Network Meta-Analysis
1 NMA for continuous outcomes
Please: Select an outcome to proceed.
Code
# Read data
data_pim <- read_excel(
"data/Banco de Dados_Rstudio (1).xlsx",
sheet = "P | Im"
) |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2),
n = list(N1, N2),
mean = list(Mean1, Mean2),
sd = list(SD1, SD2),
studlab = StudyID,
data = data_pim
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 33
Number of pairwise comparisons: m = 33
Number of treatments: n = 12
Number of designs: d = 11
Number of networks: 2
Details on subnetworks:
subnetwork k m n
1 5 5 4
2 28 28 8
There are two sub-networks:
Subnet 1:
- 5 studies
- 5 comparisons
- 4 treatments
Subnet 2:
- 28 studies
- 28 comparisons
- 8 treatments
There are two treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 5 studies, 5 comparisons and 4 treatments.
Code
Code
[1] "Mnt" "Bal" "Cry" "WlNi"
[1] 4
Code
[1] 5
Code
Number of studies: k = 5
Number of pairwise comparisons: m = 5
Number of observations: o = 232
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -1.2500 [-2.2645; -0.2355] -2.41 0.0157
Cry -6.5000 [-8.0223; -4.9777] -8.37 < 0.0001
Mnt 0.0100 [-1.6642; 1.6842] 0.01 0.9907
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.4690; tau = 0.6849; I^2 = 58.5% [0.0%; 88.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Albers2018 Mnt WlNi 0.0100 0.5105
Buskila2001 Bal WlNi -1.7000 0.4818
Neumann2001 Bal WlNi -0.2100 0.5836
Ozkurt2011 Bal WlNi -1.8500 0.6816
Kiyak2022 Cry WlNi -6.5000 0.3664
Number of treatment arms (by study):
narms
Albers2018 2
Buskila2001 2
Neumann2001 2
Ozkurt2011 2
Kiyak2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 Mnt WlNi 0.0100 [-1.6642; 1.6842]
Buskila2001 Bal WlNi -1.2500 [-2.2645; -0.2355]
Neumann2001 Bal WlNi -1.2500 [-2.2645; -0.2355]
Ozkurt2011 Bal WlNi -1.2500 [-2.2645; -0.2355]
Kiyak2022 Cry WlNi -6.5000 [-8.0223; -4.9777]
Number of studies: k = 5
Number of pairwise comparisons: m = 5
Number of observations: o = 232
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -1.2500 [-2.2645; -0.2355] -2.41 0.0157
Cry -6.5000 [-8.0223; -4.9777] -8.37 < 0.0001
Mnt 0.0100 [-1.6642; 1.6842] 0.01 0.9907
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.4690; tau = 0.6849; I^2 = 58.5% [0.0%; 88.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Bal .
5.2500 [ 3.4206; 7.0794] Cry
-1.2600 [-3.2176; 0.6976] -6.5100 [-8.7728; -4.2472]
-1.2500 [-2.2645; -0.2355] -6.5000 [-8.0223; -4.9777]
. -1.2500 [-2.2645; -0.2355]
. -6.5000 [-8.0223; -4.9777]
Mnt 0.0100 [-1.6642; 1.6842]
0.0100 [-1.6642; 1.6842] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Cry 1.0000
Bal 0.6295
Mnt 0.1996
WlNi 0.1708
Q statistics to assess homogeneity / consistency
Q df p-value
Total 4.82 2 0.0898
Within designs 4.82 2 0.0898
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:Bal 4.82 2 0.0898
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0.6849 0.4690
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Bal:Cry 0 0 5.2500 . 5.2500 . . .
Bal:Mnt 0 0 -1.2600 . -1.2600 . . .
Bal:WlNi 3 1.00 -1.2500 -1.2500 . . . .
Cry:Mnt 0 0 -6.5100 . -6.5100 . . .
Cry:WlNi 1 1.00 -6.5000 -6.5000 . . . .
Mnt:WlNi 1 1.00 0.0100 0.0100 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet is more robust, containing 28 studies, 28 comparisons and 8 treatments. This is the main analysis network.
Code
Code
[1] "Acu" "CBT" "rTMS" "tDCS" "PbT" "Elec" "MfT"
[1] "PlaSh" "tDCS"
Code
[1] "Acu" "CBT" "rTMS" "tDCS" "PbT" "Elec" "MfT" "PlaSh"
[1] 8
Code
[1] 28
[1] 28
Code
Number of studies: k = 28
Number of pairwise comparisons: m = 28
Number of observations: o = 1074
Number of treatments: n = 8
Number of designs: d = 8
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0541 [-1.3868; 1.2787] -0.08 0.9366
CBT -1.3351 [-2.8528; 0.1826] -1.72 0.0847
Elec -2.8500 [-4.8458; -0.8542] -2.80 0.0051
MfT -0.4900 [-2.2447; 1.2647] -0.55 0.5842
PbT -2.3053 [-3.5414; -1.0691] -3.66 0.0003
PlaSh . . . .
rTMS -1.2459 [-1.8859; -0.6059] -3.82 0.0001
tDCS -1.3183 [-1.8843; -0.7523] -4.57 < 0.0001
Quantifying heterogeneity / inconsistency:
tau^2 = 0.5164; tau = 0.7186; I^2 = 65.7% [46.3%; 78.1%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 61.3 21 < 0.0001
Within designs 60.6 20 < 0.0001
Between designs 0.7 1 0.4031
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Assefi2005 Acu PlaSh 0.6200 0.4939
Babu2007 CBT PlaSh -1.7000 1.0070
Boyer2014 PlaSh rTMS -0.3000 0.7445
Brietzke2019 PlaSh tDCS 1.7900 0.3988
Cheng2019 PlaSh rTMS 0.9000 1.3742
Curatolo2017 PlaSh tDCS 3.2000 0.8829
Fagerlund2015 PlaSh tDCS 0.9600 0.5231
Fregni2006 PlaSh tDCS -0.2800 0.8557
Gur2002a PbT PlaSh -2.0900 0.4526
Gur2002b PbT PlaSh -2.5700 0.6087
Khedr2017 PlaSh tDCS 2.0000 0.3598
Lauretti2013 Elec PlaSh -2.8500 0.7215
Lee2012 PlaSh rTMS 0.5600 1.3631
Maestu2013 PlaSh rTMS -0.4400 0.5614
Mendonça2011 PlaSh tDCS 2.1800 1.1082
Mhalla2011 PlaSh rTMS 1.8300 0.3834
Oka2019 MfT PlaSh -0.4900 0.5340
Passard2007 PlaSh rTMS 1.4400 0.5723
Short2011 PlaSh rTMS 1.0800 0.8475
Stival2013 Acu PlaSh -1.1000 0.8145
Tekin2014 PlaSh rTMS 2.6300 0.4230
Valle2009 PlaSh tDCS 1.2200 0.7126
Yagci2014 PlaSh rTMS 1.1700 1.0040
deMelo2020 PlaSh tDCS -0.3000 1.1882
Forogh2021 rTMS tDCS -1.0600 0.7943
Caumo2023 PlaSh tDCS 0.8100 0.1056
Gungomus2023 CBT PlaSh -1.1000 0.6852
Loreti2023 PlaSh tDCS 1.9900 0.4623
Number of treatment arms (by study):
narms
Assefi2005 2
Babu2007 2
Boyer2014 2
Brietzke2019 2
Cheng2019 2
Curatolo2017 2
Fagerlund2015 2
Fregni2006 2
Gur2002a 2
Gur2002b 2
Khedr2017 2
Lauretti2013 2
Lee2012 2
Maestu2013 2
Mendonça2011 2
Mhalla2011 2
Oka2019 2
Passard2007 2
Short2011 2
Stival2013 2
Tekin2014 2
Valle2009 2
Yagci2014 2
deMelo2020 2
Forogh2021 2
Caumo2023 2
Gungomus2023 2
Loreti2023 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Assefi2005 Acu PlaSh -0.0541 [-1.3868; 1.2787]
Babu2007 CBT PlaSh -1.3351 [-2.8528; 0.1826]
Boyer2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Brietzke2019 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Cheng2019 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Curatolo2017 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Fagerlund2015 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Fregni2006 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Gur2002a PbT PlaSh -2.3053 [-3.5414; -1.0691]
Gur2002b PbT PlaSh -2.3053 [-3.5414; -1.0691]
Khedr2017 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Lauretti2013 Elec PlaSh -2.8500 [-4.8458; -0.8542]
Lee2012 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Maestu2013 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Mendonça2011 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Mhalla2011 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Oka2019 MfT PlaSh -0.4900 [-2.2447; 1.2647]
Passard2007 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Short2011 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Stival2013 Acu PlaSh -0.0541 [-1.3868; 1.2787]
Tekin2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
Valle2009 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Yagci2014 PlaSh rTMS 1.2459 [ 0.6059; 1.8859]
deMelo2020 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Forogh2021 rTMS tDCS 0.0724 [-0.7466; 0.8914]
Caumo2023 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Gungomus2023 CBT PlaSh -1.3351 [-2.8528; 0.1826]
Loreti2023 PlaSh tDCS 1.3183 [ 0.7523; 1.8843]
Number of studies: k = 28
Number of pairwise comparisons: m = 28
Number of observations: o = 1074
Number of treatments: n = 8
Number of designs: d = 8
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0541 [-1.3868; 1.2787] -0.08 0.9366
CBT -1.3351 [-2.8528; 0.1826] -1.72 0.0847
Elec -2.8500 [-4.8458; -0.8542] -2.80 0.0051
MfT -0.4900 [-2.2447; 1.2647] -0.55 0.5842
PbT -2.3053 [-3.5414; -1.0691] -3.66 0.0003
PlaSh . . . .
rTMS -1.2459 [-1.8859; -0.6059] -3.82 0.0001
tDCS -1.3183 [-1.8843; -0.7523] -4.57 < 0.0001
Quantifying heterogeneity / inconsistency:
tau^2 = 0.5164; tau = 0.7186; I^2 = 65.7% [46.3%; 78.1%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 61.3 21 < 0.0001
Within designs 60.6 20 < 0.0001
Between designs 0.7 1 0.4031
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
1.2810 [-0.7388; 3.3008] CBT
2.7959 [ 0.3961; 5.1958] 1.5149 [-0.9924; 4.0222]
0.4359 [-1.7675; 2.6394] -0.8451 [-3.1651; 1.4749]
2.2512 [ 0.4335; 4.0689] 0.9702 [-0.9872; 2.9276]
-0.0541 [-1.3868; 1.2787] -1.3351 [-2.8528; 0.1826]
1.1918 [-0.2866; 2.6703] -0.0892 [-1.7363; 1.5579]
1.2643 [-0.1836; 2.7122] -0.0168 [-1.6366; 1.6031]
. .
. .
Elec .
-2.3600 [-5.0175; 0.2975] MfT
-0.5447 [-2.8923; 1.8029] 1.8153 [-0.3312; 3.9617]
-2.8500 [-4.8458; -0.8542] -0.4900 [-2.2447; 1.2647]
-1.6041 [-3.7000; 0.4918] 0.7559 [-1.1119; 2.6237]
-1.5317 [-3.6062; 0.5428] 0.8283 [-1.0154; 2.6721]
. -0.0541 [-1.3868; 1.2787]
. -1.3351 [-2.8528; 0.1826]
. -2.8500 [-4.8458; -0.8542]
. -0.4900 [-2.2447; 1.2647]
PbT -2.3053 [-3.5414; -1.0691]
-2.3053 [-3.5414; -1.0691] PlaSh
-1.0594 [-2.4514; 0.3326] 1.2459 [ 0.6059; 1.8859]
-0.9869 [-2.3465; 0.3726] 1.3183 [ 0.7523; 1.8843]
. .
. .
. .
. .
. .
1.1307 [ 0.4612; 1.8002] 1.4065 [ 0.8208; 1.9921]
rTMS -1.0600 [-3.1593; 1.0393]
0.0724 [-0.7466; 0.8914] tDCS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Elec 0.9088
PbT 0.8510
tDCS 0.5685
CBT 0.5639
rTMS 0.5361
MfT 0.2985
Acu 0.1582
PlaSh 0.1151
Q statistics to assess homogeneity / consistency
Q df p-value
Total 61.30 21 < 0.0001
Within designs 60.60 20 < 0.0001
Between designs 0.70 1 0.4031
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:tDCS 30.32 9 0.0004
PlaSh:rTMS 26.38 8 0.0009
PlaSh:Acu 3.26 1 0.0710
PlaSh:PbT 0.40 1 0.5269
PlaSh:CBT 0.24 1 0.6223
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.4031)
Detached design Q df p-value
PlaSh:rTMS 0.00 0 --
PlaSh:tDCS 0.00 0 --
rTMS:tDCS 0.00 0 --
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 1.30 1 0.2544 0.7336 0.5382
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
rTMS:PlaSh 9 0.91 -1.2459 -1.1307 -2.4665 1.3357 1.15 0.2509
tDCS:PlaSh 10 0.93 -1.3183 -1.4065 -0.0707 -1.3357 -1.15 0.2509
rTMS:tDCS 1 0.15 0.0724 -1.0600 0.2757 -1.3357 -1.15 0.2509
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_psh <- read_excel(
"data/Banco de Dados_Rstudio (1).xlsx",
sheet = "P | Sh"
) |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_psh,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of treatments: n = 23
Number of designs: d = 52
Number of networks: 1
There are network:
Network:
- 106 studies
- 120 comparisons
- 23 treatments
The network is fully connected.
1.0.1 Network
Select the procedures performed
The network contain 106 studies, 120 comparisons and 24 treatments.
Code
Code
[1] "Mnt" "McT" "WBV" "MfT" "AqET" "CBT" "ReET" "Bal" "Acu" "AeET"
[11] "FlET" "MiET" "MasT" "PBT" "rTMS" "tDCS" "DryN" "Elec" "HtT" "Cry"
[1] "WlNi" "WBV" "PlaSh" "Bal" "FlET" "AqET" "ReET" "Mnt" "CBT"
[10] "McT" "MasT" "Elec" "MiET" "Plt" "HtT"
Code
[1] "Mnt" "McT" "WBV" "MfT" "AqET" "CBT" "ReET" "Bal" "Acu"
[10] "AeET" "FlET" "MiET" "MasT" "PBT" "rTMS" "tDCS" "DryN" "Elec"
[19] "HtT" "Cry" "WlNi" "PlaSh" "Plt"
[1] 23
Code
[1] 120
Code
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of observations: o = 6143
Number of treatments: n = 23
Number of designs: d = 52
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -1.7935 [-2.9294; -0.6575] -3.09 0.0020
AeET -1.2998 [-2.1502; -0.4494] -3.00 0.0027
AqET -1.9221 [-2.8393; -1.0048] -4.11 < 0.0001
Bal -2.9171 [-4.3997; -1.4346] -3.86 0.0001
CBT -0.7386 [-1.2727; -0.2046] -2.71 0.0067
Cry -1.9000 [-4.2887; 0.4887] -1.56 0.1190
DryN -3.7102 [-5.1748; -2.2456] -4.97 < 0.0001
Elec -2.0429 [-3.4009; -0.6849] -2.95 0.0032
FlET -0.4309 [-1.4536; 0.5918] -0.83 0.4089
HtT -1.2789 [-3.5901; 1.0323] -1.08 0.2781
MasT -2.1060 [-3.1744; -1.0376] -3.86 0.0001
McT -1.2493 [-1.9228; -0.5758] -3.64 0.0003
MfT -2.3029 [-3.7612; -0.8446] -3.10 0.0020
MiET -0.8438 [-1.5902; -0.0974] -2.22 0.0267
Mnt -1.8719 [-3.0491; -0.6946] -3.12 0.0018
PBT -3.5668 [-5.5915; -1.5422] -3.45 0.0006
PlaSh -0.6100 [-1.5885; 0.3684] -1.22 0.2217
Plt -2.2228 [-3.6227; -0.8228] -3.11 0.0019
ReET -1.2728 [-2.3172; -0.2285] -2.39 0.0169
rTMS -1.8852 [-3.2900; -0.4805] -2.63 0.0085
tDCS -2.0028 [-3.4352; -0.5704] -2.74 0.0061
WBV -1.7234 [-3.2959; -0.1509] -2.15 0.0317
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 1.1758; tau = 1.0843; I^2 = 83.7% [80.6%; 86.4%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 559.52 91 < 0.0001
Within designs 287.35 54 < 0.0001
Between designs 272.16 37 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 Mnt WlNi -2.0900 0.6365 1.2573 2
Alentorn-Geli2008 McT WBV 1.8100 0.7468 1.5847 3 *
Alentorn-Geli2008 McT WlNi -1.2900 0.7892 1.6412 3 *
Alentorn-Geli2008 WBV WlNi -3.1000 0.8292 1.7036 3 *
Alfano2001 MfT PlaSh -0.6200 0.5434 1.2128 2
Alptug2023 Mnt WlNi -3.4000 0.6919 1.2863 2
Altan2004 AqET Bal 0.1800 0.6504 1.2644 2
Ang2010 CBT WlNi 0.1000 0.6426 1.2604 2
Arakaki2021 FlET ReET 2.1800 0.8189 1.3588 2
Ardic2007 Bal WlNi -4.2500 0.6931 1.2869 2
Assefi2005 Acu PlaSh 0.6100 0.5069 1.1969 2
Assis2006 AeET AqET 0.5000 0.5320 1.2078 2
Assumpçao2018 FlET ReET 0.2000 1.0224 1.8254 3 *
Assumpçao2018 FlET WlNi -1.8000 1.0018 1.7920 3 *
Assumpçao2018 ReET WlNi -2.0000 1.0408 1.8574 3 *
Atan2020 MiET WlNi -3.6000 0.4812 1.1863 2
Audoux2023 MasT Mnt -1.8000 0.8445 1.3744 2
Baelz2022 Acu PlaSh -0.7000 0.8905 1.4031 2
Barranengoa-Cuadra2021 CBT WlNi -2.6000 0.3939 1.1536 2
Bircan2008 AeET ReET -0.4600 0.6518 1.2651 2
Boggiss2022 CBT PBT 4.0000 1.1997 1.6171 2
Bongi2010 CBT WlNi -2.8300 0.5312 1.2074 2
Bongi2012 CBT McT 0.6500 0.3294 1.1333 2
Bourgault2015 McT WlNi -0.1300 0.5563 1.2187 2
Boyer2014 PlaSh rTMS -1.2000 0.8003 1.3477 2
Bressan2008 AeET FlET 0.4700 1.1193 1.5584 2
Brietzke2019 PlaSh tDCS 2.4800 0.3776 1.1482 2
Calandre2009 AqET WlNi 0.0000 0.5134 1.1997 2
Cao2020 Acu MasT -0.2200 0.3452 1.1380 2
Carretero2009 PlaSh rTMS -1.2000 0.8010 1.3481 2
Carson2010 McT WlNi -1.0200 0.5934 1.2361 2
Casanueva2014 DryN WlNi -1.5000 0.3493 1.1392 2
Castro-Sanchez2019 DryN MasT -2.9300 0.4500 1.1740 2
Castro-Sanchez2020 DryN Elec -2.6800 0.4366 1.1689 2
Caumo2023 PlaSh tDCS 1.6600 0.1140 1.0903 2
Ceballos-Laita2020 McT MiET -2.1600 0.8359 1.3691 2
Colbert1999 MfT PlaSh -1.8100 0.8309 1.3661 2
Collado-Mateo2017 MiET WlNi -1.3300 0.4507 1.1742 2
Coste2021 Mnt PlaSh -0.2900 0.6548 1.2667 2
Da Costa2005 MiET WlNi -0.9400 0.6066 1.2425 2
Dailey2019 Elec PlaSh -1.3000 0.3488 1.1390 2
daSilva2008 AqET Elec 3.2000 1.1908 1.6105 2
deMedeiros2020 AqET Plt -0.6000 0.6063 1.2423 2
Ekici2008 MasT Plt 0.4200 0.4772 1.1847 2
Ekici2017 MasT Plt 0.3800 0.5255 1.2050 2
Espi-Lopes2016 MiET WlNi -0.2800 0.9255 1.4256 2
Evcik2002 Bal WlNi -3.4000 1.7701 2.0758 2
Fernandes2016 AeET AqET 0.5000 0.6362 1.2572 2
Fitzgibbon2018 PlaSh rTMS 0.4800 0.8369 1.3697 2
Franco2023 AeET Plt 1.2000 0.5585 1.2197 2
Friedberg2019 CBT WlNi -0.5500 0.3803 1.1491 2
Giannotti2014 McT WlNi -0.2500 0.8210 1.3601 2
Goldway2019 CBT PlaSh 0.8200 0.7901 1.3417 2
Gomez-Hernandez2019 AeET MiET 1.0100 0.1025 1.0892 2
Gowans1999 McT WlNi -0.3000 0.6841 1.2821 2
Gunther1994 Bal CBT -1.1200 1.1934 1.6125 2
Hargrove2012 PlaSh tDCS 1.4000 0.6895 1.2850 2
Harris2005 Acu PlaSh -0.3100 0.6954 1.2881 2
Harte2013 Acu PlaSh 0.5800 0.5773 1.2284 2
Hsu2010 CBT WlNi -0.5800 0.6751 1.2773 2
Izquierdo-Alventosa2020 MiET WlNi -0.1200 0.7797 1.3356 2
Jamison2021 Elec PlaSh -0.6200 0.2762 1.1190 2
Jensen2012 CBT WlNi -1.0900 0.8702 1.3903 2
Jones2002 McT ReET 0.5300 0.5654 1.2229 2
Jones2012 CBT McT 1.1000 0.5460 1.2140 2
Karatay2018 Acu PlaSh -2.5200 0.5807 1.2300 2
Kayo2012 AeET ReET -0.9700 0.7347 1.6187 3 *
Kayo2012 AeET WlNi -1.6000 0.7111 1.5858 3 *
Kayo2012 ReET WlNi -0.6300 0.6963 1.5666 3 *
Lami2018 CBT WlNi -0.0800 0.3222 1.1312 2
Lauche2016 MasT PlaSh -0.9200 0.4103 1.1594 2
Lee2024 CBT McT -0.5000 0.3579 1.1419 2
Lopes-Rodrigues2012 AqET FlET -2.5300 0.5685 1.2243 2
Lopes-Rodrigues2013 AqET FlET -2.1600 0.4565 1.1765 2
Luciano2014 CBT WlNi -1.7700 0.2840 1.1209 2
Lynch2012 McT WlNi -1.5700 0.3863 1.1511 2
Maestu2013 PlaSh rTMS 2.0000 0.6998 1.2905 2
