.3233] 0.8734 [-16.0711; 17.8179]
1.1880 [-20.8558; 23.2317] 10.6405 [-11.9035; 33.1844]
-11.4120 [-23.7403; 0.9162] -1.9595 [-15.1614; 11.2423]
1.4276 [-17.7419; 20.5972] 10.8801 [ -3.2393; 24.9996]
5.1328 [-12.6246; 22.8901] 14.5853 [ 5.1075; 24.0631]
-3.4475 [-19.1046; 12.2097] 6.0051 [-10.3489; 22.3590]
-7.0616 [-23.4373; 9.3140] 2.3909 [-14.6521; 19.4339]
-2.0918 [-20.5362; 16.3525] 7.3607 [ -5.3780; 20.0993]
-14.5898 [-30.6576; 1.4781] -5.1373 [-14.0671; 3.7926]
. .
. .
. .
. .
. .
. .
. .
. .
FlexEx .
7.5499 [-13.4669; 28.5667] ManTh
-11.1527 [-32.4352; 10.1298] -18.7027 [-39.8247; 2.4194]
17.5366 [ 0.9365; 34.1367] 9.9867 [ -6.8526; 26.8260]
-3.5447 [-20.7373; 13.6479] -11.0946 [-28.0883; 5.8990]
2.8712 [-19.3110; 25.0533] -4.6788 [-26.7070; 17.3495]
-7.1798 [-24.5870; 10.2274] -14.7297 [-31.9404; 2.4809]
5.8178 [-17.4476; 29.0832] -1.7321 [-24.8509; 21.3866]
-10.2659 [-32.3819; 11.8501] -17.8158 [-39.7775; 4.1458]
-0.4988 [-27.2495; 26.2518] -8.0487 [-34.6719; 18.5745]
-13.0988 [-32.6348; 6.4372] -20.6487 [-40.0098; -1.2876]
-0.2592 [-21.0583; 20.5400] -7.8091 [-28.4440; 12.8259]
3.4460 [-15.0330; 21.9250] -4.1039 [-22.3979; 14.1901]
-5.1342 [-26.9245; 16.6561] -12.6842 [-34.3178; 8.9495]
-8.7484 [-31.0605; 13.5637] -16.2983 [-38.4575; 5.8608]
-3.7786 [-22.7347; 15.1774] -11.3285 [-30.1043; 7.4472]
-16.2765 [-32.8737; 0.3206] -23.8265 [-40.2174; -7.4355]
. .
. .
. .
. .
. .
-23.8200 [-42.5008; -5.1392] .
. .
. .
. 17.4400 [ 0.3032; 34.5768]
. 10.3000 [-11.4697; 32.0697]
MasT .
28.6894 [ 8.7566; 48.6221] MasTh
7.6080 [ -6.1021; 21.3181] -21.0813 [-36.5719; -5.5908]
14.0239 [ -2.9302; 30.9779] -14.6655 [-35.5561; 6.2252]
3.9729 [ -9.7945; 17.7403] -24.7164 [-40.4447; -8.9881]
16.9705 [ -3.9753; 37.9164] -11.7188 [-33.7563; 10.3186]
0.8868 [-17.3788; 19.1525] -27.8025 [-48.6229; -6.9821]
10.6539 [-11.9512; 33.2590] -18.0354 [-43.7253; 7.6544]
-1.9461 [-15.2520; 11.3599] -30.6354 [-48.6916; -12.5792]
10.8936 [ -2.8804; 24.6675] -17.7958 [-37.2116; 1.6201]
14.5987 [ -0.6423; 29.8398] -14.0906 [-30.9975; 2.8163]
6.0185 [-10.4196; 22.4566] -22.6709 [-43.1449; -2.1968]
2.4043 [-14.7195; 19.5281] -26.2850 [-47.3136; -5.2564]
7.3741 [ -8.7507; 23.4989] -21.3152 [-38.7423; -3.8882]
-5.1238 [-18.4460; 8.1983] -33.8132 [-48.6401; -18.9863]
. .
0.1972 [-12.2228; 12.6172] .
. .
. .
6.5860 [ -2.0552; 15.2272] .
. .
. .
. .
. .
. .
. .
. .
McT .
6.4159 [ -8.5298; 21.3615] MfT
-3.6351 [ -9.6881; 2.4180] -10.0510 [-24.9461; 4.8441]
9.3625 [ -6.9736; 25.6986] 2.9466 [-18.8726; 24.7658]
-6.7212 [-21.7739; 8.3315] -13.1371 [-30.9052; 4.6311]
3.0459 [-18.0946; 24.1865] -3.3700 [-24.4492; 17.7092]
-9.5541 [-20.1833; 1.0752] -15.9700 [-26.4767; -5.4632]
3.2856 [ -9.6323; 16.2035] -3.1303 [-21.1824; 14.9218]
6.9907 [ -1.6346; 15.6160] 0.5748 [-15.9699; 17.1196]
-1.5895 [-15.9472; 12.7682] -8.0054 [-22.2726; 6.2618]
-5.2037 [-20.3416; 9.9342] -11.6196 [-26.6717; 3.4326]
-0.2339 [-10.1539; 9.6861] -6.6498 [-23.9298; 10.6302]
-12.7318 [-17.2173; -8.2463] -19.1477 [-33.8644; -4.4310]
. .
-5.6563 [-18.1368; 6.8241] .
-28.0000 [-46.9835; -9.0165] .
-7.1000 [-24.4594; 10.2594] .
-1.5723 [-16.1483; 13.0036] .
. .
. .
. .
. .
. .
. .
. .
-2.8481 [-13.9475; 8.2513] 11.8000 [ -7.1630; 30.7630]
. .
MiET .
12.9976 [ -3.9769; 29.9721] MiEx
-3.0861 [-18.2251; 12.0530] -16.0837 [-37.9024; 5.7351]
6.6810 [-14.4239; 27.7858] -6.3166 [-32.7671; 20.1339]
-5.9190 [-16.4771; 4.6391] -18.9166 [-38.0395; 0.2064]
6.9206 [ -6.0738; 19.9150] -6.0769 [-26.5227; 14.3688]
10.6258 [ 1.3865; 19.8652] -2.3718 [-20.4345; 15.6909]
2.0456 [-12.2595; 16.3506] -10.9520 [-32.3728; 10.4687]
-1.5686 [-16.6566; 13.5194] -14.5662 [-36.5176; 7.3852]
3.4012 [ -7.0813; 13.8836] -9.5964 [-28.2253; 9.0325]
-9.0967 [-14.3450; -3.8485] -22.0943 [-38.3981; -5.7906]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
MnT .
9.7671 [-13.4548; 32.9890] PbT
-2.8329 [-17.1617; 11.4959] -12.6000 [-30.8741; 5.6741]
10.0067 [ -8.5672; 28.5807] 0.2397 [-23.2002; 23.6795]
13.7119 [ -2.8677; 30.2914] 3.9448 [-18.3550; 26.2446]
5.1317 [-12.1448; 22.4081] -4.6354 [-25.3019; 16.0311]
1.5175 [-16.4127; 19.4476] -8.2496 [-29.4656; 12.9664]
6.4873 [-10.7325; 23.7070] -3.2798 [-26.1304; 19.5708]
-6.0107 [-20.6275; 8.6062] -15.7777 [-36.7570; 5.2016]
-14.3332 [-23.7898; -4.8765] .
. 4.5000 [-14.0998; 23.0998]
. 7.0000 [-12.3729; 26.3729]
. .
. .
. .
-11.4120 [-23.7403; 0.9162] .
. .
. .
. .
-6.6000 [-24.1259; 10.9259] 6.5600 [-11.2718; 24.3918]
. .
-18.0000 [-42.4098; 6.4098] .
-15.9700 [-26.4767; -5.4632] .
-6.9300 [-24.7636; 10.9036] .
. .
-0.8000 [-19.2101; 17.6101] .
-12.6000 [-30.8741; 5.6741] .
PlaSh .
12.8397 [ -1.8398; 27.5191] Plt
16.5448 [ 3.7644; 29.3252] 3.7052 [-10.5848; 17.9951]
7.9646 [ -1.6874; 17.6166] -4.8751 [-22.4435; 12.6933]
4.3504 [ -6.4281; 15.1289] -8.4893 [-26.7008; 9.7223]
9.3202 [ -4.3987; 23.0391] -3.5195 [-18.9973; 11.9584]
-3.1777 [-13.4826; 7.1271] -16.0174 [-28.5529; -3.4819]
. .
-9.7400 [-29.4421; 9.9621] .
. .
. .
25.7400 [ 7.2759; 44.2041] .
. .
. .
12.4872 [ -0.0284; 25.0027] .
. .
. .
. .
. .
5.5500 [-13.6212; 24.7212] .
. .
. .
. .
. .
. .
. 7.9646 [ -1.6874; 17.6166]
. .
ReET .
-8.5802 [-24.5958; 7.4354] rTMS
-12.1944 [-28.9131; 4.5242] -3.6142 [-18.0827; 10.8543]
-7.2246 [-19.4003; 4.9511] 1.3556 [-15.4185; 18.1297]
-19.7226 [-27.8471; -11.5980] -11.1423 [-25.2615; 2.9769]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 6.4100 [-14.4607; 27.2807]
. .
. .
. .
. .
. .
4.3504 [ -6.4281; 15.1289] .
. .
. .
. .
tDCS .
4.9698 [-12.4768; 22.4164] WBV
-7.5281 [-22.4400; 7.3838] -12.4979 [-21.6558; -3.3401]
.
-12.0002 [-22.5182; -1.4822]
-7.3533 [-21.7530; 7.0465]
-16.7697 [-32.1609; -1.3786]
-7.5546 [-12.3436; -2.7657]
-9.7000 [-27.5794; 8.1794]
.
-14.8000 [-37.8978; 8.2978]
-16.1800 [-33.3130; 0.9530]
-24.1000 [-44.4411; -3.7589]
.
-33.6200 [-50.7139; -16.5261]
-11.8990 [-17.7649; -6.0330]
.
-12.0292 [-19.3569; -4.7014]
-19.9000 [-38.3651; -1.4349]
-8.3900 [-28.3070; 11.5270]
.
.
.
-18.9474 [-31.2166; -6.6783]
.
.