McCrae2019 CBT WlNi -0.4900 0.6214 1.2498 2
Menzies2014 CBT WlNi -0.5000 0.5384 1.2106 2
Mhalla2011 PlaSh rTMS 2.1200 0.3835 1.1501 2
Mingorance2021.2 WBV WlNi -0.5100 0.1736 1.0981 2
Mist2018 Acu CBT -1.6000 0.1918 1.1012 2
Nadal-Nicolas2020 MasT PlaSh -2.9000 0.9876 1.4667 2
Norrengaard1997 AeET HtT 1.0000 1.1510 2.0702 3 *
Norrengaard1997 AeET MiET 1.0000 1.1426 2.0438 3 *
Norrengaard1997 HtT MiET 0.0000 0.5714 1.3515 3 *
Oka2019 MfT PlaSh -0.5500 0.6779 1.2788 2
Paolucci2016 MfT PlaSh -2.5000 0.4369 1.1691 2
Paolucci2022 CBT MiET -1.5000 0.9648 1.4514 2
Park2021 FlET ReET -0.0400 0.6996 1.2904 2
Parra-Delgado2013 CBT WlNi -0.0600 0.1291 1.0920 2
Redondo2004 CBT MiET 0.4000 0.8083 1.3525 2
Rivera2018 Cry WlNi -1.9000 0.5565 1.2188 2
Rodriguez-Mansilla2021 McT MiET -0.6300 0.5229 1.4745 3 *
Rodriguez-Mansilla2021 MiET WlNi -0.5200 0.4364 1.3959 3 *
Rodriguez-Mansilla2021 McT WlNi -1.1500 0.5830 1.5481 3 *
Ruaro2014 PBT PlaSh -2.3000 0.5385 1.2107 2
Samartin-Veiga2022 PlaSh tDCS 0.3100 0.7259 1.3049 2
Sarmento2020 McT PlaSh -3.7000 0.8544 1.3805 2
Schachter2003 AeET WlNi -1.2600 0.5078 1.1973 2
Schulze2023 FlET MasT 2.4500 0.2841 1.3739 3 *
Schulze2023 MasT WlNi -2.6800 0.2735 1.3675 3 *
Schulze2023 FlET WlNi -0.2300 0.2841 1.3739 3 *
Sencan2004 AeET PlaSh -2.1500 0.4530 1.1751 2
Sevimli2015 AeET AqET 0.0200 0.2773 1.3584 3 *
Sevimli2015 AeET MiET -2.4200 0.3318 1.3938 3 *
Sevimli2015 AqET MiET -2.4400 0.3388 1.3991 3 *
Silva2019 CBT ReET 1.0400 0.5562 1.2187 2
Sutbeyaz2009 MfT PlaSh -2.7600 0.4486 1.1735 2
Tanwar2020 PlaSh rTMS 3.9000 0.2989 1.1248 2
To2017 PlaSh tDCS 0.8100 0.4671 1.1807 2
Tomas-Carus2007b&c AqET WlNi -2.0000 0.7472 1.3168 2
Torres2015 CBT Mnt 1.6700 0.5133 1.1997 2
Udina-Cortés2020 Elec PlaSh -1.9000 0.5940 1.2364 2
Ugurlu2017 Acu PlaSh -2.8900 0.4682 1.1811 2
Valim2003 AeET FlET 0.3000 0.6728 1.2761 2
Vas2016 Acu PlaSh -1.4800 0.3803 1.1491 2
Verkaik2013 CBT WlNi 0.0400 0.5154 1.2006 2
Wicksell2013 CBT WlNi -0.4000 0.3706 1.1459 2
Wong2018 McT WlNi -1.7000 0.5833 1.2313 2
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Alptug2023 2
Altan2004 2
Ang2010 2
Arakaki2021 2
Ardic2007 2
Assefi2005 2
Assis2006 2
Assumpçao2018 3
Atan2020 2
Audoux2023 2
Baelz2022 2
Barranengoa-Cuadra2021 2
Bircan2008 2
Boggiss2022 2
Bongi2010 2
Bongi2012 2
Bourgault2015 2
Boyer2014 2
Bressan2008 2
Brietzke2019 2
Calandre2009 2
Cao2020 2
Carretero2009 2
Carson2010 2
Casanueva2014 2
Castro-Sanchez2019 2
Castro-Sanchez2020 2
Caumo2023 2
Ceballos-Laita2020 2
Colbert1999 2
Collado-Mateo2017 2
Coste2021 2
Da Costa2005 2
Dailey2019 2
daSilva2008 2
deMedeiros2020 2
Ekici2008 2
Ekici2017 2
Espi-Lopes2016 2
Evcik2002 2
Fernandes2016 2
Fitzgibbon2018 2
Franco2023 2
Friedberg2019 2
Giannotti2014 2
Goldway2019 2
Gomez-Hernandez2019 2
Gowans1999 2
Gunther1994 2
Hargrove2012 2
Harris2005 2
Harte2013 2
Hsu2010 2
Izquierdo-Alventosa2020 2
Jamison2021 2
Jensen2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kayo2012 3
Lami2018 2
Lauche2016 2
Lee2024 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Maestu2013 2
McCrae2019 2
Menzies2014 2
Mhalla2011 2
Mingorance2021.2 2
Mist2018 2
Nadal-Nicolas2020 2
Norrengaard1997 3
Oka2019 2
Paolucci2016 2
Paolucci2022 2
Park2021 2
Parra-Delgado2013 2
Redondo2004 2
Rivera2018 2
Rodriguez-Mansilla2021 3
Ruaro2014 2
Samartin-Veiga2022 2
Sarmento2020 2
Schachter2003 2
Schulze2023 3
Sencan2004 2
Sevimli2015 3
Silva2019 2
Sutbeyaz2009 2
Tanwar2020 2
To2017 2
Tomas-Carus2007b&c 2
Torres2015 2
Udina-Cortés2020 2
Ugurlu2017 2
Valim2003 2
Vas2016 2
Verkaik2013 2
Wicksell2013 2
Wong2018 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 Mnt WlNi -1.8719 [-3.0491; -0.6946]
Alentorn-Geli2008 McT WBV 0.4742 [-1.1680; 2.1163]
Alentorn-Geli2008 McT WlNi -1.2493 [-1.9228; -0.5758]
Alentorn-Geli2008 WBV WlNi -1.7234 [-3.2959; -0.1509]
Alfano2001 MfT PlaSh -1.6929 [-2.7743; -0.6115]
Alptug2023 Mnt WlNi -1.8719 [-3.0491; -0.6946]
Altan2004 AqET Bal 0.9950 [-0.5688; 2.5589]
Ang2010 CBT WlNi -0.7386 [-1.2727; -0.2046]
Arakaki2021 FlET ReET 0.8419 [-0.2870; 1.9709]
Ardic2007 Bal WlNi -2.9171 [-4.3997; -1.4346]
Assefi2005 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Assis2006 AeET AqET 0.6223 [-0.3101; 1.5546]
Assumpçao2018 FlET ReET 0.8419 [-0.2870; 1.9709]
Assumpçao2018 FlET WlNi -0.4309 [-1.4536; 0.5918]
Assumpçao2018 ReET WlNi -1.2728 [-2.3172; -0.2285]
Atan2020 MiET WlNi -0.8438 [-1.5902; -0.0974]
Audoux2023 MasT Mnt -0.2342 [-1.6107; 1.1424]
Baelz2022 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Barranengoa-Cuadra2021 CBT WlNi -0.7386 [-1.2727; -0.2046]
Bircan2008 AeET ReET -0.0270 [-1.1374; 1.0834]
Boggiss2022 CBT PBT 2.8282 [ 0.8258; 4.8306]
Bongi2010 CBT WlNi -0.7386 [-1.2727; -0.2046]
Bongi2012 CBT McT 0.5106 [-0.2391; 1.2603]
Bourgault2015 McT WlNi -1.2493 [-1.9228; -0.5758]
Boyer2014 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
Bressan2008 AeET FlET -0.8689 [-1.9152; 0.1774]
Brietzke2019 PlaSh tDCS 1.3927 [ 0.3466; 2.4389]
Calandre2009 AqET WlNi -1.9221 [-2.8393; -1.0048]
Cao2020 Acu MasT 0.3125 [-0.8661; 1.4912]
Carretero2009 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
Carson2010 McT WlNi -1.2493 [-1.9228; -0.5758]
Casanueva2014 DryN WlNi -3.7102 [-5.1748; -2.2456]
Castro-Sanchez2019 DryN MasT -1.6042 [-3.0988; -0.1096]
Castro-Sanchez2020 DryN Elec -1.6673 [-3.2392; -0.0954]
Caumo2023 PlaSh tDCS 1.3927 [ 0.3466; 2.4389]
Ceballos-Laita2020 McT MiET -0.4055 [-1.3201; 0.5092]
Colbert1999 MfT PlaSh -1.6929 [-2.7743; -0.6115]
Collado-Mateo2017 MiET WlNi -0.8438 [-1.5902; -0.0974]
Coste2021 Mnt PlaSh -1.2618 [-2.5760; 0.0523]
Da Costa2005 MiET WlNi -0.8438 [-1.5902; -0.0974]
Dailey2019 Elec PlaSh -1.4329 [-2.5750; -0.2907]
daSilva2008 AqET Elec 0.1208 [-1.3509; 1.5925]
deMedeiros2020 AqET Plt 0.3007 [-1.1116; 1.7130]
Ekici2008 MasT Plt 0.1168 [-1.1896; 1.4231]
Ekici2017 MasT Plt 0.1168 [-1.1896; 1.4231]
Espi-Lopes2016 MiET WlNi -0.8438 [-1.5902; -0.0974]
Evcik2002 Bal WlNi -2.9171 [-4.3997; -1.4346]
Fernandes2016 AeET AqET 0.6223 [-0.3101; 1.5546]
Fitzgibbon2018 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
Franco2023 AeET Plt 0.9230 [-0.4658; 2.3118]
Friedberg2019 CBT WlNi -0.7386 [-1.2727; -0.2046]
Giannotti2014 McT WlNi -1.2493 [-1.9228; -0.5758]
Goldway2019 CBT PlaSh -0.1286 [-1.1172; 0.8600]
Gomez-Hernandez2019 AeET MiET -0.4560 [-1.3945; 0.4825]
Gowans1999 McT WlNi -1.2493 [-1.9228; -0.5758]
Gunther1994 Bal CBT -2.1785 [-3.7036; -0.6534]
Hargrove2012 PlaSh tDCS 1.3927 [ 0.3466; 2.4389]
Harris2005 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Harte2013 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Hsu2010 CBT WlNi -0.7386 [-1.2727; -0.2046]
Izquierdo-Alventosa2020 MiET WlNi -0.8438 [-1.5902; -0.0974]
Jamison2021 Elec PlaSh -1.4329 [-2.5750; -0.2907]
Jensen2012 CBT WlNi -0.7386 [-1.2727; -0.2046]
Jones2002 McT ReET 0.0236 [-1.1201; 1.1673]
Jones2012 CBT McT 0.5106 [-0.2391; 1.2603]
Karatay2018 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Kayo2012 AeET ReET -0.0270 [-1.1374; 1.0834]
Kayo2012 AeET WlNi -1.2998 [-2.1502; -0.4494]
Kayo2012 ReET WlNi -1.2728 [-2.3172; -0.2285]
Lami2018 CBT WlNi -0.7386 [-1.2727; -0.2046]
Lauche2016 MasT PlaSh -1.4960 [-2.5494; -0.4425]
Lee2024 CBT McT 0.5106 [-0.2391; 1.2603]
Lopes-Rodrigues2012 AqET FlET -1.4912 [-2.5585; -0.4239]
Lopes-Rodrigues2013 AqET FlET -1.4912 [-2.5585; -0.4239]
Luciano2014 CBT WlNi -0.7386 [-1.2727; -0.2046]
Lynch2012 McT WlNi -1.2493 [-1.9228; -0.5758]
Maestu2013 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
McCrae2019 CBT WlNi -0.7386 [-1.2727; -0.2046]
Menzies2014 CBT WlNi -0.7386 [-1.2727; -0.2046]
Mhalla2011 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
Mingorance2021.2 WBV WlNi -1.7234 [-3.2959; -0.1509]
Mist2018 Acu CBT -1.0548 [-2.1863; 0.0767]
Nadal-Nicolas2020 MasT PlaSh -1.4960 [-2.5494; -0.4425]
Norrengaard1997 AeET HtT -0.0209 [-2.3345; 2.2927]
Norrengaard1997 AeET MiET -0.4560 [-1.3945; 0.4825]
Norrengaard1997 HtT MiET -0.4351 [-2.6708; 1.8006]
Oka2019 MfT PlaSh -1.6929 [-2.7743; -0.6115]
Paolucci2016 MfT PlaSh -1.6929 [-2.7743; -0.6115]
Paolucci2022 CBT MiET 0.1051 [-0.7381; 0.9483]
Park2021 FlET ReET 0.8419 [-0.2870; 1.9709]
Parra-Delgado2013 CBT WlNi -0.7386 [-1.2727; -0.2046]
Redondo2004 CBT MiET 0.1051 [-0.7381; 0.9483]
Rivera2018 Cry WlNi -1.9000 [-4.2887; 0.4887]
Rodriguez-Mansilla2021 McT MiET -0.4055 [-1.3201; 0.5092]
Rodriguez-Mansilla2021 MiET WlNi -0.8438 [-1.5902; -0.0974]
Rodriguez-Mansilla2021 McT WlNi -1.2493 [-1.9228; -0.5758]
Ruaro2014 PBT PlaSh -2.9568 [-4.8892; -1.0244]
Samartin-Veiga2022 PlaSh tDCS 1.3927 [ 0.3466; 2.4389]
Sarmento2020 McT PlaSh -0.6392 [-1.7353; 0.4569]
Schachter2003 AeET WlNi -1.2998 [-2.1502; -0.4494]
Schulze2023 FlET MasT 1.6751 [ 0.3870; 2.9632]
Schulze2023 MasT WlNi -2.1060 [-3.1744; -1.0376]
Schulze2023 FlET WlNi -0.4309 [-1.4536; 0.5918]
Sencan2004 AeET PlaSh -0.6898 [-1.8046; 0.4251]
Sevimli2015 AeET AqET 0.6223 [-0.3101; 1.5546]
Sevimli2015 AeET MiET -0.4560 [-1.3945; 0.4825]
Sevimli2015 AqET MiET -1.0783 [-2.1307; -0.0259]
Silva2019 CBT ReET 0.5342 [-0.5593; 1.6276]
Sutbeyaz2009 MfT PlaSh -1.6929 [-2.7743; -0.6115]
Tanwar2020 PlaSh rTMS 1.2752 [ 0.2672; 2.2832]
To2017 PlaSh tDCS 1.3927 [ 0.3466; 2.4389]
Tomas-Carus2007b&c AqET WlNi -1.9221 [-2.8393; -1.0048]
Torres2015 CBT Mnt 1.1332 [-0.0743; 2.3407]
Udina-Cortés2020 Elec PlaSh -1.4329 [-2.5750; -0.2907]
Ugurlu2017 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Valim2003 AeET FlET -0.8689 [-1.9152; 0.1774]
Vas2016 Acu PlaSh -1.1834 [-2.0005; -0.3663]
Verkaik2013 CBT WlNi -0.7386 [-1.2727; -0.2046]
Wicksell2013 CBT WlNi -0.7386 [-1.2727; -0.2046]
Wong2018 McT WlNi -1.2493 [-1.9228; -0.5758]
Number of studies: k = 106
Number of pairwise comparisons: m = 120
Number of observations: o = 6143
Number of treatments: n = 23
Number of designs: d = 52
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -1.7935 [-2.9294; -0.6575] -3.09 0.0020
AeET -1.2998 [-2.1502; -0.4494] -3.00 0.0027
AqET -1.9221 [-2.8393; -1.0048] -4.11 < 0.0001
Bal -2.9171 [-4.3997; -1.4346] -3.86 0.0001
CBT -0.7386 [-1.2727; -0.2046] -2.71 0.0067
Cry -1.9000 [-4.2887; 0.4887] -1.56 0.1190
DryN -3.7102 [-5.1748; -2.2456] -4.97 < 0.0001
Elec -2.0429 [-3.4009; -0.6849] -2.95 0.0032
FlET -0.4309 [-1.4536; 0.5918] -0.83 0.4089
HtT -1.2789 [-3.5901; 1.0323] -1.08 0.2781
MasT -2.1060 [-3.1744; -1.0376] -3.86 0.0001
McT -1.2493 [-1.9228; -0.5758] -3.64 0.0003
MfT -2.3029 [-3.7612; -0.8446] -3.10 0.0020
MiET -0.8438 [-1.5902; -0.0974] -2.22 0.0267
Mnt -1.8719 [-3.0491; -0.6946] -3.12 0.0018
PBT -3.5668 [-5.5915; -1.5422] -3.45 0.0006
PlaSh -0.6100 [-1.5885; 0.3684] -1.22 0.2217
Plt -2.2228 [-3.6227; -0.8228] -3.11 0.0019
ReET -1.2728 [-2.3172; -0.2285] -2.39 0.0169
rTMS -1.8852 [-3.2900; -0.4805] -2.63 0.0085
tDCS -2.0028 [-3.4352; -0.5704] -2.74 0.0061
WBV -1.7234 [-3.2959; -0.1509] -2.15 0.0317
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 1.1758; tau = 1.0843; I^2 = 83.7% [80.6%; 86.4%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 559.52 91 < 0.0001
Within designs 287.35 54 < 0.0001
Between designs 272.16 37 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
-0.4936 [-1.7647; 0.7774] AeET
0.1286 [-1.2036; 1.4609] 0.6223 [-0.3101; 1.5546]
1.1237 [-0.6946; 2.9419] 1.6173 [-0.0133; 3.2479]
-1.0548 [-2.1863; 0.0767] -0.5612 [-1.4993; 0.3770]
0.1065 [-2.5386; 2.7516] 0.6002 [-1.9354; 3.1358]
1.9167 [ 0.2789; 3.5546] 2.4104 [ 0.8045; 4.0163]
0.2494 [-1.1206; 1.6194] 0.7431 [-0.7172; 2.2034]
-1.3626 [-2.7702; 0.0451] -0.8689 [-1.9152; 0.1774]
-0.5146 [-3.0427; 2.0136] -0.0209 [-2.3345; 2.2927]
0.3125 [-0.8661; 1.4912] 0.8062 [-0.3834; 1.9958]
-0.5442 [-1.7883; 0.6999] -0.0506 [-1.0695; 0.9684]
0.5095 [-0.8459; 1.8648] 1.0031 [-0.5500; 2.5563]
-0.9497 [-2.2434; 0.3440] -0.4560 [-1.3945; 0.4825]
0.0784 [-1.3748; 1.5316] 0.5720 [-0.8117; 1.9558]
1.7734 [-0.2933; 3.8400] 2.2670 [ 0.1467; 4.3874]
-1.1834 [-2.0005; -0.3663] -0.6898 [-1.8046; 0.4251]
0.4293 [-1.1613; 2.0200] 0.9230 [-0.4658; 2.3118]
-0.5206 [-1.9713; 0.9300] -0.0270 [-1.1374; 1.0834]
0.0918 [-1.2058; 1.3894] 0.5854 [-0.9176; 2.0884]
0.2093 [-1.1181; 1.5367] 0.7030 [-0.8259; 2.2318]
-0.0700 [-1.9971; 1.8570] 0.4236 [-1.3543; 2.2015]
-1.7935 [-2.9294; -0.6575] -1.2998 [-2.1502; -0.4494]
. .
0.3190 [-1.0283; 1.6662] .
AqET 0.1800 [-2.2983; 2.6583]
0.9950 [-0.5688; 2.5589] Bal
-1.1834 [-2.1901; -0.1768] -2.1785 [-3.7036; -0.6534]
-0.0221 [-2.5809; 2.5367] -1.0171 [-3.8285; 1.7943]
1.7881 [ 0.1549; 3.4213] 0.7931 [-1.2582; 2.8443]
0.1208 [-1.3509; 1.5925] -0.8742 [-2.8289; 1.0804]
-1.4912 [-2.5585; -0.4239] -2.4862 [-4.2081; -0.7644]
-0.6432 [-3.0456; 1.7592] -1.6382 [-4.3536; 1.0771]
0.1839 [-1.0522; 1.4200] -0.8111 [-2.5852; 0.9630]
-0.6728 [-1.7615; 0.4159] -1.6679 [-3.2734; -0.0624]
0.3808 [-1.2266; 1.9883] -0.6142 [-2.6487; 1.4203]
-1.0783 [-2.1307; -0.0259] -2.0733 [-3.6948; -0.4519]
-0.0502 [-1.4807; 1.3802] -1.0453 [-2.9103; 0.8197]
1.6448 [-0.5125; 3.8020] 0.6497 [-1.8245; 3.1240]
-1.3121 [-2.5014; -0.1227] -2.3071 [-4.0304; -0.5837]
0.3007 [-1.1116; 1.7130] -0.6943 [-2.6572; 1.2685]
-0.6493 [-1.8750; 0.5765] -1.6443 [-3.4065; 0.1180]
-0.0369 [-1.5959; 1.5222] -1.0319 [-3.0284; 0.9646]
0.0807 [-1.5033; 1.6647] -0.9143 [-2.9304; 1.1017]
-0.1987 [-2.0115; 1.6141] -1.1937 [-3.3505; 0.9631]
-1.9221 [-2.8393; -1.0048] -2.9171 [-4.3997; -1.4346]
-1.6000 [-3.7582; 0.5582] .
. .
. .
-1.1200 [-4.2804; 2.0404] .
CBT .
1.1614 [-1.2864; 3.6091] Cry
2.9716 [ 1.4552; 4.4879] 1.8102 [-0.9918; 4.6122]
1.3042 [-0.0782; 2.6867] 0.1429 [-2.6049; 2.8907]
-0.3078 [-1.4067; 0.7912] -1.4691 [-4.0676; 1.1294]
0.5402 [-1.8042; 2.8847] -0.6211 [-3.9449; 2.7027]
1.3674 [ 0.2515; 2.4832] 0.2060 [-2.4108; 2.8228]
0.5106 [-0.2391; 1.2603] -0.6507 [-3.1326; 1.8311]
1.5643 [ 0.0991; 3.0295] 0.4029 [-2.3958; 3.2016]
0.1051 [-0.7381; 0.9483] -1.0562 [-3.5589; 1.4464]
1.1332 [-0.0743; 2.3407] -0.0281 [-2.6912; 2.6349]
2.8282 [ 0.8258; 4.8306] 1.6668 [-1.4645; 4.7982]
-0.1286 [-1.1172; 0.8600] -1.2900 [-3.8713; 1.2914]
1.4841 [ 0.0374; 2.9308] 0.3228 [-2.4460; 3.0915]
0.5342 [-0.5593; 1.6276] -0.6272 [-3.2342; 1.9799]
1.1466 [-0.2653; 2.5585] -0.0148 [-2.7860; 2.7564]
1.2641 [-0.1753; 2.7035] 0.1028 [-2.6825; 2.8881]
0.9848 [-0.6624; 2.6319] -0.1766 [-3.0365; 2.6833]
-0.7386 [-1.2727; -0.2046] -1.9000 [-4.2887; 0.4887]
. .
. .
. 3.2000 [ 0.0434; 6.3566]
. .
. .
. .
DryN -2.6800 [-4.9711; -0.3889]
-1.6673 [-3.2392; -0.0954] Elec
-3.2793 [-4.9789; -1.5798] -1.6120 [-3.1909; -0.0331]
-2.4313 [-5.1369; 0.2743] -0.7640 [-3.3965; 1.8685]
-1.6042 [-3.0988; -0.1096] 0.0631 [-1.3667; 1.4929]
-2.4609 [-4.0408; -0.8811] -0.7936 [-2.2507; 0.6635]
-1.4073 [-3.2668; 0.4523] 0.2600 [-1.3128; 1.8329]
-2.8664 [-4.4750; -1.2578] -1.1991 [-2.6895; 0.2913]
-1.8383 [-3.6150; -0.0617] -0.1710 [-1.8194; 1.4773]
-0.1434 [-2.5257; 2.2390] 1.5240 [-0.6909; 3.7388]
-3.1002 [-4.6129; -1.5874] -1.4329 [-2.5750; -0.2907]
-1.4874 [-3.3355; 0.3607] 0.1799 [-1.5774; 1.9372]
-2.4374 [-4.1806; -0.6942] -0.7701 [-2.3983; 0.8581]
-1.8250 [-3.6428; -0.0071] -0.1577 [-1.6810; 1.3657]
-1.7074 [-3.5467; 0.1318] -0.0401 [-1.5890; 1.5087]
-1.9868 [-4.1296; 0.1560] -0.3195 [-2.3865; 1.7476]
-3.7102 [-5.1748; -2.2456] -2.0429 [-3.4009; -0.6849]
. .
0.3682 [-1.5669; 2.3034] 1.0000 [-2.0994; 4.0994]
-2.3376 [-4.0003; -0.6750] .
. .
. .
. .
. .
. .
FlET .
0.8480 [-1.6065; 3.3025] HtT
1.6751 [ 0.3870; 2.9632] 0.8271 [-1.6689; 3.3231]
0.8184 [-0.3495; 1.9863] -0.0296 [-2.4028; 2.3435]
1.8720 [ 0.1971; 3.5469] 1.0240 [-1.6611; 3.7092]
0.4129 [-0.7586; 1.5844] -0.4351 [-2.6708; 1.8006]
1.4410 [-0.0555; 2.9374] 0.5930 [-1.9766; 3.1625]
3.1360 [ 0.9302; 5.3417] 2.2880 [-0.7499; 5.3258]
0.1792 [-1.0999; 1.4582] -0.6688 [-3.1266; 1.7889]
1.7919 [ 0.2462; 3.3376] 0.9439 [-1.6824; 3.5701]
0.8419 [-0.2870; 1.9709] -0.0061 [-2.4783; 2.4662]
1.4543 [-0.1742; 3.0828] 0.6063 [-2.0501; 3.2628]
1.5719 [-0.0805; 3.2243] 0.7239 [-1.9473; 3.3950]
1.2925 [-0.5741; 3.1592] 0.4445 [-2.3435; 3.2326]
-0.4309 [-1.4536; 0.5918] -1.2789 [-3.5901; 1.0323]
-0.2200 [-2.4504; 2.0104] .
. .
. .
. .
. 0.3907 [-0.9235; 1.7049]
. .
-2.9300 [-5.2310; -0.6290] .
. .
2.4500 [ 0.2530; 4.6470] .