-11.7305 [-21.2330; -2.2281]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
MasTh 0.9658
ManTh 0.8050
MiEx 0.7683
ReET 0.7552
Acu 0.7497
MfT 0.7126
DryN 0.6975
Plt 0.6134
FlexEx 0.5978
Bal 0.5871
PbT 0.5786
Elec 0.5540
AqET 0.5253
McT 0.4954
WBV 0.4799
AeET 0.4659
rTMS 0.4291
MiET 0.3251
tDCS 0.3006
MnT 0.2548
CBT 0.2498
MasT 0.2146
FlET 0.1942
PlaSh 0.1292
WlNi 0.0510
Q statistics to assess homogeneity / consistency
Q df p-value
Total 478.62 83 < 0.0001
Within designs 290.45 50 < 0.0001
Between designs 188.18 33 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:CBT 115.30 14 < 0.0001
WlNi:McT 77.12 5 < 0.0001
WlNi:MiET 26.23 5 < 0.0001
Acu:PlaSh 18.66 3 0.0003
MfT:PlaSh 14.67 2 0.0007
WlNi:WBV 9.70 2 0.0078
WlNi:Bal 4.54 1 0.0331
CBT:McT 7.78 4 0.0999
AqET:FlET 4.54 2 0.1033
Elec:PlaSh 4.41 2 0.1101
CBT:MiET 2.09 1 0.1481
PlaSh:tDCS 2.40 2 0.3006
McT:MiET 0.62 1 0.4297
PlaSh:rTMS 2.09 3 0.5546
FlET:ReET 0.26 1 0.6101
WlNi:AqET 0.02 1 0.8814
AeET:AqET 0.01 1 0.9413
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
AeET:AqET:MiET 118.76 31 < 0.0001
AeET:MiET 120.88 32 < 0.0001
WlNi:AeET:ReET 165.20 31 < 0.0001
CBT:ReET 169.79 32 < 0.0001
DryN:MasT 170.84 32 < 0.0001
WlNi:DryN 170.84 32 < 0.0001
AqET:CBT 171.29 32 < 0.0001
MasT:PlaSh 178.29 32 < 0.0001
McT:MiET 180.86 32 < 0.0001
Acu:CBT 181.13 32 < 0.0001
Acu:PlaSh 181.13 32 < 0.0001
AeET:McT 181.25 32 < 0.0001
Bal:MiET 182.12 32 < 0.0001
AqET:FlET 184.91 32 < 0.0001
AqET:Bal 185.15 32 < 0.0001
WlNi:AeET:McT 183.17 31 < 0.0001
WlNi:ReET 185.77 32 < 0.0001
WlNi:McT 185.84 32 < 0.0001
WlNi:WBV 186.19 32 < 0.0001
WlNi:Bal 186.49 32 < 0.0001
CBT:MiET 186.55 32 < 0.0001
WlNi:AeET 186.60 32 < 0.0001
AqET:Plt 186.62 32 < 0.0001
McT:PlaSh 186.97 32 < 0.0001
WlNi:AqET 187.03 32 < 0.0001
FlET:ReET 187.06 32 < 0.0001
MiET:PlaSh 187.35 32 < 0.0001
AeET:Plt 187.57 32 < 0.0001
AeET:AqET 187.64 32 < 0.0001
WlNi:FlET:ReET 185.62 31 < 0.0001
MnT:PlaSh 187.93 32 < 0.0001
WlNi:MnT 187.93 32 < 0.0001
WlNi:CBT 188.03 32 < 0.0001
MasT:Plt 188.06 32 < 0.0001
WlNi:MiET 188.06 32 < 0.0001
McT:ReET 188.08 32 < 0.0001
WlNi:McT:WBV 185.97 31 < 0.0001
AeET:FlET 188.15 32 < 0.0001
ManTh:MasTh 188.17 32 < 0.0001
WlNi:ManTh 188.17 32 < 0.0001
CBT:McT 188.17 32 < 0.0001
WlNi:McT:MiET 187.71 31 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 29.31 33 0.6516 8.5426 72.9764
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:CBT 1 0.39 -12.5413 -22.4000 -6.3123 -16.0877 -1.28 0.2006
Acu:PlaSh 4 0.85 -16.7037 -14.3332 -30.4208 16.0877 1.28 0.2006
AeET:AqET 3 0.45 1.2974 2.7351 0.1195 2.6157 0.35 0.7276
AeET:FlET 1 0.23 -7.0121 -3.3100 -8.1312 4.8212 0.43 0.6644
AeET:McT 2 0.32 0.5824 0.1972 0.7611 -0.5639 -0.07 0.9414
AeET:MiET 2 0.33 -3.0526 -5.6563 -1.7549 -3.9014 -0.50 0.6167
AeET:Plt 1 0.44 3.8680 4.5000 3.3814 1.1186 0.09 0.9294
AeET:ReET 1 0.22 7.5732 -9.7400 12.4549 -22.1949 -1.95 0.0512
AeET:WlNi 3 0.38 -12.1494 -12.0002 -12.2389 0.2387 0.04 0.9720
AqET:Bal 1 0.34 1.7401 -1.8800 3.6077 -5.4877 -0.46 0.6456
AqET:CBT 1 0.16 -6.1066 13.6000 -9.9918 23.5918 2.27 0.0235
AqET:FlET 3 0.60 -8.3095 -12.1240 -2.6202 -9.5037 -1.09 0.2743
AqET:MiET 1 0.17 -4.3500 -28.0000 0.5873 -28.5873 -2.68 0.0073
AqET:Plt 1 0.41 2.5707 7.0000 -0.5197 7.5197 0.58 0.5593
AqET:WlNi 2 0.24 -13.4467 -7.3533 -15.3530 7.9997 0.95 0.3420
Bal:MiET 1 0.37 -6.0900 -7.1000 -5.5050 -1.5950 -0.14 0.8861
Bal:WlNi 2 0.44 -15.1868 -16.7697 -13.9336 -2.8362 -0.27 0.7873
CBT:McT 5 0.35 5.3917 6.5860 4.7359 1.8501 0.34 0.7360
CBT:MiET 2 0.17 1.7566 -1.5723 2.4393 -4.0116 -0.49 0.6232
CBT:ReET 1 0.21 12.3825 25.7400 8.7781 16.9619 1.60 0.1101
CBT:WlNi 15 0.70 -7.3401 -7.5546 -6.8352 -0.7195 -0.16 0.8723
DryN:MasT 1 0.62 -13.7764 -23.8200 2.3775 -26.1975 -1.70 0.0888
DryN:WlNi 1 0.65 -18.9003 -9.7000 -35.8975 26.1975 1.70 0.0888
FlET:ReET 3 0.57 14.5853 12.4872 17.4063 -4.9191 -0.50 0.6149
FlET:WlNi 1 0.15 -5.1373 -14.8000 -3.4392 -11.3608 -0.89 0.3740
FlexEx:MasTh 1 0.94 17.5366 17.4400 19.0072 -1.5672 -0.04 0.9645
FlexEx:WlNi 1 0.94 -16.2765 -16.1800 -17.7479 1.5679 0.04 0.9645
ManTh:MasTh 1 0.60 9.9867 10.3000 9.5200 0.7800 0.04 0.9645
ManTh:WlNi 1 0.65 -23.8265 -24.1000 -23.3200 -0.7800 -0.04 0.9645
MasT:PlaSh 1 0.58 -1.9461 -6.6000 4.3869 -10.9869 -0.80 0.4239
MasT:Plt 1 0.60 10.8936 6.5600 17.3041 -10.7441 -0.75 0.4533
MasTh:WlNi 1 0.75 -33.8132 -33.6200 -34.4000 0.7800 0.04 0.9645
McT:MiET 3 0.30 -3.6351 -2.8481 -3.9682 1.1201 0.17 0.8683
McT:MiEx 1 0.74 9.3625 11.8000 2.3473 9.4527 0.50 0.6198
McT:PlaSh 1 0.19 -9.5541 -18.0000 -7.5779 -10.4221 -0.75 0.4513
McT:ReET 1 0.20 6.9907 5.5500 7.3564 -1.8064 -0.16 0.8690
McT:WBV 1 0.23 -0.2339 6.4100 -2.1730 8.5830 0.71 0.4782
McT:WlNi 10 0.58 -12.7318 -11.8990 -13.9045 2.0056 0.43 0.6659
MiET:PlaSh 1 0.35 -5.9190 -6.9300 -5.3734 -1.5566 -0.14 0.8903
MiET:WlNi 7 0.51 -9.0967 -12.0292 -6.0083 -6.0208 -1.12 0.2611
MiEx:WlNi 1 0.78 -22.0943 -19.9000 -29.8561 9.9561 0.50 0.6198
MnT:PlaSh 1 0.61 -2.8329 -0.8000 -5.9566 5.1566 0.34 0.7303
MnT:WlNi 1 0.54 -6.0107 -8.3900 -3.2334 -5.1566 -0.34 0.7303
ReET:WlNi 3 0.44 -19.7226 -18.9474 -20.3279 1.3805 0.17 0.8687
WBV:WlNi 4 0.93 -12.4979 -11.7305 -22.5055 10.7750 0.59 0.5531
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qlg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Lg") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_qlg,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 23
Number of pairwise comparisons: m = 27
Number of treatments: n = 12
Number of designs: d = 13
Number of networks: 2
Details on subnetworks:
subnetwork k m n
1 2 2 3
2 21 25 9
There are two sub-networks:
Subnet 1:
- 2 studies
- 2 comparisons
- 3 treatments
Subnet 2:
- 21 studies
- 25 comparisons
- 9 treatments
There are two treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 2 studies, 2 comparisons and 3 treatments.
Code
Code
[1] "MfT" "rTMS" "PlaSh"
[1] 3
Code
[1] 2
Code
Number of studies: k = 2
Number of pairwise comparisons: m = 2
Number of observations: o = 134
Number of treatments: n = 3
Number of designs: d = 2
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
MfT -5.5600 [-13.2259; 2.1059] -1.42 0.1552
PlaSh . . . .
rTMS -7.3000 [-17.4681; 2.8681] -1.41 0.1594
Quantifying heterogeneity / inconsistency:
tau^2 = NA; tau = NA
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0 0 --
Within designs 0 0 --
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh -5.5600 3.9112
Mhalla2011 PlaSh rTMS 7.3000 5.1879
Number of treatment arms (by study):
narms
Alfano2001 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Alfano2001 MfT PlaSh -5.5600 [-13.2259; 2.1059]
Mhalla2011 PlaSh rTMS 7.3000 [ -2.8681; 17.4681]
Number of studies: k = 2
Number of pairwise comparisons: m = 2
Number of observations: o = 134
Number of treatments: n = 3
Number of designs: d = 2
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
MfT -5.5600 [-13.2259; 2.1059] -1.42 0.1552
PlaSh . . . .
rTMS -7.3000 [-17.4681; 2.8681] -1.41 0.1594
Quantifying heterogeneity / inconsistency:
tau^2 = NA; tau = NA
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0 0 --
Within designs 0 0 --
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
League table (random effects model):
MfT -5.5600 [-13.2259; 2.1059]
-5.5600 [-13.2259; 2.1059] PlaSh
1.7400 [-10.9941; 14.4741] 7.3000 [ -2.8681; 17.4681]
.
7.3000 [ -2.8681; 17.4681]
rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
rTMS 0.7629
MfT 0.6584
PlaSh 0.0786
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.00 0 --
Within designs 0.00 0 --
Between designs 0.00 0 --
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
MfT:PlaSh 1 1.00 -5.5600 -5.5600 . . . .
MfT:rTMS 0 0 1.7400 . 1.7400 . . .
rTMS:PlaSh 1 1.00 -7.3000 -7.3000 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet is more robust, containing 21 studies, 25 comparisons and 9 treatments. This is the main analysis network.