. .
MasT .
-0.8568 [-2.0635; 0.3500] McT
0.1969 [-1.3128; 1.7066] 1.0537 [-0.4860; 2.5934]
-1.2622 [-2.4987; -0.0258] -0.4055 [-1.3201; 0.5092]
-0.2342 [-1.6107; 1.1424] 0.6226 [-0.6941; 1.9393]
1.4608 [-0.6703; 3.5920] 2.3176 [ 0.2307; 4.4045]
-1.4960 [-2.5494; -0.4425] -0.6392 [-1.7353; 0.4569]
0.1168 [-1.1896; 1.4231] 0.9735 [-0.5370; 2.4840]
-0.8332 [-2.2165; 0.5502] 0.0236 [-1.1201; 1.1673]
-0.2208 [-1.6788; 1.2372] 0.6360 [-0.8531; 2.1251]
-0.1032 [-1.5879; 1.3814] 0.7535 [-0.7617; 2.2687]
-0.3826 [-2.2744; 1.5092] 0.4742 [-1.1680; 2.1163]
-2.1060 [-3.1744; -1.0376] -1.2493 [-1.9228; -0.5758]
. .
. -0.3101 [-1.6879; 1.0676]
. -2.4400 [-4.6666; -0.2134]
. .
. -0.4831 [-2.4224; 1.4563]
. .
. .
. .
. .
. 0.0000 [-2.4023; 2.4023]
. .
. -1.2971 [-3.0690; 0.4748]
MfT .
-1.4591 [-3.0408; 0.1225] MiET
-0.4311 [-2.1329; 1.2708] 1.0281 [-0.3312; 2.3873]
1.2639 [-0.9505; 3.4783] 2.7231 [ 0.6035; 4.8426]
-1.6929 [-2.7743; -0.6115] -0.2337 [-1.3880; 0.9205]
-0.0802 [-1.9180; 1.7577] 1.3790 [-0.1249; 2.8829]
-1.0301 [-2.7419; 0.6817] 0.4290 [-0.7703; 1.6284]
-0.4177 [-1.8960; 1.0606] 1.0414 [-0.4910; 2.5739]
-0.3002 [-1.8047; 1.2044] 1.1590 [-0.3988; 2.7168]
-0.5795 [-2.7117; 1.5527] 0.8796 [-0.8483; 2.6076]
-2.3029 [-3.7612; -0.8446] -0.8438 [-1.5902; -0.0974]
. .
. .
. .
. .
1.6700 [-0.6814; 4.0214] 4.0000 [ 0.8305; 7.1695]
. .
. .
. .
. .
. .
-1.8000 [-4.4938; 0.8938] .
. .
. .
. .
Mnt .
1.6950 [-0.5441; 3.9341] PBT
-1.2618 [-2.5760; 0.0523] -2.9568 [-4.8892; -1.0244]
0.3509 [-1.3605; 2.0624] -1.3441 [-3.7000; 1.0118]
-0.5990 [-2.1233; 0.9253] -2.2940 [-4.5169; -0.0712]
0.0134 [-1.6428; 1.6696] -1.6816 [-3.8612; 0.4979]
0.1309 [-1.5488; 1.8106] -1.5641 [-3.7615; 0.6334]
-0.1484 [-2.1060; 1.8091] -1.8434 [-4.3972; 0.7103]
-1.8719 [-3.0491; -0.6946] -3.5668 [-5.5915; -1.5422]
-0.9965 [-1.9097; -0.0833] .
-2.1500 [-4.4532; 0.1532] 1.2000 [-1.1905; 3.5905]
. -0.6000 [-3.0349; 1.8349]
. .
0.8200 [-1.8096; 3.4496] .
. .
. .
-1.2323 [-2.5466; 0.0821] .
. .
. .
-1.6814 [-3.4641; 0.1012] 0.4003 [-1.2554; 2.0561]
-3.7000 [-6.4057; -0.9943] .
-1.6929 [-2.7743; -0.6115] .
. .
-0.2900 [-2.7726; 2.1926] .
-2.3000 [-4.6729; 0.0729] .
PlaSh .
1.6127 [ 0.1267; 3.0988] Plt
0.6628 [-0.6642; 1.9898] -0.9499 [-2.5750; 0.6751]
1.2752 [ 0.2672; 2.2832] -0.3375 [-2.1332; 1.4581]
1.3927 [ 0.3466; 2.4389] -0.2200 [-2.0374; 1.5974]
1.1134 [-0.7243; 2.9510] -0.4994 [-2.5968; 1.5981]
-0.6100 [-1.5885; 0.3684] -2.2228 [-3.6227; -0.8228]
. .
-0.7062 [-2.4897; 1.0773] .
. .
. .
1.0400 [-1.3485; 3.4285] .
. .
. .
. .
0.7829 [-0.7703; 2.3361] .
. .
. .
0.5300 [-1.8668; 2.9268] .
. .
. .
. .
. .
. 1.2752 [ 0.2672; 2.2832]
. .
ReET .
0.6124 [-1.0540; 2.2788] rTMS
0.7299 [-0.9598; 2.4197] 0.1175 [-1.3352; 1.5703]
0.4506 [-1.4212; 2.3224] -0.1618 [-2.2578; 1.9341]
-1.2728 [-2.3172; -0.2285] -1.8852 [-3.2900; -0.4805]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 1.8100 [-0.7705; 4.3905]
. .
. .
. .
. .
1.3927 [ 0.3466; 2.4389] .
. .
. .
. .
tDCS .
-0.2794 [-2.3939; 1.8352] WBV
-2.0028 [-3.4352; -0.5704] -1.7234 [-3.2959; -0.1509]
.
-1.4165 [-3.1406; 0.3077]
-0.9072 [-2.6454; 0.8310]
-4.0140 [-6.1578; -1.8702]
-0.8331 [-1.4811; -0.1851]
-1.9000 [-4.2887; 0.4887]
-1.5000 [-3.7328; 0.7328]
.
-0.8041 [-2.5539; 0.9456]
.
-2.6800 [-4.8718; -0.4882]
-0.9507 [-1.8180; -0.0834]
.
-1.2195 [-2.2160; -0.2229]
-2.7301 [-4.4923; -0.9679]
.
.
.
-1.2104 [-3.1278; 0.7070]
.
.
-1.5276 [-3.2046; 0.1494]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
DryN 0.9486
PBT 0.9097
Bal 0.8337
MfT 0.7021
Plt 0.6782
MasT 0.6544
Elec 0.6235
tDCS 0.6091
AqET 0.5970
Mnt 0.5715
rTMS 0.5702
Cry 0.5548
Acu 0.5418
WBV 0.5187
HtT 0.3959
AeET 0.3718
ReET 0.3692
McT 0.3562
MiET 0.2185
CBT 0.1807
PlaSh 0.1507
FlET 0.1179
WlNi 0.0259
Q statistics to assess homogeneity / consistency
Q df p-value
Total 559.52 91 < 0.0001
Within designs 287.35 54 < 0.0001
Between designs 272.16 37 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:rTMS 71.74 5 < 0.0001
WlNi:CBT 83.37 12 < 0.0001
Acu:PlaSh 42.88 6 < 0.0001
WlNi:MiET 24.29 4 < 0.0001
MfT:PlaSh 15.09 4 0.0045
CBT:McT 8.27 2 0.0160
PlaSh:tDCS 11.61 4 0.0205
WlNi:AqET 4.87 1 0.0274
FlET:ReET 4.25 1 0.0393
MasT:PlaSh 3.43 1 0.0641
Elec:PlaSh 4.93 2 0.0851
CBT:MiET 2.28 1 0.1312
WlNi:McT 7.93 5 0.1600
WlNi:Mnt 1.94 1 0.1635
AqET:FlET 0.26 1 0.6118
WlNi:Bal 0.20 1 0.6548
AeET:FlET 0.02 1 0.8964
MasT:Plt 0.00 1 0.9551
AeET:AqET 0.00 1 1.0000
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
AeET:AqET:MiET 181.20 35 < 0.0001
AeET:MiET 187.64 36 < 0.0001
WlNi:DryN 228.09 36 < 0.0001
DryN:MasT 250.05 36 < 0.0001
AeET:PlaSh 253.33 36 < 0.0001
WlNi:FlET:MasT 255.40 35 < 0.0001
McT:PlaSh 258.44 36 < 0.0001
WlNi:WBV 259.69 36 < 0.0001
WlNi:McT:WBV 259.65 35 < 0.0001
McT:MiET 262.34 36 < 0.0001
AqET:Elec 262.48 36 < 0.0001
WlNi:AqET 263.96 36 < 0.0001
Acu:PlaSh 264.55 36 < 0.0001
DryN:Elec 264.55 36 < 0.0001
WlNi:Bal 264.85 36 < 0.0001
WlNi:McT:MiET 264.25 35 < 0.0001
AeET:FlET 266.78 36 < 0.0001
WlNi:Mnt 266.82 36 < 0.0001
MasT:Mnt 267.03 36 < 0.0001
CBT:MiET 267.29 36 < 0.0001
Acu:CBT 267.97 36 < 0.0001
Mnt:PlaSh 268.20 36 < 0.0001
AqET:Bal 268.24 36 < 0.0001
AqET:FlET 268.50 36 < 0.0001
AqET:Plt 269.32 36 < 0.0001
CBT:McT 269.61 36 < 0.0001
CBT:PBT 270.26 36 < 0.0001
PBT:PlaSh 270.26 36 < 0.0001
MasT:Plt 270.43 36 < 0.0001
McT:ReET 270.66 36 < 0.0001
Elec:PlaSh 270.70 36 < 0.0001
CBT:PlaSh 270.74 36 < 0.0001
WlNi:MiET 270.75 36 < 0.0001
CBT:ReET 270.82 36 < 0.0001
WlNi:FlET:ReET 268.60 35 < 0.0001
Bal:CBT 270.97 36 < 0.0001
AeET:AqET 271.10 36 < 0.0001
AeET:ReET 271.10 36 < 0.0001
WlNi:AeET 271.42 36 < 0.0001
CBT:Mnt 271.51 36 < 0.0001
MasT:PlaSh 271.57 36 < 0.0001
Acu:MasT 271.62 36 < 0.0001
WlNi:AeET:ReET 269.42 35 < 0.0001
WlNi:CBT 271.95 36 < 0.0001
FlET:ReET 272.06 36 < 0.0001
WlNi:McT 272.12 36 < 0.0001
AeET:Plt 272.16 36 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 48.28 37 0.1014 0.9823 0.9650
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:CBT 1 0.27 -1.0548 -1.6000 -0.8481 -0.7519 -0.58 0.5610
Acu:MasT 1 0.28 0.3125 -0.2200 0.5189 -0.7389 -0.55 0.5815
Acu:PlaSh 7 0.80 -1.1834 -0.9965 -1.9338 0.9373 0.90 0.3690
AeET:AqET 3 0.48 0.6223 0.3190 0.9011 -0.5821 -0.61 0.5410
AeET:FlET 2 0.29 -0.8689 0.3682 -1.3800 1.7483 1.49 0.1363
AeET:HtT 1 0.56 -0.0209 1.0000 -1.3057 2.3057 0.97 0.3319
AeET:MiET 3 0.46 -0.4560 -0.3101 -0.5823 0.2722 0.28 0.7768
AeET:PlaSh 1 0.23 -0.6898 -2.1500 -0.2430 -1.9070 -1.42 0.1556
AeET:Plt 1 0.34 0.9230 1.2000 0.7818 0.4182 0.28 0.7802
AeET:ReET 2 0.39 -0.0270 -0.7062 0.4029 -1.1091 -0.95 0.3402
AeET:WlNi 2 0.24 -1.2998 -1.4165 -1.2623 -0.1542 -0.15 0.8788
AqET:Bal 1 0.40 0.9950 0.1800 1.5343 -1.3543 -0.83 0.4060
AqET:Elec 1 0.22 0.1208 3.2000 -0.7344 3.9344 2.16 0.0307
AqET:FlET 2 0.41 -1.4912 -2.3376 -0.8980 -1.4396 -1.30 0.1932
AqET:MiET 1 0.22 -1.0783 -2.4400 -0.6866 -1.7534 -1.36 0.1738
AqET:Plt 1 0.34 0.3007 -0.6000 0.7573 -1.3573 -0.89 0.3735
AqET:WlNi 2 0.28 -1.9221 -0.9072 -2.3138 1.4066 1.35 0.1779
Bal:CBT 1 0.23 -2.1785 -1.1200 -2.4998 1.3798 0.75 0.4536
Bal:WlNi 2 0.48 -2.9171 -4.0140 -1.9116 -2.1024 -1.39 0.1650
CBT:McT 3 0.33 0.5106 0.3907 0.5685 -0.1777 -0.22 0.8277
CBT:MiET 2 0.19 0.1051 -0.4831 0.2423 -0.7253 -0.66 0.5092
CBT:Mnt 1 0.26 1.1332 1.6700 0.9409 0.7291 0.52 0.6021
CBT:PBT 1 0.40 2.8282 4.0000 2.0498 1.9502 0.93 0.3499
CBT:PlaSh 1 0.14 -0.1286 0.8200 -0.2848 1.1048 0.76 0.4455
CBT:ReET 1 0.21 0.5342 1.0400 0.4001 0.6399 0.47 0.6406
CBT:WlNi 13 0.68 -0.7386 -0.8331 -0.5388 -0.2943 -0.50 0.6142
DryN:Elec 1 0.47 -1.6673 -2.6800 -0.7665 -1.9135 -1.19 0.2337
DryN:MasT 1 0.42 -1.6042 -2.9300 -0.6366 -2.2934 -1.49 0.1375
DryN:WlNi 1 0.43 -3.7102 -1.5000 -5.3793 3.8793 2.57 0.0102
Elec:PlaSh 3 0.76 -1.4329 -1.2323 -2.0515 0.8193 0.60 0.5455
FlET:MasT 1 0.34 1.6751 2.4500 1.2692 1.1808 0.85 0.3935
FlET:ReET 3 0.53 0.8419 0.7829 0.9081 -0.1251 -0.11 0.9136
FlET:WlNi 2 0.34 -0.4309 -0.8041 -0.2372 -0.5669 -0.52 0.6063
HtT:MiET 1 0.87 -0.4351 0.0000 -3.2501 3.2501 0.97 0.3319
MasT:Mnt 1 0.26 -0.2342 -1.8000 0.3192 -2.1192 -1.33 0.1850
MasT:PlaSh 2 0.35 -1.4960 -1.6814 -1.3965 -0.2850 -0.25 0.8005
MasT:Plt 2 0.62 0.1168 0.4003 -0.3508 0.7511 0.55 0.5848
MasT:WlNi 1 0.24 -2.1060 -2.6800 -1.9271 -0.7529 -0.59 0.5566
McT:MiET 2 0.27 -0.4055 -1.2971 -0.0816 -1.2155 -1.15 0.2495
McT:PlaSh 1 0.16 -0.6392 -3.7000 -0.0383 -3.6617 -2.43 0.0153
McT:ReET 1 0.23 0.0236 0.5300 -0.1257 0.6557 0.47 0.6375
McT:WBV 1 0.40 0.4742 1.8100 -0.4349 2.2449 1.32 0.1884
McT:WlNi 8 0.60 -1.2493 -0.9507 -1.7028 0.7521 1.07 0.2842
MiET:WlNi 6 0.56 -0.8438 -1.2195 -0.3638 -0.8557 -1.12 0.2648
Mnt:PlaSh 1 0.28 -1.2618 -0.2900 -1.6401 1.3501 0.90 0.3658
Mnt:WlNi 2 0.45 -1.8719 -2.7301 -1.1801 -1.5500 -1.28 0.1996
PBT:PlaSh 1 0.66 -2.9568 -2.3000 -4.2502 1.9502 0.93 0.3499
ReET:WlNi 2 0.30 -1.2728 -1.2104 -1.2992 0.0887 0.08 0.9394
WBV:WlNi 2 0.88 -1.7234 -1.5276 -3.1493 1.6217 0.66 0.5102
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_lg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "P | Lg") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_lg,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 25
Number of pairwise comparisons: m = 29
Number of treatments: n = 14
Number of designs: d = 16
Number of networks: 3
Details on subnetworks:
subnetwork k m n
1 20 24 8
2 1 1 2
3 4 4 4
There are three sub-networks:
Subnet 1:
- 20 studies
- 24 comparisons
- 8 treatments
Subnet 2:
- 1 studies
- 1 comparisons
- 2 treatments
Subnet 3:
- 4 studies
- 4 comparisons
- 4 treatments
There are Three treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
the first subnet contains 20 studies, 24 comparisons and 8 treatments.
Code
Code
[1] "AeET" "AqET" "ReET" "McT" "CBT" "MiET" "WlNi" "FlET"
[1] 8
Code
[1] 24
Code
Number of studies: k = 20
Number of pairwise comparisons: m = 24
Number of observations: o = 1270
Number of treatments: n = 8
Number of designs: d = 12
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -1.2747 [-2.0171; -0.5324] -3.37 0.0008
AqET -1.4358 [-2.2325; -0.6392] -3.53 0.0004
CBT -0.5002 [-1.7042; 0.7037] -0.81 0.4155
FlET 0.4708 [-1.2013; 2.1429] 0.55 0.5810
McT -0.5893 [-1.8902; 0.7117] -0.89 0.3747
MiET -1.2404 [-2.4820; 0.0011] -1.96 0.0502
ReET -2.4288 [-3.9852; -0.8723] -3.06 0.0022
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.6247; tau = 0.7904; I^2 = 66.4% [43.2%; 80.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 44.69 15 < 0.0001
Within designs 31.37 8 0.0001
Between designs 13.33 7 0.0646
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 0.5000 0.4574 0.9132 2
Andrade2019 AqET WlNi -1.0000 0.6137 1.0007 2
Assis2006 AeET AqET 0.0000 0.5601 0.9688 2
Baptista2012 AeET WlNi -2.9000 0.3860 0.8796 2
Hakkinen2001 ReET WlNi -3.9200 1.1181 1.3693 2
Kayo2012 AeET ReET 0.3700 0.7979 1.4239 3 *
Kayo2012 AeET WlNi -1.3700 0.7203 1.2855 3 *
Kayo2012 ReET WlNi -1.7400 0.7288 1.2982 3 *
Larsson2015 McT MiET 1.6100 0.4798 0.9246 2
Letieri2013 AqET WlNi -2.0800 0.3616 0.8692 2
Mannerkorpi2000 McT WlNi -0.5000 0.6372 1.0152 2
Mengshoel1992 AeET WlNi -0.6500 0.8641 1.1711 2
Munguia-Izquierdo 2007 AqET WlNi -0.9700 0.5334 0.9535 2
Rooks2007 CBT McT 1.0000 0.5752 1.2444 3 *
Rooks2007 CBT MiET 0.9000 0.5016 1.1331 3 *
Rooks2007 McT MiET -0.1000 0.4732 1.1008 3 *
Sanudo2015 MiET WlNi -0.3000 0.7371 1.0808 2
Schachter2003 AeET WlNi -0.0400 0.4272 0.8985 2
Tomas-Carus2008 AqET WlNi -1.3000 0.5888 0.9856 2
Valim2003 AeET FlET -1.1800 0.6042 0.9949 2
Valkeinen2008 MiET WlNi -1.7100 1.4134 1.6194 2
Williams2010 CBT WlNi -0.6000 0.2855 0.8404 2
Hernando-Garijo2021 AeET WlNi -1.5400 0.6724 1.0377 2
Saranya2022 CBT FlET -1.8700 0.9740 1.2543 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Hakkinen2001 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mengshoel1992 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2015 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Valkeinen2008 2
Williams2010 2
Hernando-Garijo2021 2
Saranya2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Acosta-Gallego2018 AeET AqET 0.1611 [-0.7411; 1.0633]
Andrade2019 AqET WlNi -1.4358 [-2.2325; -0.6392]
Assis2006 AeET AqET 0.1611 [-0.7411; 1.0633]
Baptista2012 AeET WlNi -1.2747 [-2.0171; -0.5324]
Hakkinen2001 ReET WlNi -2.4288 [-3.9852; -0.8723]
Kayo2012 AeET ReET 1.1540 [-0.4701; 2.7782]
Kayo2012 AeET WlNi -1.2747 [-2.0171; -0.5324]
Kayo2012 ReET WlNi -2.4288 [-3.9852; -0.8723]
Larsson2015 McT MiET 0.6512 [-0.5014; 1.8037]
Letieri2013 AqET WlNi -1.4358 [-2.2325; -0.6392]
Mannerkorpi2000 McT WlNi -0.5893 [-1.8902; 0.7117]
Mengshoel1992 AeET WlNi -1.2747 [-2.0171; -0.5324]
Munguia-Izquierdo 2007 AqET WlNi -1.4358 [-2.2325; -0.6392]
Rooks2007 CBT McT 0.0891 [-1.3245; 1.5027]
Rooks2007 CBT MiET 0.7402 [-0.6233; 2.1038]
Rooks2007 McT MiET 0.6512 [-0.5014; 1.8037]
Sanudo2015 MiET WlNi -1.2404 [-2.4820; 0.0011]
Schachter2003 AeET WlNi -1.2747 [-2.0171; -0.5324]
Tomas-Carus2008 AqET WlNi -1.4358 [-2.2325; -0.6392]
Valim2003 AeET FlET -1.7455 [-3.3606; -0.1305]
Valkeinen2008 MiET WlNi -1.2404 [-2.4820; 0.0011]
Williams2010 CBT WlNi -0.5002 [-1.7042; 0.7037]
Hernando-Garijo2021 AeET WlNi -1.2747 [-2.0171; -0.5324]
Saranya2022 CBT FlET -0.9710 [-2.7109; 0.7688]
Number of studies: k = 20
Number of pairwise comparisons: m = 24
Number of observations: o = 1270
Number of treatments: n = 8
Number of designs: d = 12
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -1.2747 [-2.0171; -0.5324] -3.37 0.0008
AqET -1.4358 [-2.2325; -0.6392] -3.53 0.0004
CBT -0.5002 [-1.7042; 0.7037] -0.81 0.4155
FlET 0.4708 [-1.2013; 2.1429] 0.55 0.5810
McT -0.5893 [-1.8902; 0.7117] -0.89 0.3747
MiET -1.2404 [-2.4820; 0.0011] -1.96 0.0502
ReET -2.4288 [-3.9852; -0.8723] -3.06 0.0022
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.6247; tau = 0.7904; I^2 = 66.4% [43.2%; 80.2%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 44.69 15 < 0.0001
Within designs 31.37 8 0.0001
Between designs 13.33 7 0.0646
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 0.2648 [-1.0377; 1.5672]
0.1611 [-0.7411; 1.0633] AqET
-0.7745 [-2.1309; 0.5818] -0.9356 [-2.3604; 0.4891]
-1.7455 [-3.3606; -0.1305] -1.9066 [-3.6903; -0.1230]
-0.6855 [-2.1619; 0.7910] -0.8466 [-2.3650; 0.6719]
-0.0343 [-1.4589; 1.3904] -0.1954 [-1.6633; 1.2725]
1.1540 [-0.4701; 2.7782] 0.9929 [-0.7229; 2.7087]
-1.2747 [-2.0171; -0.5324] -1.4358 [-2.2325; -0.6392]
. -1.1800 [-3.1299; 0.7699]
. .
CBT -1.8700 [-4.3284; 0.5884]
-0.9710 [-2.7109; 0.7688] FlET
0.0891 [-1.3245; 1.5027] 1.0601 [-0.9418; 3.0620]
0.7402 [-0.6233; 2.1038] 1.7113 [-0.2539; 3.6764]
1.9285 [-0.0267; 3.8838] 2.8996 [ 0.6650; 5.1342]
-0.5002 [-1.7042; 0.7037] 0.4708 [-1.2013; 2.1429]
. .
. .
1.0000 [-0.9159; 2.9159] 0.9000 [-0.9348; 2.7348]
. .
McT 0.7519 [-0.5272; 2.0309]
0.6512 [-0.5014; 1.8037] MiET
1.8395 [-0.1843; 3.8632] 1.1883 [-0.7978; 3.1744]
-0.5893 [-1.8902; 0.7117] -1.2404 [-2.4820; 0.0011]
0.3700 [-1.8312; 2.5712] -1.3626 [-2.2337; -0.4916]
. -1.3831 [-2.3121; -0.4541]
. -0.6000 [-2.2472; 1.0472]
. .