Code
Code
[1] "AeET" "AqET" "MiET" "ReET" "McT" "CBT"
[1] "AqET" "WlNi" "ReET" "MiET" "McT" "FlET" "FlexEx"
Code
[1] "AeET" "AqET" "MiET" "ReET" "McT" "CBT" "WlNi" "FlET"
[9] "FlexEx"
[1] 9
Code
[1] 21
Code
Number of studies: k = 21
Number of pairwise comparisons: m = 25
Number of observations: o = 1321
Number of treatments: n = 9
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -11.7228 [-21.7124; -1.7332] -2.30 0.0214
AqET -13.9973 [-24.9856; -3.0091] -2.50 0.0125
CBT -14.9648 [-39.4427; 9.5132] -1.20 0.2308
FlET -2.6328 [-29.7684; 24.5028] -0.19 0.8492
FlexEx -8.1548 [-42.5145; 26.2050] -0.47 0.6418
McT -18.9581 [-32.5559; -5.3603] -2.73 0.0063
MiET -23.9122 [-36.1811; -11.6432] -3.82 0.0001
ReET -9.8992 [-33.3322; 13.5338] -0.83 0.4077
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 148.7710; tau = 12.1972; I^2 = 89.4% [84.5%; 92.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 142.15 15 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.08 5 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 8.1000 4.1615 12.8875 2
Andrade2019 AqET WlNi -14.6000 3.3374 12.6455 2
Assis2006 AeET AqET 4.4600 5.1075 13.2234 2
Baptista2012 AeET WlNi -17.6300 3.3515 12.6492 2
Etnier2009 MiET WlNi -25.1800 9.0950 15.2148 2
Kayo2012 AeET ReET -5.6500 6.0952 17.1183 3 *
Kayo2012 AeET WlNi -18.9200 4.8426 15.8269 3 *
Kayo2012 ReET WlNi -13.2700 5.1235 16.0670 3 *
Larsson2015 McT MiET 4.9000 3.3376 12.6456 2
Letieri2013 AqET WlNi -24.2400 7.3707 14.2513 2
Mannerkorpi2000 McT WlNi -11.9400 4.6207 13.0431 2
Mannerkorpi2004 McT WlNi 1.8300 5.4792 13.3713 2
Munguia-Izquierdo 2007 AqET WlNi 0.4000 3.4557 12.6773 2
Rooks2007 CBT McT 8.3000 3.6542 15.7234 3 *
Rooks2007 CBT MiET 4.7500 3.3682 15.5227 3 *
Rooks2007 McT MiET -3.5500 2.7539 15.1667 3 *
Sanudo2010b AeET MiET 0.0000 3.7033 12.7470 2
Sanudo2011 MiET WlNi -64.8400 5.5331 13.3935 2
Sanudo2010c AeET MiET 11.9900 5.8375 13.5221 2
Schachter2003 AeET WlNi -2.3000 2.8448 12.5245 2
Tomas-Carus2008 AqET WlNi -11.9400 4.4726 12.9914 2
Valim2003 AeET FlET -9.0900 4.1151 12.8726 2
Wang2018 McT MiET -11.6700 3.5984 12.7169 2
Hernando-Garijo2021 AeET WlNi -2.9000 6.1852 13.6758 2
Saranya2022 CBT FlexEx -6.8100 1.6075 12.3027 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Etnier2009 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mannerkorpi2004 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2010b 2
Sanudo2011 2
Sanudo2010c 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Wang2018 2
Hernando-Garijo2021 2
Saranya2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Acosta-Gallego2018 AeET AqET 2.2745 [-10.1235; 14.6725]
Andrade2019 AqET WlNi -13.9973 [-24.9856; -3.0091]
Assis2006 AeET AqET 2.2745 [-10.1235; 14.6725]
Baptista2012 AeET WlNi -11.7228 [-21.7124; -1.7332]
Etnier2009 MiET WlNi -23.9122 [-36.1811; -11.6432]
Kayo2012 AeET ReET -1.8236 [-25.3911; 21.7438]
Kayo2012 AeET WlNi -11.7228 [-21.7124; -1.7332]
Kayo2012 ReET WlNi -9.8992 [-33.3322; 13.5338]
Larsson2015 McT MiET 4.9541 [ -7.2252; 17.1333]
Letieri2013 AqET WlNi -13.9973 [-24.9856; -3.0091]
Mannerkorpi2000 McT WlNi -18.9581 [-32.5559; -5.3603]
Mannerkorpi2004 McT WlNi -18.9581 [-32.5559; -5.3603]
Munguia-Izquierdo 2007 AqET WlNi -13.9973 [-24.9856; -3.0091]
Rooks2007 CBT McT 3.9934 [-18.5188; 26.5055]
Rooks2007 CBT MiET 8.9474 [-13.5223; 31.4172]
Rooks2007 McT MiET 4.9541 [ -7.2252; 17.1333]
Sanudo2010b AeET MiET 12.1893 [ -0.8236; 25.2023]
Sanudo2011 MiET WlNi -23.9122 [-36.1811; -11.6432]
Sanudo2010c AeET MiET 12.1893 [ -0.8236; 25.2023]
Schachter2003 AeET WlNi -11.7228 [-21.7124; -1.7332]
Tomas-Carus2008 AqET WlNi -13.9973 [-24.9856; -3.0091]
Valim2003 AeET FlET -9.0900 [-34.3199; 16.1399]
Wang2018 McT MiET 4.9541 [ -7.2252; 17.1333]
Hernando-Garijo2021 AeET WlNi -11.7228 [-21.7124; -1.7332]
Saranya2022 CBT FlexEx -6.8100 [-30.9228; 17.3028]
Number of studies: k = 21
Number of pairwise comparisons: m = 25
Number of observations: o = 1321
Number of treatments: n = 9
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -11.7228 [-21.7124; -1.7332] -2.30 0.0214
AqET -13.9973 [-24.9856; -3.0091] -2.50 0.0125
CBT -14.9648 [-39.4427; 9.5132] -1.20 0.2308
FlET -2.6328 [-29.7684; 24.5028] -0.19 0.8492
FlexEx -8.1548 [-42.5145; 26.2050] -0.47 0.6418
McT -18.9581 [-32.5559; -5.3603] -2.73 0.0063
MiET -23.9122 [-36.1811; -11.6432] -3.82 0.0001
ReET -9.8992 [-33.3322; 13.5338] -0.83 0.4077
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 148.7710; tau = 12.1972; I^2 = 89.4% [84.5%; 92.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 142.15 15 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.08 5 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 6.3268 [-11.7623; 24.4159]
2.2745 [-10.1235; 14.6725] AqET
3.2419 [-21.9198; 28.4036] 0.9674 [-25.4497; 27.3845]
-9.0900 [-34.3199; 16.1399] -11.3645 [-39.4761; 16.7470]
-3.5681 [-38.4183; 31.2821] -5.8426 [-41.6097; 29.9245]
7.2353 [ -8.0737; 22.5443] 4.9608 [-12.0331; 21.9546]
12.1893 [ -0.8236; 25.2023] 9.9148 [ -5.7106; 25.5403]
-1.8236 [-25.3911; 21.7438] -4.0981 [-29.3677; 21.1714]
-11.7228 [-21.7124; -1.7332] -13.9973 [-24.9856; -3.0091]
. -9.0900 [-34.3199; 16.1399]
. .
CBT .
-12.3319 [-47.9642; 23.3003] FlET
-6.8100 [-30.9228; 17.3028] 5.5219 [-37.5023; 48.5461]
3.9934 [-18.5188; 26.5055] 16.3253 [-13.1860; 45.8365]
8.9474 [-13.5223; 31.4172] 21.2793 [ -7.1088; 49.6675]
-5.0655 [-38.4936; 28.3625] 7.2664 [-27.2586; 41.7913]
-14.9648 [-39.4427; 9.5132] -2.6328 [-29.7684; 24.5028]
. .
. .
-6.8100 [-30.9228; 17.3028] 8.3000 [-16.6558; 33.2558]
. .
FlexEx .
10.8034 [-22.1848; 43.7915] McT
15.7574 [-17.2019; 48.7167] 4.9541 [ -7.2252; 17.1333]
1.7445 [-39.4728; 42.9617] -9.0589 [-35.7129; 17.5951]
-8.1548 [-42.5145; 26.2050] -18.9581 [-32.5559; -5.3603]
5.6415 [-12.5380; 23.8210] -5.6500 [-32.3748; 21.0748]
. .
4.7500 [-20.0508; 29.5508] .
. .
. .
-3.4103 [-17.6923; 10.8718] .
MiET .
-14.0130 [-39.7366; 11.7107] ReET
-23.9122 [-36.1811; -11.6432] -9.8992 [-33.3322; 13.5338]
-10.5228 [-23.2332; 2.1876]
-11.9577 [-24.7911; 0.8757]
.
.
.
-5.2261 [-23.5258; 13.0736]
-47.5247 [-67.2286; -27.8207]
-13.2700 [-39.1995; 12.6595]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
MiET 0.8802
McT 0.7166
CBT 0.5841
AqET 0.5665
AeET 0.4824
ReET 0.4479
FlexEx 0.4081
FlET 0.2786
WlNi 0.1356
Q statistics to assess homogeneity / consistency
Q df p-value
Total 142.15 15 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.08 5 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:MiET 13.88 1 0.0002
McT:MiET 11.40 1 0.0007
WlNi:AeET 12.95 2 0.0015
WlNi:AqET 14.84 3 0.0020
WlNi:McT 3.69 1 0.0547
AeET:MiET 3.01 1 0.0828
AeET:AqET 0.31 1 0.5806
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
WlNi:MiET 9.51 4 0.0495
WlNi:McT 57.97 4 < 0.0001
AeET:MiET 75.03 4 < 0.0001
AeET:AqET 77.94 4 < 0.0001
WlNi:AqET 77.94 4 < 0.0001
McT:MiET 79.16 4 < 0.0001
WlNi:AeET 79.90 4 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 15.45 5 0.0086 9.6818 93.7369
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
AeET:AqET 2 0.47 2.2745 6.3268 -1.3155 7.6423 0.60 0.5465
AeET:MiET 2 0.51 12.1893 5.6415 19.0696 -13.4281 -1.01 0.3120
AeET:ReET 1 0.78 -1.8236 -5.6500 11.5604 -17.2104 -0.60 0.5517
AeET:WlNi 4 0.62 -11.7228 -10.5228 -13.6618 3.1390 0.30 0.7647
AqET:WlNi 4 0.73 -13.9973 -11.9577 -19.6000 7.6423 0.60 0.5465
CBT:McT 1 0.81 3.9934 8.3000 -14.8224 23.1224 0.78 0.4332
CBT:MiET 1 0.82 8.9474 4.7500 28.1802 -23.4302 -0.78 0.4332
McT:MiET 3 0.73 4.9541 -3.4103 27.2512 -30.6615 -2.20 0.0280
McT:WlNi 2 0.55 -18.9581 -5.2261 -35.8876 30.6615 2.20 0.0280
MiET:WlNi 2 0.39 -23.9122 -47.5247 -8.9605 -38.5642 -3.00 0.0027
ReET:WlNi 1 0.82 -9.8992 -13.2700 5.1209 -18.3909 -0.60 0.5517
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
2 NMA for binary outcomes
Please: Select an outcome to proceed.
Code
# Read data
data_alg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Lg")
# Transform to contrast-based
pw_alg <- pairwise(
treat = list(Treat1, Treat2, Treat3),
event = list(dp1, dp2, dp3), # observed events in each arm
n = list(nRT1, nRT2, nRT3), # total number of patients in each arm
studlab = StudyID,
data = data_alg,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_alg)
net_con
Number of studies: k = 27
Number of pairwise comparisons: m = 31
Number of treatments: n = 14
Number of designs: d = 15
Number of networks: 3
Details on subnetworks:
subnetwork k m n
1 22 26 8
2 1 1 2
3 4 4 4
There are three sub-networks:
Subnet 1:
- 22 studies
- 26 comparisons
- 8 treatments
Subnet 2:
- 1 study
- 1 comparison
- 2 treatments
Subnet 3:
- 4 studies
- 4 comparisons
- 4 treatments
There are three treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 22 studies, 26 comparisons and 8 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "AeET" "AqET" "ReET" "McT" "CBT" "MiET" "WlNi" "FlET"
[1] 8
Code
[1] 29
[1] 25
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Etnier2009 MiET WlNi NA NA
Hakkinen2001 ReET WlNi NA NA
Sanudo2015 MiET WlNi NA NA
Number of studies: k = 22
Number of pairwise comparisons: m = 26
Number of observations: o = 1685
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
AeET 1.8941 [1.0374; 3.4583] 2.08 0.0376
AqET 1.5725 [0.6805; 3.6338] 1.06 0.2895
CBT 1.6064 [0.6231; 4.1412] 0.98 0.3266
FlET 3.6078 [0.8330; 15.6257] 1.72 0.0862
McT 1.2642 [0.5567; 2.8706] 0.56 0.5753
MiET 1.4730 [0.6380; 3.4012] 0.91 0.3643
ReET 1.6444 [0.4868; 5.5545] 0.80 0.4232
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.1313; tau = 0.3624; I^2 = 20.7% [0.0%; 55.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Etnier2009: MiET vs WlNi
- Hakkinen2001: ReET vs WlNi
- Sanudo2015: MiET vs WlNi
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 0.1452 0.5394 0.6498 2
Andrade2019 AqET WlNi 0.0000 0.8660 0.9388 2
Assis2006 AeET AqET 0.0000 0.7596 0.8416 2
Baptista2012 AeET WlNi 0.0000 1.4322 1.4774 2
Kayo2012 AeET ReET -0.1780 0.5973 0.8510 3 *
Kayo2012 AeET WlNi 0.0000 0.6105 0.8792 3 *
Kayo2012 ReET WlNi 0.1780 0.5973 0.8510 3 *
Larsson2015 McT MiET 0.3747 0.4479 0.5761 2
Letieri2013 AqET WlNi -1.6710 1.5689 1.6103 2
Mannerkorpi2000 McT WlNi 1.5731 0.8247 0.9008 2
Mannerkorpi2004 McT WlNi -0.1823 0.6849 0.7748 2
Mengshoel1992 AeET WlNi 1.5404 0.7918 0.8708 2
Munguia-Izquierdo 2007 AqET WlNi 1.6025 1.1148 1.1722 2
Rooks2007 CBT McT 0.6440 0.4070 0.7037 3 *
Rooks2007 CBT MiET 0.6224 0.3550 0.6043 3 *
Rooks2007 McT MiET -0.0216 0.3615 0.6138 3 *
Sanudo2011 MiET WlNi 1.2040 1.1995 1.2531 2
Sanudo2010a AeET MiET -0.0572 0.7838 0.8636 2
Sanudo2010b AeET WlNi 1.4917 1.1643 1.2194 2
Schachter2003 AeET WlNi 1.1454 0.5236 0.6368 2
Tomas-Carus2008 AqET WlNi 0.6931 1.2780 1.3284 2
Valim2003 AeET FlET -0.6444 0.5776 0.6819 2
Valkeinen2008 MiET WlNi 1.4491 1.6003 1.6408 2
Wang2018 McT MiET -0.8398 0.4465 0.5751 2
Williams2010 CBT WlNi -0.7687 0.6425 0.7377 2
Hernando-Garijo2021 AeET WlNi 0.0000 0.8997 0.9700 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mannerkorpi2004 2
Mengshoel1992 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2011 2
Sanudo2010a 2
Sanudo2010b 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Valkeinen2008 2
Wang2018 2
Williams2010 2
Hernando-Garijo2021 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Acosta-Gallego2018 AeET AqET 1.2045 [0.5384; 2.6950]
Andrade2019 AqET WlNi 1.5725 [0.6805; 3.6338]
Assis2006 AeET AqET 1.2045 [0.5384; 2.6950]
Baptista2012 AeET WlNi 1.8941 [1.0374; 3.4583]
Kayo2012 AeET ReET 1.1519 [0.3410; 3.8909]
Kayo2012 AeET WlNi 1.8941 [1.0374; 3.4583]
Kayo2012 ReET WlNi 1.6444 [0.4868; 5.5545]
Larsson2015 McT MiET 0.8582 [0.4768; 1.5447]
Letieri2013 AqET WlNi 1.5725 [0.6805; 3.6338]
Mannerkorpi2000 McT WlNi 1.2642 [0.5567; 2.8706]
Mannerkorpi2004 McT WlNi 1.2642 [0.5567; 2.8706]
Mengshoel1992 AeET WlNi 1.8941 [1.0374; 3.4583]
Munguia-Izquierdo 2007 AqET WlNi 1.5725 [0.6805; 3.6338]
Rooks2007 CBT McT 1.2707 [0.5404; 2.9879]
Rooks2007 CBT MiET 1.0905 [0.4721; 2.5192]
Rooks2007 McT MiET 0.8582 [0.4768; 1.5447]
Sanudo2011 MiET WlNi 1.4730 [0.6380; 3.4012]
Sanudo2010a AeET MiET 1.2858 [0.5004; 3.3040]
Sanudo2010b AeET WlNi 1.8941 [1.0374; 3.4583]
Schachter2003 AeET WlNi 1.8941 [1.0374; 3.4583]
Tomas-Carus2008 AqET WlNi 1.5725 [0.6805; 3.6338]
Valim2003 AeET FlET 0.5250 [0.1380; 1.9979]
Valkeinen2008 MiET WlNi 1.4730 [0.6380; 3.4012]
Wang2018 McT MiET 0.8582 [0.4768; 1.5447]
Williams2010 CBT WlNi 1.6064 [0.6231; 4.1412]
Hernando-Garijo2021 AeET WlNi 1.8941 [1.0374; 3.4583]
Number of studies: k = 22
Number of pairwise comparisons: m = 26
Number of observations: o = 1685
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
AeET 1.8941 [1.0374; 3.4583] 2.08 0.0376
AqET 1.5725 [0.6805; 3.6338] 1.06 0.2895
CBT 1.6064 [0.6231; 4.1412] 0.98 0.3266
FlET 3.6078 [0.8330; 15.6257] 1.72 0.0862
McT 1.2642 [0.5567; 2.8706] 0.56 0.5753
MiET 1.4730 [0.6380; 3.4012] 0.91 0.3643
ReET 1.6444 [0.4868; 5.5545] 0.80 0.4232
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.1313; tau = 0.3624; I^2 = 20.7% [0.0%; 55.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 1.0952 [0.3997; 3.0013] .
1.2045 [0.5384; 2.6950] AqET .
1.1791 [0.4036; 3.4444] 0.9789 [0.2835; 3.3795] CBT
0.5250 [0.1380; 1.9979] 0.4359 [0.0916; 2.0749] 0.4453 [0.0803; 2.4699]
1.4983 [0.5775; 3.8870] 1.2439 [0.3974; 3.8932] 1.2707 [0.5404; 2.9879]
1.2858 [0.5004; 3.3040] 1.0675 [0.3409; 3.3431] 1.0905 [0.4721; 2.5192]
1.1519 [0.3410; 3.8909] 0.9563 [0.2345; 3.8995] 0.9769 [0.2127; 4.4859]
1.8941 [1.0374; 3.4583] 1.5725 [0.6805; 3.6338] 1.6064 [0.6231; 4.1412]
0.5250 [0.1380; 1.9979] . 0.9444 [0.1738; 5.1314]
. . .
. 1.9041 [0.6544; 5.5409] 1.8634 [0.6894; 5.0369]
FlET . .
2.8539 [0.5527; 14.7365] McT 0.8594 [0.4603; 1.6046]
2.4492 [0.4770; 12.5769] 0.8582 [0.4768; 1.5447] MiET
2.1940 [0.3599; 13.3762] 0.7688 [0.1810; 3.2646] 0.8958 [0.2106; 3.8103]
3.6078 [0.8330; 15.6257] 1.2642 [0.5567; 2.8706] 1.4730 [0.6380; 3.4012]
0.8370 [0.2128; 3.2916] 2.0873 [1.0422; 4.1806]
. 1.3839 [0.4303; 4.4511]
. 0.4636 [0.1092; 1.9682]
. .
. 1.7579 [0.5559; 5.5594]
. 3.6483 [0.5181; 25.6920]
ReET 1.1948 [0.3038; 4.6990]
1.6444 [0.4868; 5.5545] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
WlNi 0.8498
McT 0.6669
MiET 0.5327
AqET 0.5026
ReET 0.4813
CBT 0.4734
AeET 0.3524
FlET 0.1407
Q statistics to assess homogeneity / consistency
Q df p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
McT:MiET 3.69 1 0.0548
WlNi:McT 2.68 1 0.1015
WlNi:AqET 3.16 3 0.3683
WlNi:AeET 2.44 4 0.6547
AeET:AqET 0.02 1 0.8762
WlNi:MiET 0.02 1 0.9025
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.1504)
Detached design Q df p-value
WlNi:CBT 2.68 5 0.7487
CBT:McT:MiET 2.42 4 0.6596
WlNi:AeET 7.08 5 0.2150
WlNi:MiET 8.14 5 0.1489
WlNi:McT 8.43 5 0.1341
AeET:MiET 9.04 5 0.1073
McT:MiET 9.20 5 0.1015
AeET:AqET 9.33 5 0.0965
WlNi:AqET 9.33 5 0.0965
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 8.08 6 0.2321 0.2427 0.0589
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
AeET:AqET 2 0.64 1.2045 1.0952 1.4245 0.7688 -0.31 0.7585
AeET:MiET 1 0.31 1.2858 0.9444 1.4779 0.6390 -0.43 0.6669
AeET:ReET 1 0.79 1.1519 0.8370 3.8351 0.2182 -1.00 0.3183
AeET:WlNi 6 0.75 1.8941 2.0873 1.4125 1.4777 0.55 0.5826
AqET:WlNi 4 0.51 1.5725 1.3839 1.8000 0.7688 -0.31 0.7585
CBT:McT 1 0.64 1.2707 1.9041 0.6178 3.0823 1.24 0.2157
CBT:MiET 1 0.71 1.0905 1.8634 0.2956 6.3032 1.96 0.0503
CBT:WlNi 1 0.43 1.6064 0.4636 4.0867 0.1135 -2.23 0.0258
McT:MiET 3 0.89 0.8582 0.8594 0.8489 1.0123 0.01 0.9896
McT:WlNi 2 0.51 1.2642 1.7579 0.9002 1.9529 0.80 0.4239
MiET:WlNi 2 0.18 1.4730 3.6483 1.2010 3.0378 1.01 0.3135
ReET:WlNi 1 0.79 1.6444 1.1948 5.4749 0.2182 -1.00 0.3183
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet contains only 1 study with 1 comparison between 2 treatments. Due to its limited size, the analysis will be simplified.
Code
Code
[1] "DryN" "MasT"
[1] 2
Code
[1] 1
[1] 1
Code
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 64
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'OR', comparison: 'DryN' vs 'MasT'):
OR 95%-CI z p-value
DryN 0.6444 [0.1003; 4.1421] -0.46 0.6435
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Castro-Sanchez2011 DryN MasT -0.4394 0.9493
Number of treatment arms (by study):
narms
Castro-Sanchez2011 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Castro-Sanchez2011 DryN MasT 0.6444 [0.1003; 4.1421]
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 64
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'OR', comparison: 'DryN' vs 'MasT'):
OR 95%-CI z p-value
DryN 0.6444 [0.1003; 4.1421] -0.46 0.6435
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Select the procedures performed
The third subnet contains 4 studies, 4 comparisons and 4 treatments.
Code
Code
[1] "MfT" "Acu" "rTMS" "PlaSh"
[1] 4
Code
[1] 4
[1] 4
Code
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 295
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'PlaSh'):
OR 95%-CI z p-value
Acu 0.7683 [0.3521; 1.6766] -0.66 0.5079
MfT 1.0559 [0.4113; 2.7111] 0.11 0.9100
PlaSh . . . .
rTMS 0.5833 [0.1362; 2.4976] -0.73 0.4676
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh 0.2184 0.5493
Colbert1999 MfT PlaSh -0.4855 0.9968
Harris2005 Acu PlaSh -0.2636 0.3981
Mhalla2011 PlaSh rTMS 0.5390 0.7420
Number of treatment arms (by study):
narms
Alfano2001 2
Colbert1999 2
Harris2005 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Alfano2001 MfT PlaSh 1.0559 [0.4113; 2.7111]
Colbert1999 MfT PlaSh 1.0559 [0.4113; 2.7111]
Harris2005 Acu PlaSh 0.7683 [0.3521; 1.6766]
Mhalla2011 PlaSh rTMS 1.7143 [0.4004; 7.3399]
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 295
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'PlaSh'):
OR 95%-CI z p-value
Acu 0.7683 [0.3521; 1.6766] -0.66 0.5079
MfT 1.0559 [0.4113; 2.7111] 0.11 0.9100
PlaSh . . . .
rTMS 0.5833 [0.1362; 2.4976] -0.73 0.4676
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu . 0.7683 [0.3521; 1.6766]
0.7276 [0.2140; 2.4743] MfT 1.0559 [0.4113; 2.7111]
0.7683 [0.3521; 1.6766] 1.0559 [0.4113; 2.7111] PlaSh
1.3171 [0.2528; 6.8611] 1.8101 [0.3199; 10.2437] 1.7143 [0.4004; 7.3399]
.
.
1.7143 [0.4004; 7.3399]
rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
rTMS 0.7144
Acu 0.6042
PlaSh 0.3443
MfT 0.3371
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:MfT 0.38 1 0.5363
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:MfT 0 0 0.7276 . 0.7276 . . .
Acu:PlaSh 1 1.00 0.7683 0.7683 . . . .
Acu:rTMS 0 0 1.3171 . 1.3171 . . .
MfT:PlaSh 2 1.00 1.0559 1.0559 . . . .
MfT:rTMS 0 0 1.8101 . 1.8101 . . .
rTMS:PlaSh 1 1.00 0.5833 0.5833 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_aim <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Im")|>
mutate(
nRT1 = as.numeric(nRT1),
nRT2 = as.numeric(nRT2),
dp1 = as.numeric(dp1),
dp2 = as.numeric(dp2)
) |>
tidyr::drop_na() # excliniodo as linhas com NA
# Transform to contrast-based
pw_aim <- pairwise(
treat = list(Treat1, Treat2),
event = list(dp1, dp2), # observed events in each arm
n = list(nRT1, nRT2), # total number of patients in each arm
studlab = StudyID,
data = data_aim,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_aim)
net_con
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of treatments: n = 8
Number of designs: d = 7
Number of networks: 1
There are three sub-networks:
Network:
- 13 studies
- 13 comparisons
- 8 treatments
The network is fully connected.