. -0.5000 [-2.4898; 1.4898]
. -0.7345 [-2.4964; 1.0274]
ReET -2.5714 [-4.2288; -0.9141]
-2.4288 [-3.9852; -0.8723] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
ReET 0.9427
AqET 0.7305
MiET 0.6646
AeET 0.6619
McT 0.3860
CBT 0.3581
WlNi 0.1616
FlET 0.0945
Q statistics to assess homogeneity / consistency
Q df p-value
Total 44.69 15 < 0.0001
Within designs 31.37 8 0.0001
Between designs 13.33 7 0.0646
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:AeET 25.80 3 < 0.0001
WlNi:AqET 4.31 3 0.2296
WlNi:MiET 0.78 1 0.3764
AeET:AqET 0.48 1 0.4893
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.0646)
Detached design Q df p-value
McT:MiET 7.02 6 0.3195
CBT:McT:MiET 6.86 5 0.2309
WlNi:ReET 10.56 6 0.1029
CBT:FlET 11.32 6 0.0789
AeET:FlET 11.32 6 0.0789
WlNi:MiET 11.66 6 0.0699
WlNi:AeET:ReET 10.56 5 0.0608
WlNi:AeET 12.79 6 0.0466
AeET:AqET 13.11 6 0.0413
WlNi:AqET 13.11 6 0.0413
WlNi:CBT 13.15 6 0.0406
WlNi:McT 13.29 6 0.0386
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 4.17 7 0.7597 0.9355 0.8752
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
AeET:AqET 2 0.48 0.1611 0.2648 0.0655 0.1993 0.22 0.8288
AeET:CBT 0 0 -0.7745 . -0.7745 . . .
AeET:FlET 1 0.69 -1.7455 -1.1800 -2.9810 1.8010 1.01 0.3104
AeET:McT 0 0 -0.6855 . -0.6855 . . .
AeET:MiET 0 0 -0.0343 . -0.0343 . . .
AeET:ReET 1 0.54 1.1540 0.3700 2.0909 -1.7209 -1.03 0.3010
AeET:WlNi 5 0.73 -1.2747 -1.3626 -1.0414 -0.3212 -0.38 0.7053
AqET:CBT 0 0 -0.9356 . -0.9356 . . .
AqET:FlET 0 0 -1.9066 . -1.9066 . . .
AqET:McT 0 0 -0.8466 . -0.8466 . . .
AqET:MiET 0 0 -0.1954 . -0.1954 . . .
AqET:ReET 0 0 0.9929 . 0.9929 . . .
AqET:WlNi 4 0.74 -1.4358 -1.3831 -1.5824 0.1993 0.22 0.8288
CBT:FlET 1 0.50 -0.9710 -1.8700 -0.0690 -1.8010 -1.01 0.3104
CBT:McT 1 0.54 0.0891 1.0000 -0.9993 1.9993 1.38 0.1674
CBT:MiET 1 0.55 0.7402 0.9000 0.5432 0.3568 0.26 0.7987
CBT:ReET 0 0 1.9285 . 1.9285 . . .
CBT:WlNi 1 0.53 -0.5002 -0.6000 -0.3857 -0.2143 -0.17 0.8619
FlET:McT 0 0 1.0601 . 1.0601 . . .
FlET:MiET 0 0 1.7113 . 1.7113 . . .
FlET:ReET 0 0 2.8996 . 2.8996 . . .
FlET:WlNi 0 0 0.4708 . 0.4708 . . .
McT:MiET 2 0.81 0.6512 0.7519 0.2165 0.5354 0.36 0.7220
McT:ReET 0 0 1.8395 . 1.8395 . . .
McT:WlNi 1 0.43 -0.5893 -0.5000 -0.6559 0.1559 0.12 0.9075
MiET:ReET 0 0 1.1883 . 1.1883 . . .
MiET:WlNi 2 0.50 -1.2404 -0.7345 -1.7394 1.0049 0.79 0.4277
ReET:WlNi 2 0.88 -2.4288 -2.5714 -1.3636 -1.2079 -0.49 0.6235
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet contains 1 studies, 1 comparisons and 2 treatments. Due to its limited size, the analysis will be simplified.
Code
Code
[1] "DryN"
[1] "MasT"
Code
[1] "DryN" "MasT"
[1] 2
Code
[1] 1
[1] 1
Code
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 59
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'MD', comparison: 'DryN' vs 'MasT'):
MD 95%-CI z p-value
DryN -1.0600 [-3.2020; 1.0820] -0.97 0.3321
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Castro-Sanchez2011 DryN MasT -1.0600 1.0929
Number of treatment arms (by study):
narms
Castro-Sanchez2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Castro-Sanchez2011 DryN MasT -1.0600 [-3.2020; 1.0820]
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 59
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'MD', comparison: 'DryN' vs 'MasT'):
MD 95%-CI z p-value
DryN -1.0600 [-3.2020; 1.0820] -0.97 0.3321
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Select the procedures performed
the third subnet contains 4 studies, 4 comparisons and 4 treatments.
Code
Code
[1] "MfT" "Acu" "rTMS"
[1] "PlaSh"
Code
[1] "MfT" "Acu" "rTMS" "PlaSh"
[1] 4
Code
[1] 4
[1] 4
Code
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 235
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0800 [-1.4610; 1.3010] -0.11 0.9096
MfT -1.0662 [-2.0393; -0.0931] -2.15 0.0318
PlaSh . . . .
rTMS -1.1700 [-2.0291; -0.3109] -2.67 0.0076
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh -0.8500 0.5572
Colbert1999 MfT PlaSh -1.9000 1.0942
Harris2005 Acu PlaSh -0.0800 0.7046
Mhalla2011 PlaSh rTMS 1.1700 0.4383
Number of treatment arms (by study):
narms
Alfano2001 2
Colbert1999 2
Harris2005 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Alfano2001 MfT PlaSh -1.0662 [-2.0393; -0.0931]
Colbert1999 MfT PlaSh -1.0662 [-2.0393; -0.0931]
Harris2005 Acu PlaSh -0.0800 [-1.4610; 1.3010]
Mhalla2011 PlaSh rTMS 1.1700 [ 0.3109; 2.0291]
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 235
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
Acu -0.0800 [-1.4610; 1.3010] -0.11 0.9096
MfT -1.0662 [-2.0393; -0.0931] -2.15 0.0318
PlaSh . . . .
rTMS -1.1700 [-2.0291; -0.3109] -2.67 0.0076
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
0.9862 [-0.7032; 2.6756] MfT
-0.0800 [-1.4610; 1.3010] -1.0662 [-2.0393; -0.0931]
1.0900 [-0.5364; 2.7164] 0.1038 [-1.1943; 1.4019]
-0.0800 [-1.4610; 1.3010] .
-1.0662 [-2.0393; -0.0931] .
PlaSh 1.1700 [ 0.3109; 2.0291]
1.1700 [ 0.3109; 2.0291] rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
rTMS 0.8213
MfT 0.7652
Acu 0.2553
PlaSh 0.1582
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.73 1 0.3925
Within designs 0.73 1 0.3925
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:MfT 0.73 1 0.3925
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:MfT 0 0 0.9862 . 0.9862 . . .
Acu:PlaSh 1 1.00 -0.0800 -0.0800 . . . .
Acu:rTMS 0 0 1.0900 . 1.0900 . . .
MfT:PlaSh 2 1.00 -1.0662 -1.0662 . . . .
MfT:rTMS 0 0 0.1038 . 0.1038 . . .
rTMS:PlaSh 1 1.00 -1.1700 -1.1700 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qim <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Im") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2),
n = list(N1, N2),
mean = list(Mean1, Mean2),
sd = list(SD1, SD2),
studlab = StudyID,
data = data_qim
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of treatments: n = 11
Number of designs: d = 10
Number of networks: 1
There are network:
Network:
- 20 studies
- 20 comparisons
- 11 treatments
The network is fully connected.
1.0.2 Network
Select the procedures performed
The network contain 20 studies, 20 comparisons and 11 treatments.
Code
Code
[1] "Mnt" "PbT" "CBT" "rTMS" "tDCS" "HtT" "Bal" "McT" "Cry"
[1] "WlNi" "PlaSh"
Code
[1] "Mnt" "PbT" "CBT" "rTMS" "tDCS" "HtT" "Bal" "McT" "Cry"
[10] "WlNi" "PlaSh"
[1] 11
Code
[1] 20
Code
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of observations: o = 886
Number of treatments: n = 11
Number of designs: d = 10
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -15.0330 [-25.0820; -4.9840] -2.93 0.0034
CBT -1.1924 [-25.0968; 22.7120] -0.10 0.9221
Cry -30.1200 [-42.4084; -17.8316] -4.80 < 0.0001
HtT -24.1300 [-35.8403; -12.4197] -4.04 < 0.0001
McT -7.1969 [-15.4843; 1.0906] -1.70 0.0887
Mnt 1.6600 [-13.9760; 17.2960] 0.21 0.8352
PbT -3.0576 [-23.6075; 17.4923] -0.29 0.7706
PlaSh 8.4076 [-10.1330; 26.9483] 0.89 0.3741
rTMS -0.1422 [-19.7652; 19.4808] -0.01 0.9887
tDCS -5.7600 [-21.9299; 10.4099] -0.70 0.4851
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 30.3434; tau = 5.5085; I^2 = 63% [29.0%; 80.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 27 10 0.0026
Within designs 27 10 0.0026
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Albers2018 Mnt WlNi 1.6600 5.7706
Armagam2006 PbT PlaSh -5.1300 3.5183
Babu2007 CBT PlaSh -9.6000 5.3779
Boyer2014 PlaSh rTMS 1.0000 4.7100
Curatolo2017 PlaSh tDCS 28.2800 8.5783
Fagerlund2015 tDCS WlNi -5.7600 6.1417
Fioravanti2009 HtT WlNi -24.1300 2.3140
Fioravanti2007 Bal WlNi -21.3500 4.2760
Gur2002a PbT PlaSh -17.2800 2.9780
Hamnes2012 McT WlNi -2.7600 2.4785
Lee2012 PlaSh rTMS 1.4000 16.3233
Mhalla2011 PlaSh rTMS 9.3000 3.8196
Ozkurt2011 Bal WlNi -7.6000 5.1841
Passard2007 PlaSh rTMS 10.4000 2.7307
Salaffi2015 McT WlNi -11.4600 2.1713
Short2011 PlaSh rTMS 11.7600 9.8838
Valle2009 PlaSh tDCS 15.3100 11.9744
Yagci2014 PlaSh rTMS 14.0300 6.3821
Loreti2023 PlaSh tDCS 9.6200 1.2652
Kiyak2022 Cry WlNi -30.1200 2.9943
Number of treatment arms (by study):
narms
Albers2018 2
Armagam2006 2
Babu2007 2
Boyer2014 2
Curatolo2017 2
Fagerlund2015 2
Fioravanti2009 2
Fioravanti2007 2
Gur2002a 2
Hamnes2012 2
Lee2012 2
Mhalla2011 2
Ozkurt2011 2
Passard2007 2
Salaffi2015 2
Short2011 2
Valle2009 2
Yagci2014 2
Loreti2023 2
Kiyak2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 Mnt WlNi 1.6600 [-13.9760; 17.2960]
Armagam2006 PbT PlaSh -11.4652 [-20.3277; -2.6028]
Babu2007 CBT PlaSh -9.6000 [-24.6886; 5.4886]
Boyer2014 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Curatolo2017 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Fagerlund2015 tDCS WlNi -5.7600 [-21.9299; 10.4099]
Fioravanti2009 HtT WlNi -24.1300 [-35.8403; -12.4197]
Fioravanti2007 Bal WlNi -15.0330 [-25.0820; -4.9840]
Gur2002a PbT PlaSh -11.4652 [-20.3277; -2.6028]
Hamnes2012 McT WlNi -7.1969 [-15.4843; 1.0906]
Lee2012 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Mhalla2011 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Ozkurt2011 Bal WlNi -15.0330 [-25.0820; -4.9840]
Passard2007 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Salaffi2015 McT WlNi -7.1969 [-15.4843; 1.0906]
Short2011 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Valle2009 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Yagci2014 PlaSh rTMS 8.5498 [ 2.1228; 14.9768]
Loreti2023 PlaSh tDCS 14.1676 [ 5.0963; 23.2389]
Kiyak2022 Cry WlNi -30.1200 [-42.4084; -17.8316]
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of observations: o = 886
Number of treatments: n = 11
Number of designs: d = 10
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Bal -15.0330 [-25.0820; -4.9840] -2.93 0.0034
CBT -1.1924 [-25.0968; 22.7120] -0.10 0.9221
Cry -30.1200 [-42.4084; -17.8316] -4.80 < 0.0001
HtT -24.1300 [-35.8403; -12.4197] -4.04 < 0.0001
McT -7.1969 [-15.4843; 1.0906] -1.70 0.0887
Mnt 1.6600 [-13.9760; 17.2960] 0.21 0.8352
PbT -3.0576 [-23.6075; 17.4923] -0.29 0.7706
PlaSh 8.4076 [-10.1330; 26.9483] 0.89 0.3741
rTMS -0.1422 [-19.7652; 19.4808] -0.01 0.9887
tDCS -5.7600 [-21.9299; 10.4099] -0.70 0.4851
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 30.3434; tau = 5.5085; I^2 = 63% [29.0%; 80.7%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 27 10 0.0026
Within designs 27 10 0.0026
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Bal .
-13.8406 [-39.7713; 12.0901] CBT
15.0870 [ -0.7871; 30.9611] 28.9276 [ 2.0496; 55.8056]
9.0970 [ -6.3339; 24.5279] 22.9376 [ -3.6810; 49.5563]
-7.8361 [-20.8616; 5.1894] 6.0045 [-19.2957; 31.3047]
-16.6930 [-35.2797; 1.8937] -2.8524 [-31.4164; 25.7117]
-11.9754 [-34.8507; 10.8999] 1.8652 [-15.6335; 19.3640]
-23.4406 [-44.5294; -2.3518] -9.6000 [-24.6886; 5.4886]
-14.8908 [-36.9372; 7.1556] -1.0502 [-17.4506; 15.3502]
-9.2730 [-28.3111; 9.7651] 4.5676 [-13.0379; 22.1731]
-15.0330 [-25.0820; -4.9840] -1.1924 [-25.0968; 22.7120]
. .
. .
Cry .
-5.9900 [-22.9646; 10.9846] HtT
-22.9231 [-37.7450; -8.1013] -16.9331 [-31.2793; -2.5869]
-31.7800 [-51.6669; -11.8931] -25.7900 [-45.3250; -6.2550]
-27.0624 [-51.0061; -3.1186] -21.0724 [-44.7247; 2.5799]
-38.5276 [-60.7709; -16.2844] -32.5376 [-54.4668; -10.6085]
-29.9778 [-53.1310; -6.8247] -23.9878 [-46.8394; -1.1363]
-24.3600 [-44.6694; -4.0506] -18.3700 [-38.3349; 1.5949]
-30.1200 [-42.4084; -17.8316] -24.1300 [-35.8403; -12.4197]
. .
. .
. .
. .
McT .
-8.8569 [-26.5534; 8.8396] Mnt
-4.1393 [-26.2973; 18.0188] 4.7176 [-21.1045; 30.5397]
-15.6045 [-35.9130; 4.7041] -6.7476 [-31.0013; 17.5060]
-7.0547 [-28.3560; 14.2466] 1.8022 [-23.2886; 26.8929]
-1.4369 [-19.6069; 16.7331] 7.4200 [-15.0734; 29.9134]
-7.1969 [-15.4843; 1.0906] 1.6600 [-13.9760; 17.2960]
. .
. -9.6000 [-24.6886; 5.4886]
. .
. .
. .
. .
PbT -11.4652 [-20.3277; -2.6028]
-11.4652 [-20.3277; -2.6028] PlaSh
-2.9154 [-13.8630; 8.0321] 8.5498 [ 2.1228; 14.9768]
2.7024 [ -9.9795; 15.3843] 14.1676 [ 5.0963; 23.2389]
-3.0576 [-23.6075; 17.4923] 8.4076 [-10.1330; 26.9483]
. .
. .
. .
. .
. .
. .
. .
8.5498 [ 2.1228; 14.9768] 14.1676 [ 5.0963; 23.2389]
rTMS .
5.6178 [ -5.4995; 16.7352] tDCS
-0.1422 [-19.7652; 19.4808] -5.7600 [-21.9299; 10.4099]
-15.0330 [-25.0820; -4.9840]
.
-30.1200 [-42.4084; -17.8316]
-24.1300 [-35.8403; -12.4197]
-7.1969 [-15.4843; 1.0906]
1.6600 [-13.9760; 17.2960]
.
.
.
-5.7600 [-21.9299; 10.4099]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Cry 0.9676
HtT 0.8962
Bal 0.7418
McT 0.5482
tDCS 0.5346
PbT 0.4432
CBT 0.3815
rTMS 0.3345
WlNi 0.3025
Mnt 0.2819
PlaSh 0.0680
Q statistics to assess homogeneity / consistency
Q df p-value
Total 27.00 10 0.0026
Within designs 27.00 10 0.0026
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:McT 6.97 1 0.0083
PbT:PlaSh 6.95 1 0.0084
WlNi:Bal 4.19 1 0.0407
PlaSh:tDCS 4.82 2 0.0896
PlaSh:rTMS 4.07 5 0.5398
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 5.5085 30.3434
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Bal:CBT 0 0 -13.8406 . -13.8406 . . .
Bal:Cry 0 0 15.0870 . 15.0870 . . .
Bal:HtT 0 0 9.0970 . 9.0970 . . .
Bal:McT 0 0 -7.8361 . -7.8361 . . .
Bal:Mnt 0 0 -16.6930 . -16.6930 . . .
Bal:PbT 0 0 -11.9754 . -11.9754 . . .
Bal:PlaSh 0 0 -23.4406 . -23.4406 . . .
Bal:rTMS 0 0 -14.8908 . -14.8908 . . .
Bal:tDCS 0 0 -9.2730 . -9.2730 . . .
Bal:WlNi 2 1.00 -15.0330 -15.0330 . . . .
CBT:Cry 0 0 28.9276 . 28.9276 . . .
CBT:HtT 0 0 22.9376 . 22.9376 . . .
CBT:McT 0 0 6.0045 . 6.0045 . . .
CBT:Mnt 0 0 -2.8524 . -2.8524 . . .
CBT:PbT 0 0 1.8652 . 1.8652 . . .
CBT:PlaSh 1 1.00 -9.6000 -9.6000 . . . .
CBT:rTMS 0 0 -1.0502 . -1.0502 . . .
CBT:tDCS 0 0 4.5676 . 4.5676 . . .
CBT:WlNi 0 0 -1.1924 . -1.1924 . . .
Cry:HtT 0 0 -5.9900 . -5.9900 . . .
Cry:McT 0 0 -22.9231 . -22.9231 . . .
Cry:Mnt 0 0 -31.7800 . -31.7800 . . .
Cry:PbT 0 0 -27.0624 . -27.0624 . . .
Cry:PlaSh 0 0 -38.5276 . -38.5276 . . .
Cry:rTMS 0 0 -29.9778 . -29.9778 . . .
Cry:tDCS 0 0 -24.3600 . -24.3600 . . .
Cry:WlNi 1 1.00 -30.1200 -30.1200 . . . .
HtT:McT 0 0 -16.9331 . -16.9331 . . .
HtT:Mnt 0 0 -25.7900 . -25.7900 . . .
HtT:PbT 0 0 -21.0724 . -21.0724 . . .
HtT:PlaSh 0 0 -32.5376 . -32.5376 . . .
HtT:rTMS 0 0 -23.9878 . -23.9878 . . .
HtT:tDCS 0 0 -18.3700 . -18.3700 . . .
HtT:WlNi 1 1.00 -24.1300 -24.1300 . . . .
McT:Mnt 0 0 -8.8569 . -8.8569 . . .
McT:PbT 0 0 -4.1393 . -4.1393 . . .
McT:PlaSh 0 0 -15.6045 . -15.6045 . . .
McT:rTMS 0 0 -7.0547 . -7.0547 . . .
McT:tDCS 0 0 -1.4369 . -1.4369 . . .
McT:WlNi 2 1.00 -7.1969 -7.1969 . . . .
Mnt:PbT 0 0 4.7176 . 4.7176 . . .
Mnt:PlaSh 0 0 -6.7476 . -6.7476 . . .
Mnt:rTMS 0 0 1.8022 . 1.8022 . . .
Mnt:tDCS 0 0 7.4200 . 7.4200 . . .
Mnt:WlNi 1 1.00 1.6600 1.6600 . . . .
PbT:PlaSh 2 1.00 -11.4652 -11.4652 . . . .
PbT:rTMS 0 0 -2.9154 . -2.9154 . . .
PbT:tDCS 0 0 2.7024 . 2.7024 . . .
PbT:WlNi 0 0 -3.0576 . -3.0576 . . .
PlaSh:rTMS 6 1.00 8.5498 8.5498 . . . .
PlaSh:tDCS 3 1.00 14.1676 14.1676 . . . .
PlaSh:WlNi 0 0 8.4076 . 8.4076 . . .
rTMS:tDCS 0 0 5.6178 . 5.6178 . . .
rTMS:WlNi 0 0 -0.1422 . -0.1422 . . .
tDCS:WlNi 1 1.00 -5.7600 -5.7600 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qsh <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Sh") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3),
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_qsh,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of treatments: n = 21
Number of designs: d = 47
Number of networks: 1
There are network:
Network:
- 99 studies
- 115 comparisons
- 21 treatments
The network is fully connected.
1.0.3 Network
Select the procedures performed
The network contain 99 studies, 115 comparisons and 22 treatments.