2.0.1 Network
Select the procedures performed
The Network contains 13 studies, 13 comparisons and 8 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "Acu" "rTMS" "tDCS" "McT" "Elec" "Bal" "PlaSh" "WlNi"
[1] 8
Code
[1] 25
[1] 25
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Boyer2014 rTMS PlaSh NA NA
Brietzke2019 tDCS PlaSh NA NA
Buskila2001 Bal WlNi NA NA
Curatolo2017 tDCS PlaSh NA NA
Fioravanti2007 Bal WlNi NA NA
Mendonça2011 tDCS PlaSh NA NA
Neumann2001 Bal WlNi NA NA
Passard2007 rTMS PlaSh NA NA
Short2011 rTMS PlaSh NA NA
Stival2013 Acu PlaSh NA NA
Valle2009 tDCS PlaSh NA NA
Forogh2021 rTMS tDCS NA NA
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of observations: o = 658
Number of treatments: n = 8
Number of designs: d = 7
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.2076 [0.0066; 6.5694] -0.89 0.3725
Bal 4.5714 [0.4731; 44.1699] 1.31 0.1891
Elec 0.0459 [0.0006; 3.5298] -1.39 0.1643
McT 1.4655 [0.6439; 3.3355] 0.91 0.3624
PlaSh 0.8102 [0.0367; 17.8804] -0.13 0.8939
rTMS 0.7546 [0.0276; 20.6479] -0.17 0.8676
tDCS 1.0000 [0.0591; 16.9279] 0.00 1.0000
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 70.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Boyer2014: rTMS vs PlaSh
- Brietzke2019: tDCS vs PlaSh
- Buskila2001: Bal vs WlNi
- Curatolo2017: tDCS vs PlaSh
- Fioravanti2007: Bal vs WlNi
- Mendonça2011: tDCS vs PlaSh
- Neumann2001: Bal vs WlNi
- Passard2007: rTMS vs PlaSh
- Short2011: rTMS vs PlaSh
- Stival2013: Acu vs PlaSh
- Valle2009: tDCS vs PlaSh
- Forogh2021: rTMS vs tDCS
Code
Original data:
treat1 treat2 TE seTE
Assefi2005 Acu PlaSh -1.3614 0.7836
Cheng2019 PlaSh rTMS 0.9985 1.6933
Fagerlund2015 tDCS WlNi 0.0000 1.4434
Fregni2006 PlaSh tDCS -0.3819 1.6758
Hamnes2012 McT WlNi 0.3822 0.4196
Khedr2017 PlaSh tDCS -0.0000 1.0541
Lauretti2013 Elec PlaSh -2.8717 1.5552
Lee2012 PlaSh rTMS -0.2231 1.0000
Mhalla2011 PlaSh rTMS -0.0000 1.4510
Ozkurt2011 Bal WlNi 1.5198 1.1573
Tekin2014 PlaSh rTMS 1.2141 1.6565
Yagci2014 PlaSh rTMS -0.6131 1.2885
deMelo2020 PlaSh tDCS -0.3185 0.9170
Number of treatment arms (by study):
narms
Assefi2005 2
Cheng2019 2
Fagerlund2015 2
Fregni2006 2
Hamnes2012 2
Khedr2017 2
Lauretti2013 2
Lee2012 2
Mhalla2011 2
Ozkurt2011 2
Tekin2014 2
Yagci2014 2
deMelo2020 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Assefi2005 Acu PlaSh 0.2563 [0.0552; 1.1904]
Cheng2019 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Fagerlund2015 tDCS WlNi 1.0000 [0.0591; 16.9279]
Fregni2006 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Hamnes2012 McT WlNi 1.4655 [0.6439; 3.3355]
Khedr2017 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Lauretti2013 Elec PlaSh 0.0566 [0.0027; 1.1930]
Lee2012 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Mhalla2011 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Ozkurt2011 Bal WlNi 4.5714 [0.4731; 44.1699]
Tekin2014 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Yagci2014 PlaSh rTMS 1.0737 [0.3321; 3.4707]
deMelo2020 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of observations: o = 658
Number of treatments: n = 8
Number of designs: d = 7
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.2076 [0.0066; 6.5694] -0.89 0.3725
Bal 4.5714 [0.4731; 44.1699] 1.31 0.1891
Elec 0.0459 [0.0006; 3.5298] -1.39 0.1643
McT 1.4655 [0.6439; 3.3355] 0.91 0.3624
PlaSh 0.8102 [0.0367; 17.8804] -0.13 0.8939
rTMS 0.7546 [0.0276; 20.6479] -0.17 0.8676
tDCS 1.0000 [0.0591; 16.9279] 0.00 1.0000
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 70.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
0.0454 [0.0007; 2.8313] Bal
4.5278 [0.1491; 137.4731] 99.6828 [0.7423; 13386.5505]
0.1417 [0.0041; 4.9371] 3.1193 [0.2794; 34.8246]
0.2563 [0.0552; 1.1904] 5.6424 [0.1217; 261.6026]
0.2752 [0.0398; 1.9008] 6.0580 [0.1096; 334.7204]
0.2076 [0.0286; 1.5074] 4.5714 [0.1217; 171.7126]
0.2076 [0.0066; 6.5694] 4.5714 [0.4731; 44.1699]
. .
. .
Elec .
0.0313 [0.0004; 2.6018] McT
0.0566 [0.0027; 1.1930] 1.8089 [0.0736; 44.4478]
0.0608 [0.0023; 1.5929] 1.9421 [0.0642; 58.7682]
0.0459 [0.0017; 1.2382] 1.4655 [0.0770; 27.8905]
0.0459 [0.0006; 3.5298] 1.4655 [0.6439; 3.3355]
0.2563 [0.0552; 1.1904] .
. .
0.0566 [0.0027; 1.1930] .
. .
PlaSh 1.0737 [0.3321; 3.4707]
1.0737 [0.3321; 3.4707] rTMS
0.8102 [0.2313; 2.8374] 0.7546 [0.1356; 4.2009]
0.8102 [0.0367; 17.8804] 0.7546 [0.0276; 20.6479]
. .
. 4.5714 [0.4731; 44.1699]
. .
. 1.4655 [0.6439; 3.3355]
0.8102 [0.2313; 2.8374] .
. .
tDCS 1.0000 [0.0591; 16.9279]
1.0000 [0.0591; 16.9279] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
Elec 0.9311
Acu 0.7998
WlNi 0.4819
rTMS 0.4772
PlaSh 0.4517
tDCS 0.3904
McT 0.3308
Bal 0.1371
Q statistics to assess homogeneity / consistency
Q df p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:rTMS 1.15 4 0.8867
PlaSh:tDCS 0.06 2 0.9684
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:Bal 0 0 0.0454 . 0.0454 . . .
Acu:Elec 0 0 4.5278 . 4.5278 . . .
Acu:McT 0 0 0.1417 . 0.1417 . . .
Acu:PlaSh 1 1.00 0.2563 0.2563 . . . .
Acu:rTMS 0 0 0.2752 . 0.2752 . . .
Acu:tDCS 0 0 0.2076 . 0.2076 . . .
Acu:WlNi 0 0 0.2076 . 0.2076 . . .
Bal:Elec 0 0 99.6828 . 99.6828 . . .
Bal:McT 0 0 3.1193 . 3.1193 . . .
Bal:PlaSh 0 0 5.6424 . 5.6424 . . .
Bal:rTMS 0 0 6.0580 . 6.0580 . . .
Bal:tDCS 0 0 4.5714 . 4.5714 . . .
Bal:WlNi 1 1.00 4.5714 4.5714 . . . .
Elec:McT 0 0 0.0313 . 0.0313 . . .
Elec:PlaSh 1 1.00 0.0566 0.0566 . . . .
Elec:rTMS 0 0 0.0608 . 0.0608 . . .
Elec:tDCS 0 0 0.0459 . 0.0459 . . .
Elec:WlNi 0 0 0.0459 . 0.0459 . . .
McT:PlaSh 0 0 1.8089 . 1.8089 . . .
McT:rTMS 0 0 1.9421 . 1.9421 . . .
McT:tDCS 0 0 1.4655 . 1.4655 . . .
McT:WlNi 1 1.00 1.4655 1.4655 . . . .
PlaSh:rTMS 5 1.00 1.0737 1.0737 . . . .
PlaSh:tDCS 3 1.00 0.8102 0.8102 . . . .
PlaSh:WlNi 0 0 0.8102 . 0.8102 . . .
rTMS:tDCS 0 0 0.7546 . 0.7546 . . .
rTMS:WlNi 0 0 0.7546 . 0.7546 . . .
tDCS:WlNi 1 1.00 1.0000 1.0000 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_ash <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Sh")|>
mutate(
nRT1 = as.numeric(nRT1),
nRT2 = as.numeric(nRT2),
dp1 = as.numeric(dp1),
dp2 = as.numeric(dp2)
)
# Transform to contrast-based
pw_ash <- pairwise(
treat = list(Treat1, Treat2, Treat3),
event = list(dp1, dp2, dp3), # observed events in each arm
n = list(nRT1, nRT2, nRT3), # total number of patients in each arm
studlab = StudyID,
data = data_ash,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_ash)
net_con
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of treatments: n = 22
Number of designs: d = 40
Number of networks: 1
There are three sub-networks:
Network:
- 92 studies
- 100 comparisons
- 22 treatments
The network is fully connected.
2.0.2 Network
Select the procedures performed
The Network contains 92 studies, 100 comparisons and 22 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "Acu" "rTMS" "tDCS" "McT" "Elec" "Bal" "PlaSh" "WlNi"
[1] 22
Code
[1] 131
[1] 119
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Bressan2008 AeET FlET NA NA
Brietzke2019 tDCS PlaSh NA NA
Castro-Sanchez2019 DryN MasT NA NA
Castro-Sanchez2020 DryN Elec NA NA
Colbert1999 MfT PlaSh NA NA
daSilva2008 AqET WlNi NA NA
Evcik2002 Bal WlNi NA NA
Fonseca2019 AqET CBT NA NA
Garcia2006 CBT WlNi NA NA
Gomez-Hernandez2019 AeET MiET NA NA
Gowans2001 AqET WlNi NA NA
Harris2005 Acu PlaSh NA NA
Harte2013 Acu PlaSh NA NA
Kayo2012 AeET ReET NA NA
Kayo2012 AeET WlNi NA NA
Kayo2012 ReET WlNi NA NA
King2002 CBT McT NA NA
Mhalla2011 rTMS PlaSh NA NA
Oka2019 MfT PlaSh NA NA
Schachter2003 AeET WlNi NA NA
Sencan2004 AeET PlaSh NA NA
Sevimli2015 AeET AqET NA NA
Sevimli2015 AeET MiET NA NA
Sevimli2015 AqET MiET NA NA
To2017 tDCS PlaSh NA NA
Torres2015 MnT CBT NA NA
Ugurlu2017 Acu PlaSh NA NA
Valim2003 AeET FlET NA NA
Vallejo2015 CBT WlNi NA NA
Izquierdo-Alventosa2020 MiET WlNi NA NA
Mingorance2021.2 WBV WlNi NA NA
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of observations: o = 6562
Number of treatments: n = 22
Number of designs: d = 40
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.9064 [0.3001; 2.7381] -0.17 0.8617
AeET 1.5649 [0.7452; 3.2863] 1.18 0.2368
AqET 1.4451 [0.5955; 3.5068] 0.81 0.4157
Bal 1.0603 [0.3278; 3.4296] 0.10 0.9221
CBT 1.1774 [0.8906; 1.5566] 1.15 0.2517
Cry 2.3731 [0.0929; 60.6503] 0.52 0.6012
DryN 1.0000 [0.3828; 2.6122] 0.00 1.0000
Elec 1.2453 [0.4358; 3.5585] 0.41 0.6822
FlET 1.2249 [0.5146; 2.9155] 0.46 0.6467
HtT 0.2014 [0.0204; 1.9872] -1.37 0.1701
MasT 0.7564 [0.2386; 2.3975] -0.47 0.6352
McT 0.9869 [0.6857; 1.4203] -0.07 0.9433
MfT 0.8232 [0.2311; 2.9323] -0.30 0.7641
MiET 1.0008 [0.6534; 1.5329] 0.00 0.9971
MnT 0.5819 [0.1658; 2.0422] -0.85 0.3980
PlaSh 0.9915 [0.3883; 2.5320] -0.02 0.9858
Plt 2.7557 [0.6206; 12.2373] 1.33 0.1826
ReET 1.1212 [0.5497; 2.2869] 0.31 0.7531
rTMS 0.7426 [0.2192; 2.5163] -0.48 0.6327
tDCS 0.8650 [0.2536; 2.9511] -0.23 0.8169
WBV 1.1111 [0.2705; 4.5634] 0.15 0.8838
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 27.5%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Bressan2008: AeET vs FlET
- Brietzke2019: tDCSvs PlaSh
- Castro-Sanchez2019: DryN vs MasT
- Castro-Sanchez2020: DryN vs Elec
- Colbert1999: MfT vs PlaSh
- daSilva2008: AqET vs WlNi
- Evcik2002: Bal vs WlNi
- Fonseca2019: AqET vs CBT
- Garcia2006: CBT vs WlNi
- Gomez-Hernandez2019: AeET vs MiET
- Gowans2001: AqET vs WlNi
- Harris2005: Acuvs PlaSh
- Harte2013: Acu vs PlaSh
- Kayo2012: AeET vs ReET
- Kayo2012: AeET vs WlNi
- Kayo2012: ReET vs WlNi
- King2002: CBT vs McT
- Mhalla2011: rTMSvs PlaSh
- Oka2019: MfT vs PlaSh
- Schachter2003: AeET vs WlNi
- Sencan2004: AeETvs PlaSh
- Sevimli2015: AeET vs AqET
- Sevimli2015: AeET vs MiET
- Sevimli2015: AqET vs MiET
- To2017: tDCSvs PlaSh
- Torres2015: MnT vs CBT
- Ugurlu2017: Acuvs PlaSh
- Valim2003: AeET vs FlET
- Vallejo2015: CBT vs WlNi
- Izquierdo-Alventosa2020: MiET vs WlNi
- Mingorance2021.2: WBV vs WlNi
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 MnT WlNi 0.2032 1.6625 1.6625 2
Alentorn-Geli2008 McT WBV -1.1820 1.6833 2.4493 3 *
Alentorn-Geli2008 McT WlNi -1.7838 1.6048 1.9855 3 *
Alentorn-Geli2008 WBV WlNi -0.6018 1.1175 1.1951 3 *
Alfano2001 MfT PlaSh -0.0174 0.5669 0.5669 2
Altan2004 AqET Bal -1.1856 1.1918 1.1918 2
Ang2010 CBT WlNi -0.1431 1.0694 1.0694 2
Ardic2007 Bal WlNi -2.2203 1.5719 1.5719 2
Assefi2005 Acu PlaSh -0.3533 0.6141 0.6141 2
Assis2006 AeET AqET 1.1701 1.1853 1.1853 2
Assumpçao2018 FlET ReET 0.4212 0.8469 0.9695 3 *
Assumpçao2018 FlET WlNi 0.6931 0.9449 1.1648 3 *
Assumpçao2018 ReET WlNi 0.2719 0.9835 1.2927 3 *
Astin2003 CBT McT -0.0625 0.3536 0.3536 2
Baumueller2017 CBT WlNi 0.0000 1.4510 1.4510 2
Bircan2008 AeET ReET 0.0000 1.0742 1.0742 2
Bongi2012 CBT McT 0.0000 0.7958 0.7958 2
Bongi2010 CBT WlNi -2.0890 1.5432 1.5432 2
Bourgault2015 McT WlNi 1.1331 1.6540 1.6540 2
Boyer2014 PlaSh rTMS 0.9008 0.7996 0.7996 2
Calandre2009 AqET FlET 0.7538 0.6006 0.6006 2
Carretero2009 PlaSh rTMS 0.1671 1.4724 1.4724 2
Carson2010 McT WlNi 0.5725 0.9577 0.9577 2
Casanueva2014 DryN WlNi 0.0000 0.4899 0.4899 2
Collado-Mateo2017 MiET WlNi -1.9500 1.1044 1.1044 2
Da Costa2005 MiET WlNi 0.2693 0.6517 0.6517 2
Dailey2019 Elec PlaSh 0.4692 0.2901 0.2901 2
deMedeiros2020 AqET Plt -0.4595 0.9703 0.9703 2
Ekici2017 MasT Plt -2.1282 1.1318 1.1318 2
Ekici2008 MasT Plt -0.5754 1.2565 1.2565 2
Espi-Lopes2016 MiET WlNi 1.2685 1.1426 1.1426 2
Fernandes2016 AeET AqET 0.0846 1.0278 1.0278 2
Fitzgibbon2018 PlaSh rTMS -0.6061 1.2939 1.2939 2
Friedberg2019 CBT WlNi 0.9555 0.9628 0.9628 2
Garcia-Martinez2012 MiET WlNi 0.7732 1.2885 1.2885 2
Giannotti2014 McT WlNi -1.6094 1.1673 1.1673 2
Glasgow2017 ReET WlNi 1.0217 1.6795 1.6795 2
Goldway2019 CBT PlaSh -0.3285 0.8069 0.8069 2
Gowans1999 McT WlNi 1.1474 1.1962 1.1962 2
Gunther1994 Bal CBT 1.1756 1.6795 1.6795 2
Hargrove2012 PlaSh tDCS 0.3137 0.5862 0.5862 2
Hsu2010 CBT WlNi 1.9459 1.5423 1.5423 2
Jensen2012 CBT WlNi 0.4568 0.7870 0.7870 2
Jones2002 McT ReET 0.0000 0.6362 0.6362 2
Jones2012 CBT McT 2.0268 1.5252 1.5252 2
Karatay2018 Acu PlaSh 0.0000 1.2500 1.2500 2
Kurt2016 Bal MiET -0.3151 0.7988 0.7988 2
Lami2018 CBT WlNi 1.1517 0.4971 0.4971 2
Lauche2016 MasT PlaSh 0.1788 0.5132 0.5132 2
Lopes-Rodrigues2012 AqET FlET 0.1158 0.4815 0.4815 2
Lopes-Rodrigues2013 AqET FlET 0.1517 0.5513 0.5513 2
Luciano2014 CBT WlNi 0.5942 0.7583 0.7583 2
Lynch2012 McT WlNi 1.5266 0.8100 0.8100 2
Maestu2013 PlaSh rTMS -0.1823 0.6619 0.6619 2
McCrae2019 CBT WlNi 0.0364 0.4658 0.4658 2
Menzies2014 CBT WlNi 0.7885 0.7508 0.7508 2
Mist2018 Acu CBT -1.0296 0.9599 0.9599 2
Norrengaard1997 AeET HtT 2.6391 1.2012 1.5648 3 *
Norrengaard1997 AeET MiET 1.7047 0.8006 0.8546 3 *
Norrengaard1997 HtT MiET -0.9343 1.2181 1.6681 3 *
Olivares2011 WBV WlNi 0.4055 0.9718 0.9718 2
Paolucci2016 MfT PlaSh -0.6931 1.2780 1.2780 2
Paolucci2015 MiET WlNi 0.4055 0.9789 0.9789 2
Parra-Delgado2013 CBT WlNi 1.6720 1.5891 1.5891 2
Pereira-Pernambuco2018 McT WlNi -0.1967 0.6187 0.6187 2
Perez-Aranda2019 CBT WlNi -0.2933 0.3285 0.3285 2
Picard2013 CBT WlNi -0.7270 1.2521 1.2521 2
Redondo2004 CBT MiET 0.1586 0.7610 0.7610 2
Richards2002 AeET McT -0.0357 0.4499 0.4499 2
Rivera2018 Cry WlNi 0.8642 1.6536 1.6536 2
Salaffi2015 McT WlNi 0.0000 1.0274 1.0274 2
Schmidt2011 CBT WlNi 0.5320 0.4669 0.4669 2
Silva2019 CBT ReET -0.1967 0.6282 0.6282 2
Simister2018 CBT WlNi 0.8313 0.7545 0.7545 2
Soares2002 CBT WlNi -0.4626 0.8185 0.8185 2
Sutbeyaz2009 MfT PlaSh -0.3285 0.8155 0.8155 2
Tomas-Carus2007b&c AqET WlNi 1.0986 1.6676 1.6676 2
Vas2016 Acu PlaSh 1.4240 1.1292 1.1292 2
Verkaik2013 CBT WlNi -0.4349 0.6286 0.6286 2
Wang2018 McT MiET -0.3430 0.3500 0.3500 2
Wicksell2013 CBT WlNi 0.8755 1.2024 1.2024 2
Wong2018 McT WlNi -1.8036 1.1534 1.1534 2
Arakaki2021 FlET ReET 0.7673 0.9078 0.9078 2
Atan2020 MiET WlNi -1.2098 0.9584 0.9584 2
Barranengoa-Cuadra 2021 CBT WlNi -0.4203 0.9290 0.9290 2
Cao2020 Acu MasT 0.4418 0.9519 0.9519 2
Ceballos-Laita2020 McT MiET -1.2417 1.2153 1.2153 2
Coste2021 MnT PlaSh -0.5960 0.4839 0.4839 2
Jamison2021 Elec PlaSh -0.4513 0.4853 0.4853 2
Nadal-Nicolas2020 MasT PlaSh -1.9459 1.1711 1.1711 2
Rodriguez-Mansilla2021 McT MiET -0.0000 0.4511 0.5643 3 *
Rodriguez-Mansilla2021 MiET WlNi -0.3805 0.4379 0.5309 3 *
Rodriguez-Mansilla2021 McT WlNi -0.3805 0.4379 0.5309 3 *
Sarmento2020 McT PlaSh 0.0000 0.8367 0.8367 2
Tanwar2020 PlaSh rTMS 2.2892 1.5061 1.5061 2
Udina-Cortés2020 Elec PlaSh 0.2429 0.9706 0.9706 2
Lacroix2022 PlaSh rTMS 0.1082 1.0267 1.0267 2
Paolucci2022 CBT MiET 0.6931 1.2860 1.2860 2
Park2021 FlET ReET -0.0000 0.7303 0.7303 2
Samartin-Veiga2022 PlaSh tDCS -0.0238 0.5576 0.5576 2
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Altan2004 2
Ang2010 2
Ardic2007 2
Assefi2005 2
Assis2006 2
Assumpçao2018 3
Astin2003 2
Baumueller2017 2
Bircan2008 2
Bongi2012 2
Bongi2010 2
Bourgault2015 2
Boyer2014 2
Calandre2009 2
Carretero2009 2
Carson2010 2
Casanueva2014 2
Collado-Mateo2017 2
Da Costa2005 2
Dailey2019 2
deMedeiros2020 2
Ekici2017 2
Ekici2008 2
Espi-Lopes2016 2
Fernandes2016 2
Fitzgibbon2018 2
Friedberg2019 2
Garcia-Martinez2012 2
Giannotti2014 2
Glasgow2017 2
Goldway2019 2
Gowans1999 2
Gunther1994 2
Hargrove2012 2
Hsu2010 2
Jensen2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kurt2016 2
Lami2018 2
Lauche2016 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Maestu2013 2
McCrae2019 2
Menzies2014 2
Mist2018 2
Norrengaard1997 3
Olivares2011 2
Paolucci2016 2
Paolucci2015 2
Parra-Delgado2013 2
Pereira-Pernambuco2018 2
Perez-Aranda2019 2
Picard2013 2
Redondo2004 2
Richards2002 2
Rivera2018 2
Salaffi2015 2
Schmidt2011 2
Silva2019 2
Simister2018 2
Soares2002 2
Sutbeyaz2009 2
Tomas-Carus2007b&c 2
Vas2016 2
Verkaik2013 2
Wang2018 2
Wicksell2013 2
Wong2018 2
Arakaki2021 2
Atan2020 2
Barranengoa-Cuadra 2021 2
Cao2020 2
Ceballos-Laita2020 2
Coste2021 2
Jamison2021 2
Nadal-Nicolas2020 2
Rodriguez-Mansilla2021 3
Sarmento2020 2
Tanwar2020 2
Udina-Cortés2020 2
Lacroix2022 2
Paolucci2022 2
Park2021 2
Samartin-Veiga2022 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Albers2018 MnT WlNi 0.5819 [0.1658; 2.0422]
Alentorn-Geli2008 McT WBV 0.8882 [0.2081; 3.7905]
Alentorn-Geli2008 McT WlNi 0.9869 [0.6857; 1.4203]
Alentorn-Geli2008 WBV WlNi 1.1111 [0.2705; 4.5634]
Alfano2001 MfT PlaSh 0.8303 [0.3523; 1.9565]
Altan2004 AqET Bal 1.3629 [0.3654; 5.0835]
Ang2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Ardic2007 Bal WlNi 1.0603 [0.3278; 3.4296]
Assefi2005 Acu PlaSh 0.9142 [0.4044; 2.0664]
Assis2006 AeET AqET 1.0829 [0.4187; 2.8008]
Assumpçao2018 FlET ReET 1.0925 [0.4980; 2.3966]
Assumpçao2018 FlET WlNi 1.2249 [0.5146; 2.9155]
Assumpçao2018 ReET WlNi 1.1212 [0.5497; 2.2869]
Astin2003 CBT McT 1.1930 [0.8139; 1.7487]
Baumueller2017 CBT WlNi 1.1774 [0.8906; 1.5566]
Bircan2008 AeET ReET 1.3957 [0.5806; 3.3549]
Bongi2012 CBT McT 1.1930 [0.8139; 1.7487]
Bongi2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Bourgault2015 McT WlNi 0.9869 [0.6857; 1.4203]
Boyer2014 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Calandre2009 AqET FlET 1.1798 [0.6684; 2.0824]
Carretero2009 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Carson2010 McT WlNi 0.9869 [0.6857; 1.4203]
Casanueva2014 DryN WlNi 1.0000 [0.3828; 2.6122]
Collado-Mateo2017 MiET WlNi 1.0008 [0.6534; 1.5329]
Da Costa2005 MiET WlNi 1.0008 [0.6534; 1.5329]
Dailey2019 Elec PlaSh 1.2559 [0.7828; 2.0149]
deMedeiros2020 AqET Plt 0.5244 [0.1223; 2.2479]
Ekici2017 MasT Plt 0.2745 [0.0699; 1.0779]