Code
Code
[1] "Mnt" "McT" "WBV" "MfT" "AqET" "Bal" "AeET" "FlET" "ReET" "CBT"
[11] "rTMS" "DryN" "MiET" "Elec" "MasT" "tDCS" "Acu" "PbT"
[1] "WlNi" "WBV" "PlaSh" "Bal" "AqET" "ReET" "McT" "FlET" "MasT"
[10] "Plt" "CBT" "MiET" "Mnt"
Code
[1] "Mnt" "McT" "WBV" "MfT" "AqET" "Bal" "AeET" "FlET" "ReET"
[10] "CBT" "rTMS" "DryN" "MiET" "Elec" "MasT" "tDCS" "Acu" "PbT"
[19] "WlNi" "PlaSh" "Plt"
[1] 21
Code
[1] 115
Code
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of observations: o = 6658
Number of treatments: n = 21
Number of designs: d = 47
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -23.7569 [-35.9372; -11.5766] -3.82 0.0001
AeET -13.4354 [-20.0894; -6.7814] -3.96 < 0.0001
AqET -14.8091 [-21.9496; -7.6686] -4.06 < 0.0001
Bal -16.1977 [-26.8461; -5.5493] -2.98 0.0029
CBT -7.7135 [-11.9020; -3.5249] -3.61 0.0003
DryN -24.7308 [-39.0871; -10.3745] -3.38 0.0007
Elec -19.6014 [-36.0315; -3.1714] -2.34 0.0194
FlET -6.5412 [-14.6940; 1.6117] -1.57 0.1158
MasT -17.1916 [-27.1616; -7.2217] -3.38 0.0007
McT -12.9538 [-17.6261; -8.2815] -5.43 < 0.0001
MfT -23.9171 [-38.9107; -8.9236] -3.13 0.0018
MiET -10.7914 [-16.0339; -5.5489] -4.03 < 0.0001
Mnt -11.9810 [-23.1959; -0.7661] -2.09 0.0363
PbT -20.5345 [-42.2167; 1.1478] -1.86 0.0634
PlaSh -7.9345 [-18.1090; 2.2401] -1.53 0.1264
Plt -21.2186 [-33.7539; -8.6833] -3.32 0.0009
ReET -20.3620 [-28.6709; -12.0532] -4.80 < 0.0001
rTMS -15.8801 [-30.1998; -1.5603] -2.17 0.0297
tDCS -12.2882 [-27.4754; 2.8989] -1.59 0.1128
WBV -12.5886 [-22.1624; -3.0148] -2.58 0.0100
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 80.2482; tau = 8.9581; I^2 = 84.4% [81.3%; 87.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 557.76 87 < 0.0001
Within designs 298.03 53 < 0.0001
Between designs 259.74 34 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 Mnt WlNi -8.3900 5.6141 10.5720 2
Alentorn-Geli2008 McT WBV 6.4100 6.4532 13.0119 3 *
Alentorn-Geli2008 McT WlNi -9.4400 7.3279 14.1541 3 *
Alentorn-Geli2008 WBV WlNi -15.8500 7.9606 15.3257 3 *
Alfano2001 MfT PlaSh -4.6400 3.5345 9.6302 2
Altan2004 AqET Bal -1.8800 4.7088 10.1203 2
Ardic2007 Bal WlNi -8.6800 4.3832 9.9730 2
Assis2006 AeET AqET 3.0000 5.0248 10.2712 2
Assumpçao2018 FlET ReET 9.1000 9.5318 17.0101 3 *
Assumpçao2018 FlET WlNi -14.8000 8.1936 14.4632 3 *
Assumpçao2018 ReET WlNi -23.9000 8.2018 14.4746 3 *
Astin2003 CBT McT 1.3000 4.1904 9.8898 2
Baumueller2017 CBT WlNi 2.3700 6.6855 11.1778 2
Bongi2012 CBT McT 10.0900 6.8643 11.2857 2
Bongi2010 CBT WlNi -13.9000 5.6413 10.5864 2
Bourgault2015 McT WlNi -1.5700 4.9106 10.2158 2
Boyer2014 PlaSh rTMS 11.6000 4.3853 9.9739 2
Calandre2009 AqET FlET -4.7200 4.2444 9.9128 2
Carson2010 McT WlNi -13.2000 5.0135 10.2656 2
Casanueva2014 DryN WlNi -9.7000 3.3866 9.5769 2
Castro-Sanchez2019 DryN MasT -23.8200 4.3700 9.9672 2
Collado-Mateo2017 MiET PlaSh -6.9300 3.3233 9.5547 2
daCosta2005 MiET WlNi -7.3000 4.2695 9.9236 2
Dailey2019 Elec PlaSh -56.0600 23.1621 24.8341 2
deMedeiros2020 AqET Plt 7.0000 5.0943 10.3054 2
Ekici2017 MasT Plt 6.5600 3.3208 9.5538 2
Espi-Lopes2016 MiET WlNi 1.7600 7.0148 11.3779 2
Evcik2002 Bal WlNi -33.8000 10.9424 14.1416 2
Fernandes2016 AeET AqET 3.4800 4.1605 9.8772 2
Fitzgibbon2018 PlaSh rTMS 3.0700 7.9323 11.9654 2
Fonseca2019 AqET CBT 13.6000 4.3355 9.9521 2
Garcia2006 CBT WlNi -13.8800 9.9308 13.3742 2
Garcia-Martinez2012 MiET WlNi -18.2100 7.4089 11.6249 2
Giannotti2014 McT WlNi 4.5300 5.6870 10.6109 2
Glasgow2017 ReET WlNi -30.0000 7.0456 11.3969 2
Gomez-Hernandez2019 AeET MiET 10.6200 0.8775 9.0010 2
Gowans2001 AqET WlNi -6.7300 5.8527 10.7006 2
Hargrove2012 PlaSh tDCS 9.9000 4.5112 10.0299 2
Jones2002 McT ReET 5.5500 4.8917 10.2067 2
Jones2012 CBT McT 13.4000 6.5801 11.1151 2
Karatay2018 Acu PlaSh -17.1100 4.8992 10.2103 2
Kayo2012 AeET ReET -9.7400 5.4131 12.8701 3 *
Kayo2012 AeET WlNi -16.1300 5.3516 12.7912 3 *
Kayo2012 ReET WlNi -6.3900 5.2328 12.6452 3 *
King2002 CBT McT 11.6000 4.8603 10.1917 2
Kurt2016 Bal MiET -7.1000 2.5883 9.3246 2
Lami2018 CBT WlNi 1.4400 3.3937 9.5794 2
Lauche2016 MasT PlaSh -6.6000 2.8655 9.4053 2
Lopes-Rodrigues2012 AqET FlET -17.0700 4.6996 10.1160 2
Lopes-Rodrigues2013 AqET FlET -14.7900 4.2189 9.9019 2
Luciano2014 CBT WlNi -18.9800 1.5949 9.0990 2
Lynch2012 McT WlNi -17.5200 3.2954 9.5451 2
Mhalla2011 PlaSh rTMS 10.7000 4.4529 10.0038 2
Mist2018 Acu CBT -22.4000 5.0071 10.2625 2
Olivares2011 WBV WlNi -3.7300 3.6133 9.6594 2
Paolucci2016 MfT PlaSh -22.3000 4.2735 9.9253 2
Paolucci2015 MiET WlNi -9.7000 3.6907 9.6886 2
Parra-Delgado2013 CBT WlNi -4.4300 5.5637 10.5453 2
Pereira-Pernambuco2018 McT WlNi -37.5900 3.2725 9.5372 2
Perez-Aranda2019 CBT WlNi -6.8600 2.9360 9.4270 2
Picard2013 CBT WlNi -1.3500 4.6479 10.0921 2
Redondo2004 CBT MiET 4.3600 5.5606 10.5436 2
Richards2002 AeET McT 0.3000 2.6343 9.3374 2
Rivera2018 WBV WlNi -22.0000 4.7523 10.1407 2
Ruaro2014 PbT PlaSh -12.6000 3.8967 9.7689 2
Salaffi2015 McT WlNi -8.2400 2.1713 9.2175 2
Schachter2003 AeET WlNi -10.1900 3.3527 9.5650 2
Schmidt2011 CBT WlNi -3.0300 2.4137 9.2776 2
Sevimli2015 AeET AqET 1.7000 4.6428 12.3735 3 *
Sevimli2015 AeET MiET -26.3000 4.4976 12.2139 3 *
Sevimli2015 AqET MiET -28.0000 4.6973 12.4363 3 *
Silva2019 CBT ReET 25.7400 4.1233 9.8615 2
Simister2018 CBT WlNi -16.2300 3.2949 9.5449 2
Soares2002 CBT WlNi -1.8400 1.6938 9.1169 2
Sutbeyaz2009 MfT PlaSh -21.4000 3.5877 9.6499 2
Tomas-Carus2007b&c AqET WlNi -8.0000 6.1835 10.8850 2
Ugurlu2017 Acu PlaSh -26.0300 3.5736 9.6446 2
Valim2003 AeET FlET -3.3100 4.8020 10.1640 2
Vallejo2015 CBT WlNi -2.7600 4.8915 10.2066 2
Vas2016 Acu PlaSh -8.5000 2.5814 9.3227 2
Verkaik2013 CBT WlNi -3.8000 3.3368 9.5594 2
Wang2018 McT MiET -6.8800 2.9934 9.4450 2
Wicksell2013 CBT WlNi -4.8000 3.6440 9.6709 2
Arakaki2021 FlET ReET 15.7100 5.6273 10.5790 2
Atan2020 MiET WlNi -31.0800 4.3638 9.9645 2
Barranengoa-Cuadra2021 CBT WlNi -24.1000 3.0388 9.4595 2
Ceballos-Laita2020 McT MiET -0.3500 7.7076 11.8176 2
Coste2021 Mnt PlaSh -0.8000 4.0600 9.8352 2
Izquierdo-Alventosa2020 MiET WlNi -5.5800 5.9339 10.7452 2
Jamison2021 Elec PlaSh -7.4700 2.4770 9.2943 2
Mingorance2021.2 WBV WlNi -8.2000 2.5870 9.3242 2
Rodriguez-Mansilla2021 McT MiET -0.0800 4.2198 12.5348 3 *
Rodriguez-Mansilla2021 MiET WlNi -11.6600 3.2126 11.5197 3 *
Rodriguez-Mansilla2021 McT WlNi -11.7400 2.9326 11.3193 3 *
Sarmento2020 McT PlaSh -18.0000 9.1302 12.7909 2
Udina-Cortés2020 Elec PlaSh -9.3000 4.5740 10.0583 2
Lacroix2022 PlaSh rTMS 5.1500 3.5083 9.6206 2
Paolucci2022 CBT MiET -8.5000 6.9387 11.3311 2
Park2021 FlET ReET 11.3000 6.5679 11.1079 2
Samartin-Veiga2022 PlaSh tDCS 1.3400 5.3236 10.4206 2
Alptug2023 Mnt WlNi -24.1000 5.9968 10.7801 2
Audoux2023 MasT Mnt -10.3000 7.1849 11.4835 2
Baelz2022 Acu PlaSh -2.6000 7.3763 11.6042 2
Caumo2023 PlaSh tDCS 1.8800 3.1792 9.5056 2
Franco2023 AeET Plt 4.5000 4.2791 9.9277 2
Rodríguez-Mansilla2023 AeET McT 0.0900 3.2027 11.8078 3 *
Rodríguez-Mansilla2023 AeET WlNi -10.4800 2.6296 11.3628 3 *
Rodríguez-Mansilla2023 McT WlNi -10.5700 2.6113 11.3508 3 *
Patru2021 McT MiET 11.8000 4.6757 12.5027 3 *
Patru2021 McT WlNi -8.1000 4.5444 12.3481 3 *
Patru2021 MiET WlNi -19.9000 4.1244 11.9154 3 *
Lee2024 CBT McT 0.1000 2.6946 9.3546 2
Schulze2023 FlET MasT 17.4400 2.1681 11.2974 3 *
Schulze2023 MasT WlNi -33.6200 2.0780 11.2466 3 *
Schulze2023 FlET WlNi -16.1800 2.1603 11.2929 3 *
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Altan2004 2
Ardic2007 2
Assis2006 2
Assumpçao2018 3
Astin2003 2
Baumueller2017 2
Bongi2012 2
Bongi2010 2
Bourgault2015 2
Boyer2014 2
Calandre2009 2
Carson2010 2
Casanueva2014 2
Castro-Sanchez2019 2
Collado-Mateo2017 2
daCosta2005 2
Dailey2019 2
deMedeiros2020 2
Ekici2017 2
Espi-Lopes2016 2
Evcik2002 2
Fernandes2016 2
Fitzgibbon2018 2
Fonseca2019 2
Garcia2006 2
Garcia-Martinez2012 2
Giannotti2014 2
Glasgow2017 2
Gomez-Hernandez2019 2
Gowans2001 2
Hargrove2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kayo2012 3
King2002 2
Kurt2016 2
Lami2018 2
Lauche2016 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Mhalla2011 2
Mist2018 2
Olivares2011 2
Paolucci2016 2
Paolucci2015 2
Parra-Delgado2013 2
Pereira-Pernambuco2018 2
Perez-Aranda2019 2
Picard2013 2
Redondo2004 2
Richards2002 2
Rivera2018 2
Ruaro2014 2
Salaffi2015 2
Schachter2003 2
Schmidt2011 2
Sevimli2015 3
Silva2019 2
Simister2018 2
Soares2002 2
Sutbeyaz2009 2
Tomas-Carus2007b&c 2
Ugurlu2017 2
Valim2003 2
Vallejo2015 2
Vas2016 2
Verkaik2013 2
Wang2018 2
Wicksell2013 2
Arakaki2021 2
Atan2020 2
Barranengoa-Cuadra2021 2
Ceballos-Laita2020 2
Coste2021 2
Izquierdo-Alventosa2020 2
Jamison2021 2
Mingorance2021.2 2
Rodriguez-Mansilla2021 3
Sarmento2020 2
Udina-Cortés2020 2
Lacroix2022 2
Paolucci2022 2
Park2021 2
Samartin-Veiga2022 2
Alptug2023 2
Audoux2023 2
Baelz2022 2
Caumo2023 2
Franco2023 2
Rodríguez-Mansilla2023 3
Patru2021 3
Lee2024 2
Schulze2023 3
Results (random effects model):
treat1 treat2 MD 95%-CI
Albers2018 Mnt WlNi -11.9810 [-23.1959; -0.7661]
Alentorn-Geli2008 McT WBV -0.3651 [-10.7268; 9.9965]
Alentorn-Geli2008 McT WlNi -12.9538 [-17.6261; -8.2815]
Alentorn-Geli2008 WBV WlNi -12.5886 [-22.1624; -3.0148]
Alfano2001 MfT PlaSh -15.9827 [-26.9957; -4.9697]
Altan2004 AqET Bal 1.3886 [-10.1255; 12.9027]
Ardic2007 Bal WlNi -16.1977 [-26.8461; -5.5493]
Assis2006 AeET AqET 1.3737 [ -6.2522; 8.9996]
Assumpçao2018 FlET ReET 13.8209 [ 4.4199; 23.2218]
Assumpçao2018 FlET WlNi -6.5412 [-14.6940; 1.6117]
Assumpçao2018 ReET WlNi -20.3620 [-28.6709; -12.0532]
Astin2003 CBT McT 5.2403 [ -0.1262; 10.6068]
Baumueller2017 CBT WlNi -7.7135 [-11.9020; -3.5249]
Bongi2012 CBT McT 5.2403 [ -0.1262; 10.6068]
Bongi2010 CBT WlNi -7.7135 [-11.9020; -3.5249]
Bourgault2015 McT WlNi -12.9538 [-17.6261; -8.2815]
Boyer2014 PlaSh rTMS 7.9456 [ -2.1309; 18.0221]
Calandre2009 AqET FlET -8.2679 [-16.4622; -0.0736]
Carson2010 McT WlNi -12.9538 [-17.6261; -8.2815]
Casanueva2014 DryN WlNi -24.7308 [-39.0871; -10.3745]
Castro-Sanchez2019 DryN MasT -7.5392 [-22.0330; 6.9547]
Collado-Mateo2017 MiET PlaSh -2.8569 [-13.3836; 7.6698]
daCosta2005 MiET WlNi -10.7914 [-16.0339; -5.5489]
Dailey2019 Elec PlaSh -11.6670 [-24.5676; 1.2336]
deMedeiros2020 AqET Plt 6.4095 [ -6.0784; 18.8974]
Ekici2017 MasT Plt 4.0270 [ -9.0700; 17.1239]
Espi-Lopes2016 MiET WlNi -10.7914 [-16.0339; -5.5489]
Evcik2002 Bal WlNi -16.1977 [-26.8461; -5.5493]
Fernandes2016 AeET AqET 1.3737 [ -6.2522; 8.9996]
Fitzgibbon2018 PlaSh rTMS 7.9456 [ -2.1309; 18.0221]
Fonseca2019 AqET CBT -7.0956 [-14.8641; 0.6728]
Garcia2006 CBT WlNi -7.7135 [-11.9020; -3.5249]
Garcia-Martinez2012 MiET WlNi -10.7914 [-16.0339; -5.5489]
Giannotti2014 McT WlNi -12.9538 [-17.6261; -8.2815]
Glasgow2017 ReET WlNi -20.3620 [-28.6709; -12.0532]
Gomez-Hernandez2019 AeET MiET -2.6440 [-10.0565; 4.7685]
Gowans2001 AqET WlNi -14.8091 [-21.9496; -7.6686]
Hargrove2012 PlaSh tDCS 4.3538 [ -6.9214; 15.6289]
Jones2002 McT ReET 7.4083 [ -1.4691; 16.2857]
Jones2012 CBT McT 5.2403 [ -0.1262; 10.6068]
Karatay2018 Acu PlaSh -15.8224 [-24.9286; -6.7162]
Kayo2012 AeET ReET 6.9266 [ -2.6708; 16.5241]
Kayo2012 AeET WlNi -13.4354 [-20.0894; -6.7814]
Kayo2012 ReET WlNi -20.3620 [-28.6709; -12.0532]
King2002 CBT McT 5.2403 [ -0.1262; 10.6068]
Kurt2016 Bal MiET -5.4063 [-16.3489; 5.5363]
Lami2018 CBT WlNi -7.7135 [-11.9020; -3.5249]
Lauche2016 MasT PlaSh -9.2572 [-20.9331; 2.4187]
Lopes-Rodrigues2012 AqET FlET -8.2679 [-16.4622; -0.0736]
Lopes-Rodrigues2013 AqET FlET -8.2679 [-16.4622; -0.0736]
Luciano2014 CBT WlNi -7.7135 [-11.9020; -3.5249]
Lynch2012 McT WlNi -12.9538 [-17.6261; -8.2815]
Mhalla2011 PlaSh rTMS 7.9456 [ -2.1309; 18.0221]
Mist2018 Acu CBT -16.0434 [-28.2856; -3.8012]
Olivares2011 WBV WlNi -12.5886 [-22.1624; -3.0148]
Paolucci2016 MfT PlaSh -15.9827 [-26.9957; -4.9697]
Paolucci2015 MiET WlNi -10.7914 [-16.0339; -5.5489]
Parra-Delgado2013 CBT WlNi -7.7135 [-11.9020; -3.5249]
Pereira-Pernambuco2018 McT WlNi -12.9538 [-17.6261; -8.2815]
Perez-Aranda2019 CBT WlNi -7.7135 [-11.9020; -3.5249]
Picard2013 CBT WlNi -7.7135 [-11.9020; -3.5249]
Redondo2004 CBT MiET 3.0779 [ -3.0300; 9.1858]
Richards2002 AeET McT -0.4816 [ -7.7410; 6.7777]
Rivera2018 WBV WlNi -12.5886 [-22.1624; -3.0148]
Ruaro2014 PbT PlaSh -12.6000 [-31.7468; 6.5468]
Salaffi2015 McT WlNi -12.9538 [-17.6261; -8.2815]
Schachter2003 AeET WlNi -13.4354 [-20.0894; -6.7814]
Schmidt2011 CBT WlNi -7.7135 [-11.9020; -3.5249]
Sevimli2015 AeET AqET 1.3737 [ -6.2522; 8.9996]
Sevimli2015 AeET MiET -2.6440 [-10.0565; 4.7685]
Sevimli2015 AqET MiET -4.0177 [-12.0560; 4.0206]
Silva2019 CBT ReET 12.6486 [ 3.8907; 21.4065]
Simister2018 CBT WlNi -7.7135 [-11.9020; -3.5249]
Soares2002 CBT WlNi -7.7135 [-11.9020; -3.5249]
Sutbeyaz2009 MfT PlaSh -15.9827 [-26.9957; -4.9697]
Tomas-Carus2007b&c AqET WlNi -14.8091 [-21.9496; -7.6686]
Ugurlu2017 Acu PlaSh -15.8224 [-24.9286; -6.7162]
Valim2003 AeET FlET -6.8942 [-15.7839; 1.9955]
Vallejo2015 CBT WlNi -7.7135 [-11.9020; -3.5249]
Vas2016 Acu PlaSh -15.8224 [-24.9286; -6.7162]
Verkaik2013 CBT WlNi -7.7135 [-11.9020; -3.5249]
Wang2018 McT MiET -2.1624 [ -8.2277; 3.9029]
Wicksell2013 CBT WlNi -7.7135 [-11.9020; -3.5249]
Arakaki2021 FlET ReET 13.8209 [ 4.4199; 23.2218]
Atan2020 MiET WlNi -10.7914 [-16.0339; -5.5489]
Barranengoa-Cuadra2021 CBT WlNi -7.7135 [-11.9020; -3.5249]
Ceballos-Laita2020 McT MiET -2.1624 [ -8.2277; 3.9029]
Coste2021 Mnt PlaSh -4.0465 [-16.4852; 8.3922]
Izquierdo-Alventosa2020 MiET WlNi -10.7914 [-16.0339; -5.5489]
Jamison2021 Elec PlaSh -11.6670 [-24.5676; 1.2336]
Mingorance2021.2 WBV WlNi -12.5886 [-22.1624; -3.0148]
Rodriguez-Mansilla2021 McT MiET -2.1624 [ -8.2277; 3.9029]
Rodriguez-Mansilla2021 MiET WlNi -10.7914 [-16.0339; -5.5489]
Rodriguez-Mansilla2021 McT WlNi -12.9538 [-17.6261; -8.2815]
Sarmento2020 McT PlaSh -5.0193 [-15.5979; 5.5593]
Udina-Cortés2020 Elec PlaSh -11.6670 [-24.5676; 1.2336]
Lacroix2022 PlaSh rTMS 7.9456 [ -2.1309; 18.0221]
Paolucci2022 CBT MiET 3.0779 [ -3.0300; 9.1858]
Park2021 FlET ReET 13.8209 [ 4.4199; 23.2218]
Samartin-Veiga2022 PlaSh tDCS 4.3538 [ -6.9214; 15.6289]
Alptug2023 Mnt WlNi -11.9810 [-23.1959; -0.7661]
Audoux2023 MasT Mnt -5.2106 [-17.9883; 7.5670]
Baelz2022 Acu PlaSh -15.8224 [-24.9286; -6.7162]
Caumo2023 PlaSh tDCS 4.3538 [ -6.9214; 15.6289]
Franco2023 AeET Plt 7.7832 [ -4.6090; 20.1754]
Rodríguez-Mansilla2023 AeET McT -0.4816 [ -7.7410; 6.7777]
Rodríguez-Mansilla2023 AeET WlNi -13.4354 [-20.0894; -6.7814]
Rodríguez-Mansilla2023 McT WlNi -12.9538 [-17.6261; -8.2815]
Patru2021 McT MiET -2.1624 [ -8.2277; 3.9029]
Patru2021 McT WlNi -12.9538 [-17.6261; -8.2815]
Patru2021 MiET WlNi -10.7914 [-16.0339; -5.5489]
Lee2024 CBT McT 5.2403 [ -0.1262; 10.6068]
Schulze2023 FlET MasT 10.6505 [ -0.8340; 22.1349]
Schulze2023 MasT WlNi -17.1916 [-27.1616; -7.2217]
Schulze2023 FlET WlNi -6.5412 [-14.6940; 1.6117]
Number of studies: k = 99
Number of pairwise comparisons: m = 115
Number of observations: o = 6658
Number of treatments: n = 21
Number of designs: d = 47
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
Acu -23.7569 [-35.9372; -11.5766] -3.82 0.0001
AeET -13.4354 [-20.0894; -6.7814] -3.96 < 0.0001
AqET -14.8091 [-21.9496; -7.6686] -4.06 < 0.0001
Bal -16.1977 [-26.8461; -5.5493] -2.98 0.0029
CBT -7.7135 [-11.9020; -3.5249] -3.61 0.0003
DryN -24.7308 [-39.0871; -10.3745] -3.38 0.0007
Elec -19.6014 [-36.0315; -3.1714] -2.34 0.0194
FlET -6.5412 [-14.6940; 1.6117] -1.57 0.1158
MasT -17.1916 [-27.1616; -7.2217] -3.38 0.0007
McT -12.9538 [-17.6261; -8.2815] -5.43 < 0.0001
MfT -23.9171 [-38.9107; -8.9236] -3.13 0.0018
MiET -10.7914 [-16.0339; -5.5489] -4.03 < 0.0001
Mnt -11.9810 [-23.1959; -0.7661] -2.09 0.0363
PbT -20.5345 [-42.2167; 1.1478] -1.86 0.0634
PlaSh -7.9345 [-18.1090; 2.2401] -1.53 0.1264
Plt -21.2186 [-33.7539; -8.6833] -3.32 0.0009
ReET -20.3620 [-28.6709; -12.0532] -4.80 < 0.0001
rTMS -15.8801 [-30.1998; -1.5603] -2.17 0.0297
tDCS -12.2882 [-27.4754; 2.8989] -1.59 0.1128
WBV -12.5886 [-22.1624; -3.0148] -2.58 0.0100
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 80.2482; tau = 8.9581; I^2 = 84.4% [81.3%; 87.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 557.76 87 < 0.0001
Within designs 298.03 53 < 0.0001
Between designs 259.74 34 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
-10.3215 [-23.7606; 3.1177] AeET
-8.9478 [-22.6198; 4.7242] 1.3737 [ -6.2522; 8.9996]
-7.5592 [-23.4584; 8.3400] 2.7623 [ -9.1694; 14.6940]
-16.0434 [-28.2856; -3.8012] -5.7219 [-13.1542; 1.7103]
0.9739 [-17.1418; 19.0897] 11.2954 [ -4.2314; 26.8222]
-4.1554 [-19.9462; 11.6354] 6.1660 [-11.1799; 23.5120]
-17.2157 [-31.3905; -3.0409] -6.8942 [-15.7839; 1.9955]
-6.5652 [-20.4581; 7.3276] 3.7562 [ -7.3930; 14.9055]
-10.8031 [-23.3452; 1.7390] -0.4816 [ -7.7410; 6.7777]
0.1603 [-14.1299; 14.4504] 10.4817 [ -5.5102; 26.4736]
-12.9655 [-25.5384; -0.3926] -2.6440 [-10.0565; 4.7685]
-11.7759 [-26.3770; 2.8252] -1.4544 [-14.1832; 11.2744]
-3.2224 [-24.4243; 17.9795] 7.0991 [-15.2852; 29.4833]
-15.8224 [-24.9286; -6.7162] -5.5009 [-17.0964; 6.0946]
-2.5383 [-19.2119; 14.1353] 7.7832 [ -4.6090; 20.1754]
-3.3948 [-17.7989; 11.0092] 6.9266 [ -2.6708; 16.5241]
-7.8768 [-21.4584; 5.7047] 2.4447 [-12.9173; 17.8066]
-11.4686 [-25.9618; 3.0246] -1.1472 [-17.3207; 15.0264]
-11.1682 [-26.6023; 4.2658] -0.8468 [-12.4249; 10.7314]
-23.7569 [-35.9372; -11.5766] -13.4354 [-20.0894; -6.7814]
. .