Ekici2008 MasT Plt 0.2745 [0.0699; 1.0779]
Espi-Lopes2016 MiET WlNi 1.0008 [0.6534; 1.5329]
Fernandes2016 AeET AqET 1.0829 [0.4187; 2.8008]
Fitzgibbon2018 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Friedberg2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Garcia-Martinez2012 MiET WlNi 1.0008 [0.6534; 1.5329]
Giannotti2014 McT WlNi 0.9869 [0.6857; 1.4203]
Glasgow2017 ReET WlNi 1.1212 [0.5497; 2.2869]
Goldway2019 CBT PlaSh 1.1874 [0.4723; 2.9856]
Gowans1999 McT WlNi 0.9869 [0.6857; 1.4203]
Gunther1994 Bal CBT 0.9006 [0.2761; 2.9373]
Hargrove2012 PlaSh tDCS 1.1462 [0.5193; 2.5302]
Hsu2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Jensen2012 CBT WlNi 1.1774 [0.8906; 1.5566]
Jones2002 McT ReET 0.8802 [0.4337; 1.7862]
Jones2012 CBT McT 1.1930 [0.8139; 1.7487]
Karatay2018 Acu PlaSh 0.9142 [0.4044; 2.0664]
Kurt2016 Bal MiET 1.0595 [0.3329; 3.3715]
Lami2018 CBT WlNi 1.1774 [0.8906; 1.5566]
Lauche2016 MasT PlaSh 0.7628 [0.3395; 1.7142]
Lopes-Rodrigues2012 AqET FlET 1.1798 [0.6684; 2.0824]
Lopes-Rodrigues2013 AqET FlET 1.1798 [0.6684; 2.0824]
Luciano2014 CBT WlNi 1.1774 [0.8906; 1.5566]
Lynch2012 McT WlNi 0.9869 [0.6857; 1.4203]
Maestu2013 PlaSh rTMS 1.3352 [0.6113; 2.9162]
McCrae2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Menzies2014 CBT WlNi 1.1774 [0.8906; 1.5566]
Mist2018 Acu CBT 0.7699 [0.2592; 2.2868]
Norrengaard1997 AeET HtT 7.7705 [0.8074; 74.7823]
Norrengaard1997 AeET MiET 1.5636 [0.7378; 3.3138]
Norrengaard1997 HtT MiET 0.2012 [0.0207; 1.9520]
Olivares2011 WBV WlNi 1.1111 [0.2705; 4.5634]
Paolucci2016 MfT PlaSh 0.8303 [0.3523; 1.9565]
Paolucci2015 MiET WlNi 1.0008 [0.6534; 1.5329]
Parra-Delgado2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Pereira-Pernambuco2018 McT WlNi 0.9869 [0.6857; 1.4203]
Perez-Aranda2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Picard2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Redondo2004 CBT MiET 1.1764 [0.7425; 1.8641]
Richards2002 AeET McT 1.5857 [0.7954; 3.1612]
Rivera2018 Cry WlNi 2.3731 [0.0929; 60.6503]
Salaffi2015 McT WlNi 0.9869 [0.6857; 1.4203]
Schmidt2011 CBT WlNi 1.1774 [0.8906; 1.5566]
Silva2019 CBT ReET 1.0501 [0.5158; 2.1378]
Simister2018 CBT WlNi 1.1774 [0.8906; 1.5566]
Soares2002 CBT WlNi 1.1774 [0.8906; 1.5566]
Sutbeyaz2009 MfT PlaSh 0.8303 [0.3523; 1.9565]
Tomas-Carus2007b&c AqET WlNi 1.4451 [0.5955; 3.5068]
Vas2016 Acu PlaSh 0.9142 [0.4044; 2.0664]
Verkaik2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Wang2018 McT MiET 0.9861 [0.6481; 1.5004]
Wicksell2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Wong2018 McT WlNi 0.9869 [0.6857; 1.4203]
Arakaki2021 FlET ReET 1.0925 [0.4980; 2.3966]
Atan2020 MiET WlNi 1.0008 [0.6534; 1.5329]
Barranengoa-Cuadra 2021 CBT WlNi 1.1774 [0.8906; 1.5566]
Cao2020 Acu MasT 1.1984 [0.4291; 3.3471]
Ceballos-Laita2020 McT MiET 0.9861 [0.6481; 1.5004]
Coste2021 MnT PlaSh 0.5869 [0.2354; 1.4632]
Jamison2021 Elec PlaSh 1.2559 [0.7828; 2.0149]
Nadal-Nicolas2020 MasT PlaSh 0.7628 [0.3395; 1.7142]
Rodriguez-Mansilla2021 McT MiET 0.9861 [0.6481; 1.5004]
Rodriguez-Mansilla2021 MiET WlNi 1.0008 [0.6534; 1.5329]
Rodriguez-Mansilla2021 McT WlNi 0.9869 [0.6857; 1.4203]
Sarmento2020 McT PlaSh 0.9953 [0.3890; 2.5470]
Tanwar2020 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Udina-Cortés2020 Elec PlaSh 1.2559 [0.7828; 2.0149]
Lacroix2022 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Paolucci2022 CBT MiET 1.1764 [0.7425; 1.8641]
Park2021 FlET ReET 1.0925 [0.4980; 2.3966]
Samartin-Veiga2022 PlaSh tDCS 1.1462 [0.5193; 2.5302]
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of observations: o = 6562
Number of treatments: n = 22
Number of designs: d = 40
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.9064 [0.3001; 2.7381] -0.17 0.8617
AeET 1.5649 [0.7452; 3.2863] 1.18 0.2368
AqET 1.4451 [0.5955; 3.5068] 0.81 0.4157
Bal 1.0603 [0.3278; 3.4296] 0.10 0.9221
CBT 1.1774 [0.8906; 1.5566] 1.15 0.2517
Cry 2.3731 [0.0929; 60.6503] 0.52 0.6012
DryN 1.0000 [0.3828; 2.6122] 0.00 1.0000
Elec 1.2453 [0.4358; 3.5585] 0.41 0.6822
FlET 1.2249 [0.5146; 2.9155] 0.46 0.6467
HtT 0.2014 [0.0204; 1.9872] -1.37 0.1701
MasT 0.7564 [0.2386; 2.3975] -0.47 0.6352
McT 0.9869 [0.6857; 1.4203] -0.07 0.9433
MfT 0.8232 [0.2311; 2.9323] -0.30 0.7641
MiET 1.0008 [0.6534; 1.5329] 0.00 0.9971
MnT 0.5819 [0.1658; 2.0422] -0.85 0.3980
PlaSh 0.9915 [0.3883; 2.5320] -0.02 0.9858
Plt 2.7557 [0.6206; 12.2373] 1.33 0.1826
ReET 1.1212 [0.5497; 2.2869] 0.31 0.7531
rTMS 0.7426 [0.2192; 2.5163] -0.48 0.6327
tDCS 0.8650 [0.2536; 2.9511] -0.23 0.8169
WBV 1.1111 [0.2705; 4.5634] 0.15 0.8838
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 27.5%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu . .
0.5792 [0.1611; 2.0830] AeET 1.7341 [0.3785; 7.9442]
0.6272 [0.1660; 2.3701] 1.0829 [0.4187; 2.8008] AqET
0.8549 [0.1763; 4.1451] 1.4759 [0.3956; 5.5061] 1.3629 [0.3654; 5.0835]
0.7699 [0.2592; 2.2868] 1.3291 [0.6267; 2.8188] 1.2274 [0.5023; 2.9991]
0.3819 [0.0124; 11.7261] 0.6594 [0.0237; 18.3266] 0.6089 [0.0212; 17.5302]
0.9064 [0.2096; 3.9198] 1.5649 [0.4650; 5.2659] 1.4451 [0.3911; 5.3389]
0.7279 [0.2836; 1.8683] 1.2566 [0.3679; 4.2922] 1.1604 [0.3227; 4.1725]
0.7400 [0.1955; 2.8017] 1.2776 [0.4872; 3.3499] 1.1798 [0.6684; 2.0824]
4.5008 [0.3617; 56.0073] 7.7705 [0.8074; 74.7823] 7.1755 [0.6532; 78.8241]
1.1984 [0.4291; 3.3471] 2.0690 [0.5593; 7.6530] 1.9106 [0.5109; 7.1441]
0.9185 [0.3019; 2.7938] 1.5857 [0.7954; 3.1612] 1.4643 [0.6039; 3.5502]
1.1011 [0.3373; 3.5946] 1.9009 [0.4589; 7.8749] 1.7554 [0.4052; 7.6037]
0.9057 [0.2859; 2.8695] 1.5636 [0.7378; 3.3138] 1.4439 [0.5727; 3.6406]
1.5576 [0.4625; 5.2459] 2.6891 [0.6552; 11.0373] 2.4833 [0.5768; 10.6907]
0.9142 [0.4044; 2.0664] 1.5783 [0.5079; 4.9042] 1.4574 [0.4437; 4.7869]
0.3289 [0.0680; 1.5915] 0.5679 [0.1172; 2.7511] 0.5244 [0.1223; 2.2479]
0.8084 [0.2291; 2.8532] 1.3957 [0.5806; 3.3549] 1.2889 [0.5406; 3.0725]
1.2206 [0.3945; 3.7759] 2.1072 [0.5318; 8.3498] 1.9459 [0.4690; 8.0734]
1.0478 [0.3362; 3.2656] 1.8090 [0.4538; 7.2117] 1.6705 [0.4003; 6.9717]
0.8158 [0.1361; 4.8915] 1.4084 [0.2872; 6.9074] 1.3006 [0.2462; 6.8705]
0.9064 [0.3001; 2.7381] 1.5649 [0.7452; 3.2863] 1.4451 [0.5955; 3.5068]
. 0.3571 [0.0544; 2.3438] .
. . .
0.3056 [0.0296; 3.1592] . .
Bal 3.2400 [0.1205; 87.1251] .
0.9006 [0.2761; 2.9373] CBT .
0.4468 [0.0142; 14.0314] 0.4961 [0.0192; 12.8328] Cry
1.0603 [0.2327; 4.8313] 1.1774 [0.4332; 3.2003] 2.3731 [0.0808; 69.7118]
0.8514 [0.1827; 3.9679] 0.9455 [0.3355; 2.6645] 1.9057 [0.0632; 57.4888]
0.8656 [0.2274; 3.2956] 0.9612 [0.4012; 2.3030] 1.9375 [0.0676; 55.4961]
5.2650 [0.4185; 66.2399] 5.8464 [0.5897; 57.9656] 11.7839 [0.2229; 623.0541]
1.4019 [0.2824; 6.9585] 1.5567 [0.4967; 4.8781] 3.1376 [0.1006; 97.8653]
1.0744 [0.3290; 3.5084] 1.1930 [0.8139; 1.7487] 2.4047 [0.0922; 62.7226]
1.2880 [0.2360; 7.0298] 1.4302 [0.4061; 5.0366] 2.8827 [0.0887; 93.6650]
1.0595 [0.3329; 3.3715] 1.1764 [0.7425; 1.8641] 2.3712 [0.0902; 62.3182]
1.8221 [0.3367; 9.8604] 2.0233 [0.5813; 7.0425] 4.0781 [0.1262; 131.7906]
1.0694 [0.2472; 4.6262] 1.1874 [0.4723; 2.9856] 2.3934 [0.0820; 69.8617]
0.3848 [0.0620; 2.3891] 0.4272 [0.0965; 1.8910] 0.8612 [0.0243; 30.5045]
0.9457 [0.2565; 3.4869] 1.0501 [0.5158; 2.1378] 2.1166 [0.0766; 58.4504]
1.4278 [0.2715; 7.5091] 1.5854 [0.4735; 5.3085] 3.1956 [0.1001; 101.9865]
1.2257 [0.2319; 6.4789] 1.3611 [0.4037; 4.5888] 2.7434 [0.0858; 87.7657]
0.9543 [0.1524; 5.9742] 1.0597 [0.2515; 4.4643] 2.1359 [0.0623; 73.2838]
1.0603 [0.3278; 3.4296] 1.1774 [0.8906; 1.5566] 2.3731 [0.0929; 60.6503]
. . .
. . .
. . 1.3467 [0.7329; 2.4746]
. . .
. . .
. . .
DryN . .
0.8030 [0.1936; 3.3315] Elec .
0.8164 [0.2239; 2.9773] 1.0167 [0.2820; 3.6658] FlET
4.9655 [0.4148; 59.4414] 6.1836 [0.5097; 75.0217] 6.0821 [0.5533; 66.8546]
1.3221 [0.2947; 5.9312] 1.6464 [0.6447; 4.2047] 1.6194 [0.4270; 6.1418]
1.0133 [0.3629; 2.8295] 1.2618 [0.4408; 3.6125] 1.2412 [0.5204; 2.9600]
1.2147 [0.2471; 5.9710] 1.5127 [0.5684; 4.0261] 1.4879 [0.3427; 6.4608]
0.9992 [0.3495; 2.8570] 1.2443 [0.4151; 3.7296] 1.2239 [0.4917; 3.0467]
1.7184 [0.3538; 8.3475] 2.1400 [0.7651; 5.9856] 2.1049 [0.4883; 9.0739]
1.0085 [0.2636; 3.8593] 1.2559 [0.7828; 2.0149] 1.2353 [0.3750; 4.0697]
0.3629 [0.0616; 2.1373] 0.4519 [0.0982; 2.0793] 0.4445 [0.0982; 2.0110]
0.8919 [0.2698; 2.9489] 1.1107 [0.3309; 3.7278] 1.0925 [0.4980; 2.3966]
1.3466 [0.2850; 6.3622] 1.6769 [0.6729; 4.1788] 1.6494 [0.3965; 6.8604]
1.1560 [0.2434; 5.4913] 1.4396 [0.5725; 3.6203] 1.4160 [0.3385; 5.9241]
0.9000 [0.1631; 4.9671] 1.1208 [0.1934; 6.4953] 1.1024 [0.2108; 5.7651]
1.0000 [0.3828; 2.6122] 1.2453 [0.4358; 3.5585] 1.2249 [0.5146; 2.9155]
. 1.5556 [0.2408; 10.0492] .