2.7344 [ -8.6669; 14.1357] .
AqET -1.8800 [-21.7155; 17.9555]
1.3886 [-10.1255; 12.9027] Bal
-7.0956 [-14.8641; 0.6728] -8.4842 [-19.7220; 2.7536]
9.9217 [ -5.7593; 25.6026] 8.5331 [ -9.2133; 26.2795]
4.7923 [-12.7429; 22.3276] 3.4038 [-15.9179; 22.7254]
-8.2679 [-16.4622; -0.0736] -9.6565 [-22.4282; 3.1152]
2.3825 [ -8.8896; 13.6547] 0.9940 [-13.2642; 15.2521]
-1.8553 [ -9.8614; 6.1507] -3.2439 [-14.5977; 8.1099]
9.1080 [ -7.0891; 25.3051] 7.7194 [-10.3965; 25.8354]
-4.0177 [-12.0560; 4.0206] -5.4063 [-16.3489; 5.5363]
-2.8281 [-15.7840; 10.1278] -4.2167 [-19.5208; 11.0875]
5.7254 [-16.8059; 28.2566] 4.3368 [-19.6111; 28.2846]
-6.8746 [-18.7515; 5.0022] -8.2632 [-22.6472; 6.1208]
6.4095 [ -6.0784; 18.8974] 5.0209 [-10.8604; 20.9023]
5.5529 [ -4.3556; 15.4614] 4.1644 [ -9.0295; 17.3582]
1.0710 [-14.5045; 16.6464] -0.3176 [-17.8800; 17.2447]
-2.5209 [-18.8973; 13.8556] -3.9094 [-22.1859; 14.3670]
-2.2205 [-14.1125; 9.6716] -3.6090 [-17.8976; 10.6795]
-14.8091 [-21.9496; -7.6686] -16.1977 [-26.8461; -5.5493]
-22.4000 [-42.5142; -2.2858] .
. .
13.6000 [ -5.9058; 33.1058] .
. .
CBT .
17.0173 [ 2.1550; 31.8796] DryN
11.8880 [ -4.7273; 28.5032] -5.1294 [-26.2026; 15.9439]
-1.1723 [ -9.9533; 7.6088] -18.1896 [-34.1978; -2.1814]
9.4782 [ -1.0668; 20.0231] -7.5392 [-22.0330; 6.9547]
5.2403 [ -0.1262; 10.6068] -11.7770 [-26.7590; 3.2049]
16.2037 [ 1.0074; 31.3999] -0.8137 [-20.7872; 19.1599]
3.0779 [ -3.0300; 9.1858] -13.9394 [-29.0623; 1.1835]
4.2675 [ -7.5121; 16.0472] -12.7498 [-30.1326; 4.6330]
12.8210 [ -9.0019; 34.6439] -4.1963 [-29.5785; 21.1858]
0.2210 [-10.2499; 10.6919] -16.7963 [-33.4593; -0.1333]
13.5051 [ 0.5474; 26.4629] -3.5122 [-21.4686; 14.4442]
12.6486 [ 3.8907; 21.4065] -4.3688 [-20.7455; 12.0080]
8.1666 [ -6.3653; 22.6985] -8.8507 [-28.3236; 10.6221]
4.5748 [-10.8125; 19.9621] -12.4426 [-32.5618; 7.6767]
4.8752 [ -5.5036; 15.2539] -12.1422 [-29.3838; 5.0994]
-7.7135 [-11.9020; -3.5249] -24.7308 [-39.0871; -10.3745]
. .
. -3.3100 [-23.2312; 16.6112]
. -12.1298 [-23.4179; -0.8417]
. .
. .
. .
Elec .
-13.0602 [-30.9717; 4.8512] FlET
-2.4098 [-19.8096; 14.9900] 10.6505 [ -0.8340; 22.1349]
-6.6477 [-23.3310; 10.0356] 6.4126 [ -2.5136; 15.3388]
4.3157 [-12.6464; 21.2778] 17.3759 [ 0.7723; 33.9796]
-8.8100 [-25.4605; 7.8404] 4.2502 [ -4.9038; 13.4042]
-7.6204 [-25.5410; 10.3002] 5.4398 [ -7.9928; 18.8724]
0.9330 [-22.1543; 24.0204] 13.9933 [ -8.8320; 36.8186]
-11.6670 [-24.5676; 1.2336] 1.3933 [-11.0323; 13.8188]
1.6172 [-18.2471; 21.4814] 14.6774 [ 1.0635; 28.2913]
0.7606 [-17.3793; 18.9005] 13.8209 [ 4.4199; 23.2218]
-3.7214 [-20.0909; 12.6481] 9.3389 [ -6.6589; 25.3367]
-7.3132 [-24.4467; 9.8203] 5.7471 [-11.0316; 22.5257]
-7.0128 [-25.9791; 11.9535] 6.0474 [ -6.4792; 18.5741]
-19.6014 [-36.0315; -3.1714] -6.5412 [-14.6940; 1.6117]
. .
. 0.1970 [-12.8641; 13.2580]
. .
. .
. 6.6447 [ -2.3744; 15.6639]
-23.8200 [-43.3554; -4.2846] .
. .
17.4400 [ -0.6246; 35.5046] .
MasT .
-4.2379 [-14.9146; 6.4389] McT
6.7255 [ -9.3248; 22.7758] 10.9634 [ -4.3073; 26.2340]
-6.4002 [-17.2034; 4.4029] -2.1624 [ -8.2277; 3.9029]
-5.2106 [-17.9883; 7.5670] -0.9728 [-12.8950; 10.9494]
3.3428 [-19.0832; 25.7688] 7.5807 [-14.2941; 29.4555]
-9.2572 [-20.9331; 2.4187] -5.0193 [-15.5979; 5.5593]
4.0270 [ -9.0700; 17.1239] 8.2648 [ -4.7436; 21.2732]
3.1704 [ -9.2383; 15.5791] 7.4083 [ -1.4691; 16.2857]
-1.3116 [-16.7344; 14.1112] 2.9263 [-11.6834; 17.5359]
-4.9034 [-21.1347; 11.3279] -0.6655 [-16.1263; 14.7953]
-4.6030 [-18.3886; 9.1826] -0.3651 [-10.7268; 9.9965]
-17.1916 [-27.1616; -7.2217] -12.9538 [-17.6261; -8.2815]
. .
. -5.8609 [-18.9871; 7.2653]
. -28.0000 [-47.8250; -8.1750]
. -7.1000 [-25.3758; 11.1758]
. -1.6076 [-16.7364; 13.5211]
. .
. .
. .
. .
. 0.9154 [ -9.0914; 10.9223]
MfT .
-13.1257 [-28.3605; 2.1090] MiET
-11.9361 [-28.5496; 4.6774] 1.1896 [-10.8602; 13.2394]
-3.3827 [-25.4708; 18.7055] 9.7431 [-12.1066; 31.5928]
-15.9827 [-26.9957; -4.9697] -2.8569 [-13.3836; 7.6698]
-2.6985 [-21.3921; 15.9951] 10.4272 [ -2.6533; 23.5077]
-3.5551 [-20.4049; 13.2947] 9.5707 [ 0.1525; 18.9888]
-8.0371 [-22.9643; 6.8901] 5.0887 [ -9.4835; 19.6608]
-11.6289 [-27.3901; 4.1323] 1.4968 [-13.9285; 16.9222]
-11.3285 [-29.0649; 6.4079] 1.7972 [ -9.0372; 12.6317]
-23.9171 [-38.9107; -8.9236] -10.7914 [-16.0339; -5.5489]
. .
. .
. .
. .
. .
. .
. .
. .
-10.3000 [-32.8073; 12.2073] .
. .
. .
. .
Mnt .
8.5535 [-14.2790; 31.3859] PbT
-4.0465 [-16.4852; 8.3922] -12.6000 [-31.7468; 6.5468]
9.2376 [ -6.7395; 25.2147] 0.6841 [-23.7036; 25.0719]
8.3811 [ -5.3604; 22.1225] -0.1724 [-23.1774; 22.8325]
3.8991 [-12.1090; 19.9071] -4.6544 [-26.2908; 16.9820]
0.3073 [-16.4812; 17.0957] -8.2462 [-30.4662; 13.9738]
0.6076 [-14.1119; 15.3272] -7.9458 [-31.6079; 15.7162]
-11.9810 [-23.1959; -0.7661] -20.5345 [-42.2167; 1.1478]
-14.2857 [-24.1755; -4.3958] .
. 4.5000 [-14.9579; 23.9579]
. 7.0000 [-13.1981; 27.1981]
. .
. .
. .
-11.6670 [-24.5676; 1.2336] .
. .
-6.6000 [-25.0340; 11.8340] 6.5600 [-12.1652; 25.2852]
-18.0000 [-43.0698; 7.0698] .
-15.9827 [-26.9957; -4.9697] .
-6.9300 [-25.6569; 11.7969] .
-0.8000 [-20.0767; 18.4767] .
-12.6000 [-31.7468; 6.5468] .
PlaSh .
13.2841 [ -1.8210; 28.3892] Plt
12.4276 [ -0.3250; 25.1802] -0.8565 [-15.2507; 13.5376]
7.9456 [ -2.1309; 18.0221] -5.3385 [-23.4962; 12.8191]
4.3538 [ -6.9214; 15.6289] -8.9304 [-27.7796; 9.9189]
4.6542 [ -9.2488; 18.5571] -8.6300 [-24.3597; 7.0998]
-7.9345 [-18.1090; 2.2401] -21.2186 [-33.7539; -8.6833]
. .
-9.7400 [-30.2542; 10.7742] .
. .
. .
25.7400 [ 6.4117; 45.0683] .
. .
. .
12.4601 [ -0.4961; 25.4162] .
. .
5.5500 [-14.4548; 25.5548] .
. .
. .
. .
. .
. 7.9456 [ -2.1309; 18.0221]
. .
ReET .
-4.4820 [-20.7351; 11.7711] rTMS
-8.0738 [-25.0961; 8.9485] -3.5918 [-18.7135; 11.5299]
-7.7734 [-20.3831; 4.8362] -3.2914 [-20.4620; 13.8791]
-20.3620 [-28.6709; -12.0532] -15.8801 [-30.1998; -1.5603]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 6.4100 [-15.2289; 28.0489]
. .
. .
. .
. .
4.3538 [ -6.9214; 15.6289] .
. .
. .
. .
tDCS .
0.3004 [-17.6000; 18.2007] WBV
-12.2882 [-27.4754; 2.8989] -12.5886 [-22.1624; -3.0148]
.
-12.0224 [-23.0503; -0.9944]
-7.3542 [-22.3103; 7.6020]
-17.0236 [-32.9975; -1.0496]
-7.5411 [-12.5586; -2.5237]
-9.7000 [-28.4704; 9.0704]
.
-15.6756 [-30.0616; -1.2895]
-33.6200 [-51.6438; -15.5962]
-11.8545 [-17.9972; -5.7119]
.
-13.0721 [-20.1822; -5.9619]
-16.0919 [-30.8857; -1.2980]
.
.
.
-19.0313 [-31.7442; -6.3184]
.
.
-11.7869 [-21.7234; -1.8504]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
Acu 0.8318
DryN 0.8308
MfT 0.8172
Plt 0.7486
ReET 0.7423
Elec 0.6733
PbT 0.6732
MasT 0.6101
Bal 0.5687
rTMS 0.5437
AqET 0.5160
AeET 0.4482
McT 0.4268
WBV 0.4133
tDCS 0.4014
Mnt 0.3847
MiET 0.3145
PlaSh 0.2023
CBT 0.1792
FlET 0.1610
WlNi 0.0130
Q statistics to assess homogeneity / consistency
Q df p-value
Total 557.76 87 < 0.0001
Within designs 298.03 53 < 0.0001
Between designs 259.74 34 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:CBT 115.30 14 < 0.0001
WlNi:McT 77.12 5 < 0.0001
WlNi:MiET 26.23 5 < 0.0001
Acu:PlaSh 18.66 3 0.0003
MfT:PlaSh 14.67 2 0.0007
WlNi:WBV 9.70 2 0.0078
WlNi:Bal 4.54 1 0.0331
WlNi:Mnt 3.66 1 0.0558
CBT:McT 7.78 4 0.0999
AqET:FlET 4.54 2 0.1033
Elec:PlaSh 4.41 2 0.1101
WlNi:McT:MiET 3.92 2 0.1407
CBT:MiET 2.09 1 0.1481
PlaSh:tDCS 2.40 2 0.3006
McT:MiET 0.62 1 0.4297
PlaSh:rTMS 2.09 3 0.5546
FlET:ReET 0.26 1 0.6101
WlNi:AqET 0.02 1 0.8814
AeET:AqET 0.01 1 0.9413
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
AeET:AqET:MiET 192.66 32 < 0.0001
AeET:MiET 196.12 33 < 0.0001
WlNi:FlET:MasT 194.55 32 < 0.0001
DryN:MasT 211.60 33 < 0.0001
WlNi:DryN 211.60 33 < 0.0001
AqET:CBT 236.76 33 < 0.0001
WlNi:AeET:ReET 236.44 32 < 0.0001
CBT:ReET 244.83 33 < 0.0001
McT:MiET 248.90 33 < 0.0001
MasT:Plt 251.17 33 < 0.0001
AeET:Plt 251.27 33 < 0.0001
AqET:FlET 252.35 33 < 0.0001
Bal:MiET 252.84 33 < 0.0001
McT:PlaSh 255.78 33 < 0.0001
AeET:McT 255.85 33 < 0.0001
WlNi:AqET 256.15 33 < 0.0001
WlNi:Bal 256.47 33 < 0.0001
CBT:MiET 256.93 33 < 0.0001
MiET:PlaSh 257.13 33 < 0.0001
MasT:PlaSh 257.20 33 < 0.0001
WlNi:MiET 257.42 33 < 0.0001
WlNi:WBV 257.58 33 < 0.0001
AqET:Bal 257.88 33 < 0.0001
WlNi:ReET 258.09 33 < 0.0001
AeET:AqET 258.35 33 < 0.0001
WlNi:McT 258.63 33 < 0.0001
Acu:CBT 258.84 33 < 0.0001
Acu:PlaSh 258.84 33 < 0.0001
WlNi:CBT 259.08 33 < 0.0001
AeET:FlET 259.33 33 < 0.0001
WlNi:AeET 259.37 33 < 0.0001
McT:ReET 259.38 33 < 0.0001
WlNi:AeET:McT 257.07 32 < 0.0001
WlNi:Mnt 259.52 33 < 0.0001
MasT:Mnt 259.64 33 < 0.0001
Mnt:PlaSh 259.68 33 < 0.0001
AqET:Plt 259.68 33 < 0.0001
WlNi:McT:WBV 257.30 32 < 0.0001
FlET:ReET 259.73 33 < 0.0001
CBT:McT 259.73 33 < 0.0001
WlNi:McT:MiET 257.64 32 < 0.0001
WlNi:FlET:ReET 258.98 32 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 38.80 34 0.2622 8.4193 70.8843
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
Acu:CBT 1 0.37 -16.0434 -22.4000 -12.3032 -10.0968 -0.78 0.4350
Acu:PlaSh 4 0.85 -15.8224 -14.2857 -24.3825 10.0968 0.78 0.4350
AeET:AqET 3 0.45 1.3737 2.7344 0.2722 2.4622 0.31 0.7530
AeET:FlET 1 0.20 -6.8942 -3.3100 -7.7854 4.4754 0.39 0.6935
AeET:McT 2 0.31 -0.4816 0.1970 -0.7850 0.9819 0.12 0.9025
AeET:MiET 2 0.32 -2.6440 -5.8609 -1.1378 -4.7231 -0.58 0.5606
AeET:Plt 1 0.41 7.7832 4.5000 10.0236 -5.5236 -0.43 0.6680
AeET:ReET 1 0.22 6.9266 -9.7400 11.5968 -21.3368 -1.80 0.0716
AeET:WlNi 3 0.36 -13.4354 -12.0224 -14.2443 2.2220 0.31 0.7528
AqET:Bal 1 0.34 1.3886 -1.8800 3.0497 -4.9297 -0.40 0.6916
AqET:CBT 1 0.16 -7.0956 13.6000 -10.9971 24.5971 2.27 0.0234
AqET:FlET 3 0.53 -8.2679 -12.1298 -3.9657 -8.1641 -0.97 0.3296
AqET:MiET 1 0.16 -4.0177 -28.0000 0.7007 -28.7007 -2.59 0.0095
AqET:Plt 1 0.38 6.4095 7.0000 6.0441 0.9559 0.07 0.9419
AqET:WlNi 2 0.23 -14.8091 -7.3542 -17.0100 9.6559 1.11 0.2662
Bal:MiET 1 0.36 -5.4063 -7.1000 -4.4598 -2.6402 -0.23 0.8206
Bal:WlNi 2 0.44 -16.1977 -17.0236 -15.5372 -1.4864 -0.14 0.8919
CBT:McT 5 0.35 5.2403 6.6447 4.4705 2.1742 0.38 0.7041
CBT:MiET 2 0.16 3.0779 -1.6076 3.9904 -5.5980 -0.66 0.5070
CBT:ReET 1 0.21 12.6486 25.7400 9.2663 16.4737 1.49 0.1364
CBT:WlNi 15 0.70 -7.7135 -7.5411 -8.1097 0.5686 0.12 0.9027
DryN:MasT 1 0.55 -7.5392 -23.8200 12.3964 -36.2164 -2.44 0.0148
DryN:WlNi 1 0.58 -24.7308 -9.7000 -45.9164 36.2164 2.44 0.0148
FlET:MasT 1 0.40 10.6505 17.4400 6.0449 11.3951 0.95 0.3399
FlET:ReET 3 0.53 13.8209 12.4601 15.3339 -2.8738 -0.30 0.7648
FlET:WlNi 2 0.32 -6.5412 -15.6756 -2.2195 -13.4560 -1.51 0.1309
MasT:Mnt 1 0.32 -5.2106 -10.3000 -2.7903 -7.5097 -0.54 0.5903
MasT:PlaSh 1 0.40 -9.2572 -6.6000 -11.0374 4.4374 0.37 0.7150
MasT:Plt 1 0.49 4.0270 6.5600 1.6010 4.9590 0.37 0.7107
MasT:WlNi 1 0.31 -17.1916 -33.6200 -9.9487 -23.6713 -2.14 0.0320
McT:MiET 4 0.37 -2.1624 0.9154 -3.9497 4.8651 0.76 0.4485
McT:PlaSh 1 0.18 -5.0193 -18.0000 -2.2073 -15.7927 -1.12 0.2630
McT:ReET 1 0.20 7.4083 5.5500 7.8640 -2.3140 -0.20 0.8390
McT:WBV 1 0.23 -0.3651 6.4100 -2.3808 8.7908 0.70 0.4845
McT:WlNi 10 0.58 -12.9538 -11.8545 -14.4629 2.6083 0.54 0.5890
MiET:PlaSh 1 0.32 -2.8569 -6.9300 -0.9754 -5.9546 -0.52 0.6063
MiET:WlNi 8 0.54 -10.7914 -13.0721 -8.0744 -4.9976 -0.93 0.3520
Mnt:PlaSh 1 0.42 -4.0465 -0.8000 -6.3627 5.5627 0.43 0.6657
Mnt:WlNi 2 0.57 -11.9810 -16.0919 -6.4264 -9.6655 -0.84 0.4037
ReET:WlNi 3 0.43 -20.3620 -19.0313 -21.3544 2.3231 0.27 0.7863
WBV:WlNi 4 0.93 -12.5886 -11.7869 -22.9734 11.1865 0.59 0.5547
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_qlg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "Q | Lg") |>
mutate(
Mean1 = as.numeric(Mean1),
Mean2 = as.numeric(Mean2),
Mean3 = as.numeric(Mean3),
SD1 = as.numeric(SD1),
SD2 = as.numeric(SD2),
SD3 = as.numeric(SD3)
)
# Transform to contrast-based
pw <- pairwise(
treat = list(Treat1, Treat2, Treat3),
n = list(N1, N2, N3),
mean = list(Mean1, Mean2, Mean3),
sd = list(SD1, SD2, SD3),
studlab = StudyID,
data = data_qlg,
sm = "MD"
)
# Check network connections
net_con <- netconnection(pw)
net_con
Number of studies: k = 23
Number of pairwise comparisons: m = 27
Number of treatments: n = 11
Number of designs: d = 13
Number of networks: 2
Details on subnetworks:
subnetwork k m n
1 2 2 3
2 21 25 8
There are two sub-networks:
Subnet 1:
- 2 studies
- 2 comparisons
- 3 treatments
Subnet 2:
- 21 studies
- 25 comparisons
- 8 treatments
There are two treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 2 studies, 2 comparisons and 3 treatments.
Code
Code
[1] "MfT" "rTMS" "PlaSh"
[1] 3
Code
[1] 2
Code
Number of studies: k = 2
Number of pairwise comparisons: m = 2
Number of observations: o = 134
Number of treatments: n = 3
Number of designs: d = 2
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
MfT -5.5600 [-13.2259; 2.1059] -1.42 0.1552
PlaSh . . . .
rTMS -7.3000 [-17.4681; 2.8681] -1.41 0.1594
Quantifying heterogeneity / inconsistency:
tau^2 = NA; tau = NA
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0 0 --
Within designs 0 0 --
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh -5.5600 3.9112
Mhalla2011 PlaSh rTMS 7.3000 5.1879
Number of treatment arms (by study):
narms
Alfano2001 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Alfano2001 MfT PlaSh -5.5600 [-13.2259; 2.1059]
Mhalla2011 PlaSh rTMS 7.3000 [ -2.8681; 17.4681]
Number of studies: k = 2
Number of pairwise comparisons: m = 2
Number of observations: o = 134
Number of treatments: n = 3
Number of designs: d = 2
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'PlaSh'):
MD 95%-CI z p-value
MfT -5.5600 [-13.2259; 2.1059] -1.42 0.1552
PlaSh . . . .
rTMS -7.3000 [-17.4681; 2.8681] -1.41 0.1594
Quantifying heterogeneity / inconsistency:
tau^2 = NA; tau = NA
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0 0 --
Within designs 0 0 --
Between designs 0 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
League table (random effects model):
MfT -5.5600 [-13.2259; 2.1059]
-5.5600 [-13.2259; 2.1059] PlaSh
1.7400 [-10.9941; 14.4741] 7.3000 [ -2.8681; 17.4681]
.
7.3000 [ -2.8681; 17.4681]
rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
rTMS 0.7629
MfT 0.6584
PlaSh 0.0786
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.00 0 --
Within designs 0.00 0 --
Between designs 0.00 0 --
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
MfT:PlaSh 1 1.00 -5.5600 -5.5600 . . . .
MfT:rTMS 0 0 1.7400 . 1.7400 . . .
rTMS:PlaSh 1 1.00 -7.3000 -7.3000 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet is more robust, containing 21 studies, 25 comparisons and 8 treatments. This is the main analysis network.
Code
Code
[1] "AeET" "AqET" "MiET" "ReET" "McT" "CBT"
[1] "AqET" "WlNi" "ReET" "MiET" "McT" "FlET"
Code
[1] "AeET" "AqET" "MiET" "ReET" "McT" "CBT" "WlNi" "FlET"
[1] 8
Code
[1] 21
Code
Number of studies: k = 21
Number of pairwise comparisons: m = 25
Number of observations: o = 1321
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -11.9057 [-21.3554; -2.4559] -2.47 0.0135
AqET -14.0260 [-24.5379; -3.5141] -2.62 0.0089
CBT -13.2516 [-32.9879; 6.4847] -1.32 0.1882
FlET -4.7187 [-25.4248; 15.9875] -0.45 0.6551
McT -18.6264 [-31.4095; -5.8434] -2.86 0.0043
MiET -23.6043 [-35.2382; -11.9704] -3.98 < 0.0001
ReET -10.0046 [-32.4988; 12.4897] -0.87 0.3834
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 134.7067; tau = 11.6063; I^2 = 88.8% [83.7%; 92.3%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 142.90 16 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.83 6 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 8.1000 4.1615 12.3298 2
Andrade2019 AqET WlNi -14.6000 3.3374 12.0766 2
Assis2006 AeET AqET 4.4600 5.1075 12.6804 2
Baptista2012 AeET WlNi -17.6300 3.3515 12.0805 2
Etnier2009 MiET WlNi -25.1800 9.0950 14.7454 2
Kayo2012 AeET ReET -5.6500 6.0952 16.4960 3 *
Kayo2012 AeET WlNi -18.9200 4.8426 15.1468 3 *
Kayo2012 ReET WlNi -13.2700 5.1235 15.3956 3 *
Larsson2015 McT MiET 4.9000 3.3376 12.0767 2
Letieri2013 AqET WlNi -24.2400 7.3707 13.7490 2
Mannerkorpi2000 McT WlNi -11.9400 4.6207 12.4923 2
Mannerkorpi2004 McT WlNi 1.8300 5.4792 12.8347 2
Munguia-Izquierdo 2007 AqET WlNi 0.4000 3.4557 12.1099 2
Rooks2007 CBT McT 8.3000 3.6542 15.0381 3 *
Rooks2007 CBT MiET 4.7500 3.3682 14.8273 3 *
Rooks2007 McT MiET -3.5500 2.7539 14.4553 3 *
Sanudo2010b AeET MiET 0.0000 3.7033 12.1828 2
Sanudo2011 MiET WlNi -64.8400 5.5331 12.8578 2
Sanudo2010c AeET MiET 11.9900 5.8375 12.9917 2
Schachter2003 AeET WlNi -2.3000 2.8448 11.9499 2
Tomas-Carus2008 AqET WlNi -11.9400 4.4726 12.4383 2
Valim2003 AeET FlET -9.0900 4.1151 12.3142 2
Wang2018 McT MiET -11.6700 3.5984 12.1513 2
Hernando-Garijo2021 AeET WlNi -2.9000 6.1852 13.1516 2
Saranya2022 CBT FlET -6.8100 1.6075 11.7171 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Etnier2009 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mannerkorpi2004 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2010b 2
Sanudo2011 2
Sanudo2010c 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Wang2018 2
Hernando-Garijo2021 2
Saranya2022 2
Results (random effects model):
treat1 treat2 MD 95%-CI
Acosta-Gallego2018 AeET AqET 2.1203 [ -9.7123; 13.9528]
Andrade2019 AqET WlNi -14.0260 [-24.5379; -3.5141]
Assis2006 AeET AqET 2.1203 [ -9.7123; 13.9528]
Baptista2012 AeET WlNi -11.9057 [-21.3554; -2.4559]
Etnier2009 MiET WlNi -23.6043 [-35.2382; -11.9704]
Kayo2012 AeET ReET -1.9011 [-24.5317; 20.7296]
Kayo2012 AeET WlNi -11.9057 [-21.3554; -2.4559]
Kayo2012 ReET WlNi -10.0046 [-32.4988; 12.4897]
Larsson2015 McT MiET 4.9779 [ -6.6464; 16.6021]
Letieri2013 AqET WlNi -14.0260 [-24.5379; -3.5141]
Mannerkorpi2000 McT WlNi -18.6264 [-31.4095; -5.8434]
Mannerkorpi2004 McT WlNi -18.6264 [-31.4095; -5.8434]
Munguia-Izquierdo 2007 AqET WlNi -14.0260 [-24.5379; -3.5141]
Rooks2007 CBT McT 5.3748 [-13.6454; 24.3951]
Rooks2007 CBT MiET 10.3527 [ -8.2307; 28.9361]
Rooks2007 McT MiET 4.9779 [ -6.6464; 16.6021]
Sanudo2010b AeET MiET 11.6987 [ -0.3271; 23.7244]
Sanudo2011 MiET WlNi -23.6043 [-35.2382; -11.9704]
Sanudo2010c AeET MiET 11.6987 [ -0.3271; 23.7244]
Schachter2003 AeET WlNi -11.9057 [-21.3554; -2.4559]
Tomas-Carus2008 AqET WlNi -14.0260 [-24.5379; -3.5141]
Valim2003 AeET FlET -7.1870 [-26.7224; 12.3484]
Wang2018 McT MiET 4.9779 [ -6.6464; 16.6021]
Hernando-Garijo2021 AeET WlNi -11.9057 [-21.3554; -2.4559]
Saranya2022 CBT FlET -8.5329 [-27.5784; 10.5125]
Number of studies: k = 21
Number of pairwise comparisons: m = 25
Number of observations: o = 1321
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'MD', comparison: other treatments vs 'WlNi'):
MD 95%-CI z p-value
AeET -11.9057 [-21.3554; -2.4559] -2.47 0.0135
AqET -14.0260 [-24.5379; -3.5141] -2.62 0.0089
CBT -13.2516 [-32.9879; 6.4847] -1.32 0.1882
FlET -4.7187 [-25.4248; 15.9875] -0.45 0.6551
McT -18.6264 [-31.4095; -5.8434] -2.86 0.0043
MiET -23.6043 [-35.2382; -11.9704] -3.98 < 0.0001
ReET -10.0046 [-32.4988; 12.4897] -0.87 0.3834
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 134.7067; tau = 11.6063; I^2 = 88.8% [83.7%; 92.3%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 142.90 16 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.83 6 < 0.0001
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 6.3310 [-10.9948; 23.6568]
2.1203 [ -9.7123; 13.9528] AqET
1.3459 [-18.1630; 20.8549] -0.7744 [-22.3878; 20.8391]
-7.1870 [-26.7224; 12.3484] -9.3073 [-31.5239; 12.9093]
6.7208 [ -7.3745; 20.8160] 4.6005 [-11.3939; 20.5948]
11.6987 [ -0.3271; 23.7244] 9.5784 [ -5.2222; 24.3789]
-1.9011 [-24.5317; 20.7296] -4.0214 [-28.2836; 20.2409]
-11.9057 [-21.3554; -2.4559] -14.0260 [-24.5379; -3.5141]
. -9.0900 [-33.2255; 15.0455]
. .
CBT -6.8100 [-29.7751; 16.1551]
-8.5329 [-27.5784; 10.5125] FlET
5.3748 [-13.6454; 24.3951] 13.9078 [ -7.6828; 35.4983]
10.3527 [ -8.2307; 28.9361] 18.8857 [ -1.8952; 39.6665]
-3.2470 [-32.3982; 25.9041] 5.2859 [-24.2307; 34.8025]
-13.2516 [-32.9879; 6.4847] -4.7187 [-25.4248; 15.9875]
. 5.6102 [-11.8076; 23.0279]
. .
8.3000 [-15.5488; 32.1488] 4.7500 [-18.9365; 28.4365]
. .
McT -3.4074 [-17.0443; 10.2294]
4.9779 [ -6.6464; 16.6021] MiET
-8.6219 [-34.0039; 16.7601] -13.5997 [-38.1779; 10.9784]
-18.6264 [-31.4095; -5.8434] -23.6043 [-35.2382; -11.9704]
-5.6500 [-31.3441; 20.0441] -10.5282 [-22.6928; 1.6365]
. -11.9070 [-24.1978; 0.3839]
. .
. .
. -5.2411 [-22.7867; 12.3044]
. -47.7095 [-66.7033; -28.7156]
ReET -13.2700 [-38.1358; 11.5958]
-10.0046 [-32.4988; 12.4897] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
P-score
MiET 0.9078
McT 0.7273
AqET 0.5673
CBT 0.5365
AeET 0.4765
ReET 0.4369
FlET 0.2582
WlNi 0.0895
Q statistics to assess homogeneity / consistency
Q df p-value
Total 142.90 16 < 0.0001
Within designs 60.07 10 < 0.0001
Between designs 82.83 6 < 0.0001
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
WlNi:MiET 13.88 1 0.0002
McT:MiET 11.40 1 0.0007
WlNi:AeET 12.95 2 0.0015
WlNi:AqET 14.84 3 0.0020
WlNi:McT 3.69 1 0.0547
AeET:MiET 3.01 1 0.0828
AeET:AqET 0.31 1 0.5806
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from < 0.0001)
Detached design Q df p-value
WlNi:MiET 9.70 5 0.0843
WlNi:McT 62.24 5 < 0.0001
AeET:MiET 78.31 5 < 0.0001
AeET:AqET 78.47 5 < 0.0001
WlNi:AqET 78.47 5 < 0.0001
McT:MiET 79.86 5 < 0.0001
WlNi:AeET 80.25 5 < 0.0001
AeET:FlET 82.08 5 < 0.0001
CBT:FlET 82.08 5 < 0.0001
CBT:McT:MiET 79.01 4 < 0.0001
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 15.55 6 0.0164 9.6818 93.7369
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. Diff z p-value
AeET:AqET 2 0.47 2.1203 6.3310 -1.5603 7.8914 0.65 0.5143
AeET:FlET 1 0.66 -7.1870 -9.0900 -3.5718 -5.5182 -0.26 0.7924
AeET:MiET 2 0.48 11.6987 5.6102 17.2449 -11.6348 -0.95 0.3436
AeET:ReET 1 0.78 -1.9011 -5.6500 11.0682 -16.7182 -0.60 0.5459
AeET:WlNi 4 0.60 -11.9057 -10.5282 -14.0019 3.4737 0.35 0.7245
AqET:WlNi 4 0.73 -14.0260 -11.9070 -19.7983 7.8914 0.65 0.5143
CBT:FlET 1 0.69 -8.5329 -6.8100 -12.3282 5.5182 0.26 0.7924
CBT:McT 1 0.64 5.3748 8.3000 0.2626 8.0374 0.40 0.6903
CBT:MiET 1 0.62 10.3527 4.7500 19.3225 -14.5725 -0.75 0.4547
McT:MiET 3 0.73 4.9779 -3.4074 27.2637 -30.6712 -2.30 0.0212
McT:WlNi 2 0.53 -18.6264 -5.2411 -33.7693 28.5282 2.18 0.0290
MiET:WlNi 2 0.38 -23.6043 -47.7095 -9.1310 -38.5785 -3.15 0.0017
ReET:WlNi 1 0.82 -10.0046 -13.2700 4.7060 -17.9760 -0.60 0.5459
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (MD) in network meta-analysis
direct - Estimated treatment effect (MD) derived from direct evidence
indir. - Estimated treatment effect (MD) derived from indirect evidence
Diff - Difference between direct and indirect treatment estimates
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
2 NMA for binary outcomes
Please: Select an outcome to proceed.
Code
# Read data
data_alg <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Lg")
# Transform to contrast-based
pw_alg <- pairwise(
treat = list(Treat1, Treat2, Treat3),
event = list(dp1, dp2, dp3), # observed events in each arm
n = list(nRT1, nRT2, nRT3), # total number of patients in each arm
studlab = StudyID,
data = data_alg,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_alg)
net_con
Number of studies: k = 27
Number of pairwise comparisons: m = 31
Number of treatments: n = 14
Number of designs: d = 15
Number of networks: 3
Details on subnetworks:
subnetwork k m n
1 22 26 8
2 1 1 2
3 4 4 4
There are three sub-networks:
Subnet 1:
- 22 studies
- 26 comparisons
- 8 treatments
Subnet 2:
- 1 study
- 1 comparison
- 2 treatments
Subnet 3:
- 4 studies
- 4 comparisons
- 4 treatments
There are three treatment sub-networks that do not connect.
Please: Select the treatment sub-networks before proceeding.
Select the procedures performed
The first subnet contains 22 studies, 26 comparisons and 8 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "AeET" "AqET" "ReET" "McT" "CBT" "MiET" "WlNi" "FlET"
[1] 8
Code
[1] 29
[1] 25
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Etnier2009 MiET WlNi NA NA
Hakkinen2001 ReET WlNi NA NA
Sanudo2015 MiET WlNi NA NA
Number of studies: k = 22
Number of pairwise comparisons: m = 26
Number of observations: o = 1685
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
AeET 1.8941 [1.0374; 3.4583] 2.08 0.0376
AqET 1.5725 [0.6805; 3.6338] 1.06 0.2895
CBT 1.6064 [0.6231; 4.1412] 0.98 0.3266
FlET 3.6078 [0.8330; 15.6257] 1.72 0.0862
McT 1.2642 [0.5567; 2.8706] 0.56 0.5753
MiET 1.4730 [0.6380; 3.4012] 0.91 0.3643
ReET 1.6444 [0.4868; 5.5545] 0.80 0.4232
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.1313; tau = 0.3624; I^2 = 20.7% [0.0%; 55.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Etnier2009: MiET vs WlNi
- Hakkinen2001: ReET vs WlNi
- Sanudo2015: MiET vs WlNi
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Acosta-Gallego2018 AeET AqET 0.1452 0.5394 0.6498 2
Andrade2019 AqET WlNi 0.0000 0.8660 0.9388 2
Assis2006 AeET AqET 0.0000 0.7596 0.8416 2
Baptista2012 AeET WlNi 0.0000 1.4322 1.4774 2
Kayo2012 AeET ReET -0.1780 0.5973 0.8510 3 *
Kayo2012 AeET WlNi 0.0000 0.6105 0.8792 3 *
Kayo2012 ReET WlNi 0.1780 0.5973 0.8510 3 *
Larsson2015 McT MiET 0.3747 0.4479 0.5761 2
Letieri2013 AqET WlNi -1.6710 1.5689 1.6103 2
Mannerkorpi2000 McT WlNi 1.5731 0.8247 0.9008 2
Mannerkorpi2004 McT WlNi -0.1823 0.6849 0.7748 2
Mengshoel1992 AeET WlNi 1.5404 0.7918 0.8708 2
Munguia-Izquierdo 2007 AqET WlNi 1.6025 1.1148 1.1722 2
Rooks2007 CBT McT 0.6440 0.4070 0.7037 3 *
Rooks2007 CBT MiET 0.6224 0.3550 0.6043 3 *
Rooks2007 McT MiET -0.0216 0.3615 0.6138 3 *
Sanudo2011 MiET WlNi 1.2040 1.1995 1.2531 2
Sanudo2010a AeET MiET -0.0572 0.7838 0.8636 2
Sanudo2010b AeET WlNi 1.4917 1.1643 1.2194 2
Schachter2003 AeET WlNi 1.1454 0.5236 0.6368 2
Tomas-Carus2008 AqET WlNi 0.6931 1.2780 1.3284 2
Valim2003 AeET FlET -0.6444 0.5776 0.6819 2
Valkeinen2008 MiET WlNi 1.4491 1.6003 1.6408 2
Wang2018 McT MiET -0.8398 0.4465 0.5751 2
Williams2010 CBT WlNi -0.7687 0.6425 0.7377 2
Hernando-Garijo2021 AeET WlNi 0.0000 0.8997 0.9700 2
Number of treatment arms (by study):
narms
Acosta-Gallego2018 2
Andrade2019 2
Assis2006 2
Baptista2012 2
Kayo2012 3
Larsson2015 2
Letieri2013 2
Mannerkorpi2000 2
Mannerkorpi2004 2
Mengshoel1992 2
Munguia-Izquierdo 2007 2
Rooks2007 3
Sanudo2011 2
Sanudo2010a 2
Sanudo2010b 2
Schachter2003 2
Tomas-Carus2008 2
Valim2003 2
Valkeinen2008 2
Wang2018 2
Williams2010 2
Hernando-Garijo2021 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Acosta-Gallego2018 AeET AqET 1.2045 [0.5384; 2.6950]
Andrade2019 AqET WlNi 1.5725 [0.6805; 3.6338]
Assis2006 AeET AqET 1.2045 [0.5384; 2.6950]
Baptista2012 AeET WlNi 1.8941 [1.0374; 3.4583]
Kayo2012 AeET ReET 1.1519 [0.3410; 3.8909]
Kayo2012 AeET WlNi 1.8941 [1.0374; 3.4583]
Kayo2012 ReET WlNi 1.6444 [0.4868; 5.5545]
Larsson2015 McT MiET 0.8582 [0.4768; 1.5447]
Letieri2013 AqET WlNi 1.5725 [0.6805; 3.6338]
Mannerkorpi2000 McT WlNi 1.2642 [0.5567; 2.8706]
Mannerkorpi2004 McT WlNi 1.2642 [0.5567; 2.8706]
Mengshoel1992 AeET WlNi 1.8941 [1.0374; 3.4583]
Munguia-Izquierdo 2007 AqET WlNi 1.5725 [0.6805; 3.6338]
Rooks2007 CBT McT 1.2707 [0.5404; 2.9879]
Rooks2007 CBT MiET 1.0905 [0.4721; 2.5192]
Rooks2007 McT MiET 0.8582 [0.4768; 1.5447]
Sanudo2011 MiET WlNi 1.4730 [0.6380; 3.4012]
Sanudo2010a AeET MiET 1.2858 [0.5004; 3.3040]
Sanudo2010b AeET WlNi 1.8941 [1.0374; 3.4583]
Schachter2003 AeET WlNi 1.8941 [1.0374; 3.4583]
Tomas-Carus2008 AqET WlNi 1.5725 [0.6805; 3.6338]
Valim2003 AeET FlET 0.5250 [0.1380; 1.9979]
Valkeinen2008 MiET WlNi 1.4730 [0.6380; 3.4012]
Wang2018 McT MiET 0.8582 [0.4768; 1.5447]
Williams2010 CBT WlNi 1.6064 [0.6231; 4.1412]
Hernando-Garijo2021 AeET WlNi 1.8941 [1.0374; 3.4583]
Number of studies: k = 22
Number of pairwise comparisons: m = 26
Number of observations: o = 1685
Number of treatments: n = 8
Number of designs: d = 11
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
AeET 1.8941 [1.0374; 3.4583] 2.08 0.0376
AqET 1.5725 [0.6805; 3.6338] 1.06 0.2895
CBT 1.6064 [0.6231; 4.1412] 0.98 0.3266
FlET 3.6078 [0.8330; 15.6257] 1.72 0.0862
McT 1.2642 [0.5567; 2.8706] 0.56 0.5753
MiET 1.4730 [0.6380; 3.4012] 0.91 0.3643
ReET 1.6444 [0.4868; 5.5545] 0.80 0.4232
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0.1313; tau = 0.3624; I^2 = 20.7% [0.0%; 55.0%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
AeET 1.0952 [0.3997; 3.0013] .
1.2045 [0.5384; 2.6950] AqET .
1.1791 [0.4036; 3.4444] 0.9789 [0.2835; 3.3795] CBT
0.5250 [0.1380; 1.9979] 0.4359 [0.0916; 2.0749] 0.4453 [0.0803; 2.4699]
1.4983 [0.5775; 3.8870] 1.2439 [0.3974; 3.8932] 1.2707 [0.5404; 2.9879]
1.2858 [0.5004; 3.3040] 1.0675 [0.3409; 3.3431] 1.0905 [0.4721; 2.5192]
1.1519 [0.3410; 3.8909] 0.9563 [0.2345; 3.8995] 0.9769 [0.2127; 4.4859]
1.8941 [1.0374; 3.4583] 1.5725 [0.6805; 3.6338] 1.6064 [0.6231; 4.1412]
0.5250 [0.1380; 1.9979] . 0.9444 [0.1738; 5.1314]
. . .
. 1.9041 [0.6544; 5.5409] 1.8634 [0.6894; 5.0369]
FlET . .
2.8539 [0.5527; 14.7365] McT 0.8594 [0.4603; 1.6046]
2.4492 [0.4770; 12.5769] 0.8582 [0.4768; 1.5447] MiET
2.1940 [0.3599; 13.3762] 0.7688 [0.1810; 3.2646] 0.8958 [0.2106; 3.8103]
3.6078 [0.8330; 15.6257] 1.2642 [0.5567; 2.8706] 1.4730 [0.6380; 3.4012]
0.8370 [0.2128; 3.2916] 2.0873 [1.0422; 4.1806]
. 1.3839 [0.4303; 4.4511]
. 0.4636 [0.1092; 1.9682]
. .
. 1.7579 [0.5559; 5.5594]
. 3.6483 [0.5181; 25.6920]
ReET 1.1948 [0.3038; 4.6990]
1.6444 [0.4868; 5.5545] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
WlNi 0.8498
McT 0.6669
MiET 0.5327
AqET 0.5026
ReET 0.4813
CBT 0.4734
AeET 0.3524
FlET 0.1407
Q statistics to assess homogeneity / consistency
Q df p-value
Total 21.45 17 0.2070
Within designs 12.01 11 0.3631
Between designs 9.44 6 0.1504
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
McT:MiET 3.69 1 0.0548
WlNi:McT 2.68 1 0.1015
WlNi:AqET 3.16 3 0.3683
WlNi:AeET 2.44 4 0.6547
AeET:AqET 0.02 1 0.8762
WlNi:MiET 0.02 1 0.9025
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.1504)
Detached design Q df p-value
WlNi:CBT 2.68 5 0.7487
CBT:McT:MiET 2.42 4 0.6596
WlNi:AeET 7.08 5 0.2150
WlNi:MiET 8.14 5 0.1489
WlNi:McT 8.43 5 0.1341
AeET:MiET 9.04 5 0.1073
McT:MiET 9.20 5 0.1015
AeET:AqET 9.33 5 0.0965
WlNi:AqET 9.33 5 0.0965
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 8.08 6 0.2321 0.2427 0.0589
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
AeET:AqET 2 0.64 1.2045 1.0952 1.4245 0.7688 -0.31 0.7585
AeET:MiET 1 0.31 1.2858 0.9444 1.4779 0.6390 -0.43 0.6669
AeET:ReET 1 0.79 1.1519 0.8370 3.8351 0.2182 -1.00 0.3183
AeET:WlNi 6 0.75 1.8941 2.0873 1.4125 1.4777 0.55 0.5826
AqET:WlNi 4 0.51 1.5725 1.3839 1.8000 0.7688 -0.31 0.7585
CBT:McT 1 0.64 1.2707 1.9041 0.6178 3.0823 1.24 0.2157
CBT:MiET 1 0.71 1.0905 1.8634 0.2956 6.3032 1.96 0.0503
CBT:WlNi 1 0.43 1.6064 0.4636 4.0867 0.1135 -2.23 0.0258
McT:MiET 3 0.89 0.8582 0.8594 0.8489 1.0123 0.01 0.9896
McT:WlNi 2 0.51 1.2642 1.7579 0.9002 1.9529 0.80 0.4239
MiET:WlNi 2 0.18 1.4730 3.6483 1.2010 3.0378 1.01 0.3135
ReET:WlNi 1 0.79 1.6444 1.1948 5.4749 0.2182 -1.00 0.3183
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Select the procedures performed
The second subnet contains only 1 study with 1 comparison between 2 treatments. Due to its limited size, the analysis will be simplified.
Code
Code
[1] "DryN" "MasT"
[1] 2
Code
[1] 1
[1] 1
Code
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 64
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'OR', comparison: 'DryN' vs 'MasT'):
OR 95%-CI z p-value
DryN 0.6444 [0.1003; 4.1421] -0.46 0.6435
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Code
Original data:
treat1 treat2 TE seTE
Castro-Sanchez2011 DryN MasT -0.4394 0.9493
Number of treatment arms (by study):
narms
Castro-Sanchez2011 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Castro-Sanchez2011 DryN MasT 0.6444 [0.1003; 4.1421]
Number of studies: k = 1
Number of pairwise comparisons: m = 1
Number of observations: o = 64
Number of treatments: n = 2
Number of designs: d = 1
Random effects model
Treatment estimate (sm = 'OR', comparison: 'DryN' vs 'MasT'):
OR 95%-CI z p-value
DryN 0.6444 [0.1003; 4.1421] -0.46 0.6435
MasT . . . .
Quantifying heterogeneity:
tau^2 = NA; tau = NA
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
Select the procedures performed
The third subnet contains 4 studies, 4 comparisons and 4 treatments.