14.0000 [1.3295; 147.4289] . 0.9649 [0.3995; 2.3304]
. . .
. . .
. . 1.0378 [0.5585; 1.9285]
. . .
. . .
. . .
. . .
HtT . .
0.2663 [0.0210; 3.3703] MasT .
0.2041 [0.0209; 1.9951] 0.7664 [0.2412; 2.4351] McT
0.2446 [0.0182; 3.2815] 0.9188 [0.2826; 2.9875] 1.1988 [0.3360; 4.2767]
0.2012 [0.0207; 1.9520] 0.7558 [0.2285; 2.5000] 0.9861 [0.6481; 1.5004]
0.3461 [0.0259; 4.6166] 1.2997 [0.3860; 4.3769] 1.6959 [0.4806; 5.9847]
0.2031 [0.0175; 2.3554] 0.7628 [0.3395; 1.7142] 0.9953 [0.3890; 2.5470]
0.0731 [0.0049; 1.0830] 0.2745 [0.0699; 1.0779] 0.3581 [0.0806; 1.5915]
0.1796 [0.0170; 1.8947] 0.6746 [0.1862; 2.4440] 0.8802 [0.4337; 1.7862]
0.2712 [0.0207; 3.5511] 1.0185 [0.3306; 3.1375] 1.3289 [0.3916; 4.5100]
0.2328 [0.0177; 3.0585] 0.8744 [0.2817; 2.7135] 1.1409 [0.3339; 3.8983]
0.1813 [0.0123; 2.6629] 0.6807 [0.1102; 4.2054] 0.8882 [0.2081; 3.7905]
0.2014 [0.0204; 1.9872] 0.7564 [0.2386; 2.3975] 0.9869 [0.6857; 1.4203]
. . .
. 5.5000 [1.1453; 26.4124] .
. . .
. 0.7297 [0.1525; 3.4925] .
. 1.3461 [0.3729; 4.8594] .
. . .
. . .
. . .
. . .
. 0.3929 [0.0361; 4.2764] .
. . .
. 0.7675 [0.4524; 1.3019] .
MfT . .
0.8226 [0.2219; 3.0489] MiET .
1.4147 [0.4042; 4.9511] 1.7198 [0.4696; 6.2983] MnT
0.8303 [0.3523; 1.9565] 1.0094 [0.3748; 2.7184] 0.5869 [0.2354; 1.4632]
0.2987 [0.0554; 1.6118] 0.3632 [0.0795; 1.6600] 0.2112 [0.0387; 1.1529]
0.7342 [0.1799; 2.9961] 0.8926 [0.4125; 1.9314] 0.5190 [0.1284; 2.0981]
1.1085 [0.3476; 3.5354] 1.3477 [0.3816; 4.7591] 0.7836 [0.2355; 2.6069]
0.9517 [0.2963; 3.0569] 1.1570 [0.3255; 4.1127] 0.6727 [0.2008; 2.2535]
0.7409 [0.1112; 4.9388] 0.9008 [0.2068; 3.9240] 0.5238 [0.0793; 3.4575]
0.8232 [0.2311; 2.9323] 1.0008 [0.6534; 1.5329] 0.5819 [0.1658; 2.0422]
1.0451 [0.3959; 2.7591] . .
. . 1.0000 [0.1218; 8.2099]
. 0.6316 [0.0943; 4.2302] .
. . .
0.7200 [0.1481; 3.5009] . 0.8214 [0.2398; 2.8140]
. . .
. . .
1.2559 [0.7828; 2.0149] . .
. . 1.4031 [0.5560; 3.5411]
. . .
0.8492 [0.3380; 2.1336] 0.2387 [0.0459; 1.2405] .
1.0000 [0.1940; 5.1543] . 1.0000 [0.2874; 3.4797]
0.8303 [0.3523; 1.9565] . .
. . .
0.5510 [0.2135; 1.4224] . .
PlaSh . .
0.3598 [0.0843; 1.5359] Plt .
0.8843 [0.2901; 2.6962] 2.4578 [0.5229; 11.5532] ReET
1.3352 [0.6113; 2.9162] 3.7108 [0.7140; 19.2874] 1.5098 [0.3870; 5.8898]
1.1462 [0.5193; 2.5302] 3.1857 [0.6098; 16.6420] 1.2961 [0.3302; 5.0873]
0.8924 [0.1643; 4.8473] 2.4803 [0.3189; 19.2880] 1.0091 [0.2082; 4.8922]
0.9915 [0.3883; 2.5320] 2.7557 [0.6206; 12.2373] 1.1212 [0.5497; 2.2869]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . 0.3067 [0.0113; 8.3086]
. . .
. . .
. . .
1.3352 [0.6113; 2.9162] 1.1462 [0.5193; 2.5302] .
. . .
. . .
rTMS . .
0.8585 [0.2823; 2.6110] tDCS .
0.6684 [0.1036; 4.3101] 0.7786 [0.1202; 5.0431] WBV
0.7426 [0.2192; 2.5163] 0.8650 [0.2536; 2.9511] 1.1111 [0.2705; 4.5634]
.
.
3.0000 [0.1142; 78.8136]
0.1086 [0.0050; 2.3645]
1.2413 [0.9090; 1.6951]
2.3731 [0.0929; 60.6503]
1.0000 [0.3828; 2.6122]
.
2.0000 [0.3138; 12.7450]
.
.
0.8968 [0.5343; 1.5051]
.
0.8168 [0.4627; 1.4421]
1.2254 [0.0471; 31.8681]
.
.
1.5894 [0.3012; 8.3878]
.
.
0.9721 [0.2310; 4.0920]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
HtT 0.8996
MnT 0.7745
rTMS 0.6707
MasT 0.6675
MfT 0.6121
tDCS 0.5881
Acu 0.5665
McT 0.5474
WlNi 0.5389
MiET 0.5321
DryN 0.5183
PlaSh 0.5123
Bal 0.4880
WBV 0.4671
ReET 0.4539
FlET 0.4066
CBT 0.3930
Elec 0.3646
Cry 0.3123
AqET 0.3047
AeET 0.2530
Plt 0.1286
Q statistics to assess homogeneity / consistency
Q df p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
MasT:PlaSh 2.76 1 0.0966
WlNi:McT 9.60 7 0.2122
WlNi:MiET 6.62 5 0.2505
Elec:PlaSh 2.65 2 0.2657
MasT:Plt 0.84 1 0.3585
Acu:PlaSh 1.91 2 0.3842
CBT:McT 1.78 2 0.4100
McT:MiET 0.50 1 0.4773
AeET:AqET 0.48 1 0.4890
FlET:ReET 0.43 1 0.5102
WlNi:CBT 16.29 18 0.5721
PlaSh:rTMS 3.37 5 0.6427
AqET:FlET 0.79 2 0.6738
PlaSh:tDCS 0.17 1 0.6766
CBT:MiET 0.13 1 0.7206
MfT:PlaSh 0.28 2 0.8709
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.8632)
Detached design Q df p-value
AeET:McT 12.67 22 0.9420
WlNi:Bal 13.35 22 0.9228
McT:MiET 13.46 22 0.9195
AqET:Bal 13.51 22 0.9181
AqET:FlET 14.39 22 0.8870
Acu:CBT 14.85 22 0.8686
Bal:CBT 15.15 22 0.8559
WlNi:McT:WBV 14.37 21 0.8532
AeET:AqET 15.21 22 0.8530
CBT:PlaSh 15.23 22 0.8521
WlNi:CBT 15.25 22 0.8512
Bal:MiET 15.33 22 0.8476
WlNi:McT:MiET 14.55 21 0.8449
CBT:McT 15.50 22 0.8399
WlNi:ReET 15.51 22 0.8396
FlET:ReET 15.53 22 0.8383
WlNi:McT 15.56 22 0.8369
Acu:PlaSh 15.56 22 0.8369
MnT:PlaSh 15.58 22 0.8363
WlNi:MnT 15.58 22 0.8363
CBT:ReET 15.58 22 0.8360
MasT:PlaSh 15.58 22 0.8360
WlNi:WBV 15.60 22 0.8352
WlNi:AqET 15.61 22 0.8349
AeET:ReET 15.70 22 0.8307
Acu:MasT 15.71 22 0.8302
MasT:Plt 15.72 22 0.8293
AqET:Plt 15.72 22 0.8293
McT:ReET 15.75 22 0.8279
CBT:MiET 15.76 22 0.8274
WlNi:MiET 15.77 22 0.8270
McT:PlaSh 15.81 22 0.8251
WlNi:FlET:ReET 15.40 21 0.8024
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 15.81 23 0.8632 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:CBT 1 0.33 0.7699 0.3571 1.1333 0.3151 -0.98 0.3265
Acu:MasT 1 0.30 1.1984 1.5556 1.0699 1.4540 0.33 0.7427
Acu:PlaSh 3 0.71 0.9142 1.0451 0.6631 1.5762 0.50 0.6183
AeET:AqET 2 0.39 1.0829 1.7341 0.8016 2.1633 0.78 0.4376
AeET:HtT 1 0.92 7.7705 14.0000 0.0055 2558.3630 1.79 0.0736
AeET:McT 1 0.61 1.5857 0.9649 3.4739 0.2778 -1.77 0.0762
AeET:MiET 1 0.23 1.5636 5.5000 1.0759 5.1119 1.79 0.0736
AeET:ReET 1 0.17 1.3957 1.0000 1.4969 0.6680 -0.34 0.7328
AqET:Bal 1 0.32 1.3629 0.3056 2.7331 0.1118 -1.52 0.1288
AqET:FlET 3 0.87 1.1798 1.3467 0.4784 2.8150 1.19 0.2332
AqET:Plt 1 0.59 0.5244 0.6316 0.4031 1.5668 0.30 0.7658
AqET:WlNi 1 0.07 1.4451 3.0000 1.3636 2.2000 0.46 0.6490
Bal:CBT 1 0.13 0.9006 3.2400 0.7450 4.3489 0.82 0.4140
Bal:MiET 1 0.55 1.0595 0.7297 1.6608 0.4394 -0.69 0.4882
Bal:WlNi 1 0.15 1.0603 0.1086 1.5614 0.0695 -1.57 0.1169
CBT:McT 3 0.38 1.1930 1.0378 1.2998 0.7984 -0.56 0.5753
CBT:MiET 2 0.13 1.1764 1.3461 1.1533 1.1672 0.22 0.8256
CBT:PlaSh 1 0.34 1.1874 0.7200 1.5363 0.4687 -0.76 0.4454
CBT:ReET 1 0.33 1.0501 0.8214 1.1873 0.6918 -0.48 0.6321
CBT:WlNi 19 0.80 1.1774 1.2413 0.9492 1.3077 0.75 0.4538
FlET:ReET 3 0.72 1.0925 1.4031 0.5737 2.4457 1.00 0.3165
FlET:WlNi 1 0.22 1.2249 2.0000 1.0673 1.8739 0.59 0.5570
HtT:MiET 1 0.91 0.2012 0.3929 0.0003 1213.4924 1.79 0.0736
MasT:PlaSh 2 0.77 0.7628 0.8492 0.5301 1.6020 0.48 0.6324
MasT:Plt 2 0.69 0.2745 0.2387 0.3740 0.6382 -0.30 0.7658
McT:MiET 3 0.63 0.9861 0.7675 1.5132 0.5072 -1.53 0.1261
McT:PlaSh 1 0.33 0.9953 1.0000 0.9930 1.0070 0.01 0.9945
McT:ReET 1 0.32 0.8802 1.0000 0.8284 1.2071 0.24 0.8075
McT:WBV 1 0.19 0.8882 0.3067 1.1463 0.2675 -0.70 0.4818
McT:WlNi 10 0.49 0.9869 0.8968 1.0837 0.8275 -0.51 0.6103
MiET:WlNi 7 0.56 1.0008 0.8168 1.2996 0.6285 -1.06 0.2895
MnT:PlaSh 1 0.93 0.5869 0.5510 1.3211 0.4171 -0.49 0.6274
MnT:WlNi 1 0.15 0.5819 1.2254 0.5111 2.3976 0.49 0.6274
ReET:WlNi 2 0.18 1.1212 1.5894 1.0366 1.5334 0.46 0.6490
WBV:WlNi 2 0.97 1.1111 0.9721 50.3217 0.0193 -0.99 0.3221
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)