Code
Code
[1] "MfT" "Acu" "rTMS" "PlaSh"
[1] 4
Code
[1] 4
[1] 4
Code
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 295
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'PlaSh'):
OR 95%-CI z p-value
Acu 0.7683 [0.3521; 1.6766] -0.66 0.5079
MfT 1.0559 [0.4113; 2.7111] 0.11 0.9100
PlaSh . . . .
rTMS 0.5833 [0.1362; 2.4976] -0.73 0.4676
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
Code
Original data:
treat1 treat2 TE seTE
Alfano2001 MfT PlaSh 0.2184 0.5493
Colbert1999 MfT PlaSh -0.4855 0.9968
Harris2005 Acu PlaSh -0.2636 0.3981
Mhalla2011 PlaSh rTMS 0.5390 0.7420
Number of treatment arms (by study):
narms
Alfano2001 2
Colbert1999 2
Harris2005 2
Mhalla2011 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Alfano2001 MfT PlaSh 1.0559 [0.4113; 2.7111]
Colbert1999 MfT PlaSh 1.0559 [0.4113; 2.7111]
Harris2005 Acu PlaSh 0.7683 [0.3521; 1.6766]
Mhalla2011 PlaSh rTMS 1.7143 [0.4004; 7.3399]
Number of studies: k = 4
Number of pairwise comparisons: m = 4
Number of observations: o = 295
Number of treatments: n = 4
Number of designs: d = 3
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'PlaSh'):
OR 95%-CI z p-value
Acu 0.7683 [0.3521; 1.6766] -0.66 0.5079
MfT 1.0559 [0.4113; 2.7111] 0.11 0.9100
PlaSh . . . .
rTMS 0.5833 [0.1362; 2.4976] -0.73 0.4676
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0%
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu . 0.7683 [0.3521; 1.6766]
0.7276 [0.2140; 2.4743] MfT 1.0559 [0.4113; 2.7111]
0.7683 [0.3521; 1.6766] 1.0559 [0.4113; 2.7111] PlaSh
1.3171 [0.2528; 6.8611] 1.8101 [0.3199; 10.2437] 1.7143 [0.4004; 7.3399]
.
.
1.7143 [0.4004; 7.3399]
rTMS
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
rTMS 0.7144
Acu 0.6042
PlaSh 0.3443
MfT 0.3371
Q statistics to assess homogeneity / consistency
Q df p-value
Total 0.38 1 0.5363
Within designs 0.38 1 0.5363
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:MfT 0.38 1 0.5363
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:MfT 0 0 0.7276 . 0.7276 . . .
Acu:PlaSh 1 1.00 0.7683 0.7683 . . . .
Acu:rTMS 0 0 1.3171 . 1.3171 . . .
MfT:PlaSh 2 1.00 1.0559 1.0559 . . . .
MfT:rTMS 0 0 1.8101 . 1.8101 . . .
rTMS:PlaSh 1 1.00 0.5833 0.5833 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_aim <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Im")|>
mutate(
nRT1 = as.numeric(nRT1),
nRT2 = as.numeric(nRT2),
dp1 = as.numeric(dp1),
dp2 = as.numeric(dp2)
) |>
tidyr::drop_na() # excliniodo as linhas com NA
# Transform to contrast-based
pw_aim <- pairwise(
treat = list(Treat1, Treat2),
event = list(dp1, dp2), # observed events in each arm
n = list(nRT1, nRT2), # total number of patients in each arm
studlab = StudyID,
data = data_aim,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_aim)
net_con
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of treatments: n = 8
Number of designs: d = 7
Number of networks: 1
There are three sub-networks:
Network:
- 13 studies
- 13 comparisons
- 8 treatments
The network is fully connected.
2.0.1 Network
Select the procedures performed
The Network contains 13 studies, 13 comparisons and 8 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "Acu" "rTMS" "tDCS" "McT" "Elec" "Bal" "PlaSh" "WlNi"
[1] 8
Code
[1] 25
[1] 25
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Boyer2014 rTMS PlaSh NA NA
Brietzke2019 tDCS PlaSh NA NA
Buskila2001 Bal WlNi NA NA
Curatolo2017 tDCS PlaSh NA NA
Fioravanti2007 Bal WlNi NA NA
Mendonça2011 tDCS PlaSh NA NA
Neumann2001 Bal WlNi NA NA
Passard2007 rTMS PlaSh NA NA
Short2011 rTMS PlaSh NA NA
Stival2013 Acu PlaSh NA NA
Valle2009 tDCS PlaSh NA NA
Forogh2021 rTMS tDCS NA NA
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of observations: o = 658
Number of treatments: n = 8
Number of designs: d = 7
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.2076 [0.0066; 6.5694] -0.89 0.3725
Bal 4.5714 [0.4731; 44.1699] 1.31 0.1891
Elec 0.0459 [0.0006; 3.5298] -1.39 0.1643
McT 1.4655 [0.6439; 3.3355] 0.91 0.3624
PlaSh 0.8102 [0.0367; 17.8804] -0.13 0.8939
rTMS 0.7546 [0.0276; 20.6479] -0.17 0.8676
tDCS 1.0000 [0.0591; 16.9279] 0.00 1.0000
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 70.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Boyer2014: rTMS vs PlaSh
- Brietzke2019: tDCS vs PlaSh
- Buskila2001: Bal vs WlNi
- Curatolo2017: tDCS vs PlaSh
- Fioravanti2007: Bal vs WlNi
- Mendonça2011: tDCS vs PlaSh
- Neumann2001: Bal vs WlNi
- Passard2007: rTMS vs PlaSh
- Short2011: rTMS vs PlaSh
- Stival2013: Acu vs PlaSh
- Valle2009: tDCS vs PlaSh
- Forogh2021: rTMS vs tDCS
Code
Original data:
treat1 treat2 TE seTE
Assefi2005 Acu PlaSh -1.3614 0.7836
Cheng2019 PlaSh rTMS 0.9985 1.6933
Fagerlund2015 tDCS WlNi 0.0000 1.4434
Fregni2006 PlaSh tDCS -0.3819 1.6758
Hamnes2012 McT WlNi 0.3822 0.4196
Khedr2017 PlaSh tDCS -0.0000 1.0541
Lauretti2013 Elec PlaSh -2.8717 1.5552
Lee2012 PlaSh rTMS -0.2231 1.0000
Mhalla2011 PlaSh rTMS -0.0000 1.4510
Ozkurt2011 Bal WlNi 1.5198 1.1573
Tekin2014 PlaSh rTMS 1.2141 1.6565
Yagci2014 PlaSh rTMS -0.6131 1.2885
deMelo2020 PlaSh tDCS -0.3185 0.9170
Number of treatment arms (by study):
narms
Assefi2005 2
Cheng2019 2
Fagerlund2015 2
Fregni2006 2
Hamnes2012 2
Khedr2017 2
Lauretti2013 2
Lee2012 2
Mhalla2011 2
Ozkurt2011 2
Tekin2014 2
Yagci2014 2
deMelo2020 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Assefi2005 Acu PlaSh 0.2563 [0.0552; 1.1904]
Cheng2019 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Fagerlund2015 tDCS WlNi 1.0000 [0.0591; 16.9279]
Fregni2006 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Hamnes2012 McT WlNi 1.4655 [0.6439; 3.3355]
Khedr2017 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Lauretti2013 Elec PlaSh 0.0566 [0.0027; 1.1930]
Lee2012 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Mhalla2011 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Ozkurt2011 Bal WlNi 4.5714 [0.4731; 44.1699]
Tekin2014 PlaSh rTMS 1.0737 [0.3321; 3.4707]
Yagci2014 PlaSh rTMS 1.0737 [0.3321; 3.4707]
deMelo2020 PlaSh tDCS 0.8102 [0.2313; 2.8374]
Number of studies: k = 13
Number of pairwise comparisons: m = 13
Number of observations: o = 658
Number of treatments: n = 8
Number of designs: d = 7
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.2076 [0.0066; 6.5694] -0.89 0.3725
Bal 4.5714 [0.4731; 44.1699] 1.31 0.1891
Elec 0.0459 [0.0006; 3.5298] -1.39 0.1643
McT 1.4655 [0.6439; 3.3355] 0.91 0.3624
PlaSh 0.8102 [0.0367; 17.8804] -0.13 0.8939
rTMS 0.7546 [0.0276; 20.6479] -0.17 0.8676
tDCS 1.0000 [0.0591; 16.9279] 0.00 1.0000
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 70.8%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu .
0.0454 [0.0007; 2.8313] Bal
4.5278 [0.1491; 137.4731] 99.6828 [0.7423; 13386.5505]
0.1417 [0.0041; 4.9371] 3.1193 [0.2794; 34.8246]
0.2563 [0.0552; 1.1904] 5.6424 [0.1217; 261.6026]
0.2752 [0.0398; 1.9008] 6.0580 [0.1096; 334.7204]
0.2076 [0.0286; 1.5074] 4.5714 [0.1217; 171.7126]
0.2076 [0.0066; 6.5694] 4.5714 [0.4731; 44.1699]
. .
. .
Elec .
0.0313 [0.0004; 2.6018] McT
0.0566 [0.0027; 1.1930] 1.8089 [0.0736; 44.4478]
0.0608 [0.0023; 1.5929] 1.9421 [0.0642; 58.7682]
0.0459 [0.0017; 1.2382] 1.4655 [0.0770; 27.8905]
0.0459 [0.0006; 3.5298] 1.4655 [0.6439; 3.3355]
0.2563 [0.0552; 1.1904] .
. .
0.0566 [0.0027; 1.1930] .
. .
PlaSh 1.0737 [0.3321; 3.4707]
1.0737 [0.3321; 3.4707] rTMS
0.8102 [0.2313; 2.8374] 0.7546 [0.1356; 4.2009]
0.8102 [0.0367; 17.8804] 0.7546 [0.0276; 20.6479]
. .
. 4.5714 [0.4731; 44.1699]
. .
. 1.4655 [0.6439; 3.3355]
0.8102 [0.2313; 2.8374] .
. .
tDCS 1.0000 [0.0591; 16.9279]
1.0000 [0.0591; 16.9279] WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
Elec 0.9311
Acu 0.7998
WlNi 0.4819
rTMS 0.4772
PlaSh 0.4517
tDCS 0.3904
McT 0.3308
Bal 0.1371
Q statistics to assess homogeneity / consistency
Q df p-value
Total 1.21 6 0.9763
Within designs 1.21 6 0.9763
Between designs 0.00 0 --
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
PlaSh:rTMS 1.15 4 0.8867
PlaSh:tDCS 0.06 2 0.9684
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 0.00 0 -- 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:Bal 0 0 0.0454 . 0.0454 . . .
Acu:Elec 0 0 4.5278 . 4.5278 . . .
Acu:McT 0 0 0.1417 . 0.1417 . . .
Acu:PlaSh 1 1.00 0.2563 0.2563 . . . .
Acu:rTMS 0 0 0.2752 . 0.2752 . . .
Acu:tDCS 0 0 0.2076 . 0.2076 . . .
Acu:WlNi 0 0 0.2076 . 0.2076 . . .
Bal:Elec 0 0 99.6828 . 99.6828 . . .
Bal:McT 0 0 3.1193 . 3.1193 . . .
Bal:PlaSh 0 0 5.6424 . 5.6424 . . .
Bal:rTMS 0 0 6.0580 . 6.0580 . . .
Bal:tDCS 0 0 4.5714 . 4.5714 . . .
Bal:WlNi 1 1.00 4.5714 4.5714 . . . .
Elec:McT 0 0 0.0313 . 0.0313 . . .
Elec:PlaSh 1 1.00 0.0566 0.0566 . . . .
Elec:rTMS 0 0 0.0608 . 0.0608 . . .
Elec:tDCS 0 0 0.0459 . 0.0459 . . .
Elec:WlNi 0 0 0.0459 . 0.0459 . . .
McT:PlaSh 0 0 1.8089 . 1.8089 . . .
McT:rTMS 0 0 1.9421 . 1.9421 . . .
McT:tDCS 0 0 1.4655 . 1.4655 . . .
McT:WlNi 1 1.00 1.4655 1.4655 . . . .
PlaSh:rTMS 5 1.00 1.0737 1.0737 . . . .
PlaSh:tDCS 3 1.00 0.8102 0.8102 . . . .
PlaSh:WlNi 0 0 0.8102 . 0.8102 . . .
rTMS:tDCS 0 0 0.7546 . 0.7546 . . .
rTMS:WlNi 0 0 0.7546 . 0.7546 . . .
tDCS:WlNi 1 1.00 1.0000 1.0000 . . . .
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)
Code
# Read data
data_ash <- read_excel("data/Banco de Dados_Rstudio (1).xlsx", sheet = "A | Sh")|>
mutate(
nRT1 = as.numeric(nRT1),
nRT2 = as.numeric(nRT2),
dp1 = as.numeric(dp1),
dp2 = as.numeric(dp2)
)
# Transform to contrast-based
pw_ash <- pairwise(
treat = list(Treat1, Treat2, Treat3),
event = list(dp1, dp2, dp3), # observed events in each arm
n = list(nRT1, nRT2, nRT3), # total number of patients in each arm
studlab = StudyID,
data = data_ash,
sm = "OR" # Medida de efeito (OR = Odds Ratio, pode ser "RR" ou "RD" se preferir)
)
# Check network connections
net_con <- netconnection(pw_ash)
net_con
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of treatments: n = 22
Number of designs: d = 40
Number of networks: 1
There are three sub-networks:
Network:
- 92 studies
- 100 comparisons
- 22 treatments
The network is fully connected.
2.0.2 Network
Select the procedures performed
The Network contains 92 studies, 100 comparisons and 22 treatments. This is the main analysis network for binary outcomes.
Code
Code
[1] "Acu" "rTMS" "tDCS" "McT" "Elec" "Bal" "PlaSh" "WlNi"
[1] 22
Code
[1] 131
[1] 119
Code
Comparisons not considered in network meta-analysis:
studlab treat1 treat2 TE seTE
Bressan2008 AeET FlET NA NA
Brietzke2019 tDCS PlaSh NA NA
Castro-Sanchez2019 DryN MasT NA NA
Castro-Sanchez2020 DryN Elec NA NA
Colbert1999 MfT PlaSh NA NA
daSilva2008 AqET WlNi NA NA
Evcik2002 Bal WlNi NA NA
Fonseca2019 AqET CBT NA NA
Garcia2006 CBT WlNi NA NA
Gomez-Hernandez2019 AeET MiET NA NA
Gowans2001 AqET WlNi NA NA
Harris2005 Acu PlaSh NA NA
Harte2013 Acu PlaSh NA NA
Kayo2012 AeET ReET NA NA
Kayo2012 AeET WlNi NA NA
Kayo2012 ReET WlNi NA NA
King2002 CBT McT NA NA
Mhalla2011 rTMS PlaSh NA NA
Oka2019 MfT PlaSh NA NA
Schachter2003 AeET WlNi NA NA
Sencan2004 AeET PlaSh NA NA
Sevimli2015 AeET AqET NA NA
Sevimli2015 AeET MiET NA NA
Sevimli2015 AqET MiET NA NA
To2017 tDCS PlaSh NA NA
Torres2015 MnT CBT NA NA
Ugurlu2017 Acu PlaSh NA NA
Valim2003 AeET FlET NA NA
Vallejo2015 CBT WlNi NA NA
Izquierdo-Alventosa2020 MiET WlNi NA NA
Mingorance2021.2 WBV WlNi NA NA
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of observations: o = 6562
Number of treatments: n = 22
Number of designs: d = 40
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.9064 [0.3001; 2.7381] -0.17 0.8617
AeET 1.5649 [0.7452; 3.2863] 1.18 0.2368
AqET 1.4451 [0.5955; 3.5068] 0.81 0.4157
Bal 1.0603 [0.3278; 3.4296] 0.10 0.9221
CBT 1.1774 [0.8906; 1.5566] 1.15 0.2517
Cry 2.3731 [0.0929; 60.6503] 0.52 0.6012
DryN 1.0000 [0.3828; 2.6122] 0.00 1.0000
Elec 1.2453 [0.4358; 3.5585] 0.41 0.6822
FlET 1.2249 [0.5146; 2.9155] 0.46 0.6467
HtT 0.2014 [0.0204; 1.9872] -1.37 0.1701
MasT 0.7564 [0.2386; 2.3975] -0.47 0.6352
McT 0.9869 [0.6857; 1.4203] -0.07 0.9433
MfT 0.8232 [0.2311; 2.9323] -0.30 0.7641
MiET 1.0008 [0.6534; 1.5329] 0.00 0.9971
MnT 0.5819 [0.1658; 2.0422] -0.85 0.3980
PlaSh 0.9915 [0.3883; 2.5320] -0.02 0.9858
Plt 2.7557 [0.6206; 12.2373] 1.33 0.1826
ReET 1.1212 [0.5497; 2.2869] 0.31 0.7531
rTMS 0.7426 [0.2192; 2.5163] -0.48 0.6327
tDCS 0.8650 [0.2536; 2.9511] -0.23 0.8169
WBV 1.1111 [0.2705; 4.5634] 0.15 0.8838
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 27.5%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
These three studies were excluded from the model because they reported a standard deviation of zero, which makes division by zero impossible.
- Bressan2008: AeET vs FlET
- Brietzke2019: tDCSvs PlaSh
- Castro-Sanchez2019: DryN vs MasT
- Castro-Sanchez2020: DryN vs Elec
- Colbert1999: MfT vs PlaSh
- daSilva2008: AqET vs WlNi
- Evcik2002: Bal vs WlNi
- Fonseca2019: AqET vs CBT
- Garcia2006: CBT vs WlNi
- Gomez-Hernandez2019: AeET vs MiET
- Gowans2001: AqET vs WlNi
- Harris2005: Acuvs PlaSh
- Harte2013: Acu vs PlaSh
- Kayo2012: AeET vs ReET
- Kayo2012: AeET vs WlNi
- Kayo2012: ReET vs WlNi
- King2002: CBT vs McT
- Mhalla2011: rTMSvs PlaSh
- Oka2019: MfT vs PlaSh
- Schachter2003: AeET vs WlNi
- Sencan2004: AeETvs PlaSh
- Sevimli2015: AeET vs AqET
- Sevimli2015: AeET vs MiET
- Sevimli2015: AqET vs MiET
- To2017: tDCSvs PlaSh
- Torres2015: MnT vs CBT
- Ugurlu2017: Acuvs PlaSh
- Valim2003: AeET vs FlET
- Vallejo2015: CBT vs WlNi
- Izquierdo-Alventosa2020: MiET vs WlNi
- Mingorance2021.2: WBV vs WlNi
Code
Original data (with adjusted standard errors for multi-arm studies):
treat1 treat2 TE seTE seTE.adj narms multiarm
Albers2018 MnT WlNi 0.2032 1.6625 1.6625 2
Alentorn-Geli2008 McT WBV -1.1820 1.6833 2.4493 3 *
Alentorn-Geli2008 McT WlNi -1.7838 1.6048 1.9855 3 *
Alentorn-Geli2008 WBV WlNi -0.6018 1.1175 1.1951 3 *
Alfano2001 MfT PlaSh -0.0174 0.5669 0.5669 2
Altan2004 AqET Bal -1.1856 1.1918 1.1918 2
Ang2010 CBT WlNi -0.1431 1.0694 1.0694 2
Ardic2007 Bal WlNi -2.2203 1.5719 1.5719 2
Assefi2005 Acu PlaSh -0.3533 0.6141 0.6141 2
Assis2006 AeET AqET 1.1701 1.1853 1.1853 2
Assumpçao2018 FlET ReET 0.4212 0.8469 0.9695 3 *
Assumpçao2018 FlET WlNi 0.6931 0.9449 1.1648 3 *
Assumpçao2018 ReET WlNi 0.2719 0.9835 1.2927 3 *
Astin2003 CBT McT -0.0625 0.3536 0.3536 2
Baumueller2017 CBT WlNi 0.0000 1.4510 1.4510 2
Bircan2008 AeET ReET 0.0000 1.0742 1.0742 2
Bongi2012 CBT McT 0.0000 0.7958 0.7958 2
Bongi2010 CBT WlNi -2.0890 1.5432 1.5432 2
Bourgault2015 McT WlNi 1.1331 1.6540 1.6540 2
Boyer2014 PlaSh rTMS 0.9008 0.7996 0.7996 2
Calandre2009 AqET FlET 0.7538 0.6006 0.6006 2
Carretero2009 PlaSh rTMS 0.1671 1.4724 1.4724 2
Carson2010 McT WlNi 0.5725 0.9577 0.9577 2
Casanueva2014 DryN WlNi 0.0000 0.4899 0.4899 2
Collado-Mateo2017 MiET WlNi -1.9500 1.1044 1.1044 2
Da Costa2005 MiET WlNi 0.2693 0.6517 0.6517 2
Dailey2019 Elec PlaSh 0.4692 0.2901 0.2901 2
deMedeiros2020 AqET Plt -0.4595 0.9703 0.9703 2
Ekici2017 MasT Plt -2.1282 1.1318 1.1318 2
Ekici2008 MasT Plt -0.5754 1.2565 1.2565 2
Espi-Lopes2016 MiET WlNi 1.2685 1.1426 1.1426 2
Fernandes2016 AeET AqET 0.0846 1.0278 1.0278 2
Fitzgibbon2018 PlaSh rTMS -0.6061 1.2939 1.2939 2
Friedberg2019 CBT WlNi 0.9555 0.9628 0.9628 2
Garcia-Martinez2012 MiET WlNi 0.7732 1.2885 1.2885 2
Giannotti2014 McT WlNi -1.6094 1.1673 1.1673 2
Glasgow2017 ReET WlNi 1.0217 1.6795 1.6795 2
Goldway2019 CBT PlaSh -0.3285 0.8069 0.8069 2
Gowans1999 McT WlNi 1.1474 1.1962 1.1962 2
Gunther1994 Bal CBT 1.1756 1.6795 1.6795 2
Hargrove2012 PlaSh tDCS 0.3137 0.5862 0.5862 2
Hsu2010 CBT WlNi 1.9459 1.5423 1.5423 2
Jensen2012 CBT WlNi 0.4568 0.7870 0.7870 2
Jones2002 McT ReET 0.0000 0.6362 0.6362 2
Jones2012 CBT McT 2.0268 1.5252 1.5252 2
Karatay2018 Acu PlaSh 0.0000 1.2500 1.2500 2
Kurt2016 Bal MiET -0.3151 0.7988 0.7988 2
Lami2018 CBT WlNi 1.1517 0.4971 0.4971 2
Lauche2016 MasT PlaSh 0.1788 0.5132 0.5132 2
Lopes-Rodrigues2012 AqET FlET 0.1158 0.4815 0.4815 2
Lopes-Rodrigues2013 AqET FlET 0.1517 0.5513 0.5513 2
Luciano2014 CBT WlNi 0.5942 0.7583 0.7583 2
Lynch2012 McT WlNi 1.5266 0.8100 0.8100 2
Maestu2013 PlaSh rTMS -0.1823 0.6619 0.6619 2
McCrae2019 CBT WlNi 0.0364 0.4658 0.4658 2
Menzies2014 CBT WlNi 0.7885 0.7508 0.7508 2
Mist2018 Acu CBT -1.0296 0.9599 0.9599 2
Norrengaard1997 AeET HtT 2.6391 1.2012 1.5648 3 *
Norrengaard1997 AeET MiET 1.7047 0.8006 0.8546 3 *
Norrengaard1997 HtT MiET -0.9343 1.2181 1.6681 3 *
Olivares2011 WBV WlNi 0.4055 0.9718 0.9718 2
Paolucci2016 MfT PlaSh -0.6931 1.2780 1.2780 2
Paolucci2015 MiET WlNi 0.4055 0.9789 0.9789 2
Parra-Delgado2013 CBT WlNi 1.6720 1.5891 1.5891 2
Pereira-Pernambuco2018 McT WlNi -0.1967 0.6187 0.6187 2
Perez-Aranda2019 CBT WlNi -0.2933 0.3285 0.3285 2
Picard2013 CBT WlNi -0.7270 1.2521 1.2521 2
Redondo2004 CBT MiET 0.1586 0.7610 0.7610 2
Richards2002 AeET McT -0.0357 0.4499 0.4499 2
Rivera2018 Cry WlNi 0.8642 1.6536 1.6536 2
Salaffi2015 McT WlNi 0.0000 1.0274 1.0274 2
Schmidt2011 CBT WlNi 0.5320 0.4669 0.4669 2
Silva2019 CBT ReET -0.1967 0.6282 0.6282 2
Simister2018 CBT WlNi 0.8313 0.7545 0.7545 2
Soares2002 CBT WlNi -0.4626 0.8185 0.8185 2
Sutbeyaz2009 MfT PlaSh -0.3285 0.8155 0.8155 2
Tomas-Carus2007b&c AqET WlNi 1.0986 1.6676 1.6676 2
Vas2016 Acu PlaSh 1.4240 1.1292 1.1292 2
Verkaik2013 CBT WlNi -0.4349 0.6286 0.6286 2
Wang2018 McT MiET -0.3430 0.3500 0.3500 2
Wicksell2013 CBT WlNi 0.8755 1.2024 1.2024 2
Wong2018 McT WlNi -1.8036 1.1534 1.1534 2
Arakaki2021 FlET ReET 0.7673 0.9078 0.9078 2
Atan2020 MiET WlNi -1.2098 0.9584 0.9584 2
Barranengoa-Cuadra 2021 CBT WlNi -0.4203 0.9290 0.9290 2
Cao2020 Acu MasT 0.4418 0.9519 0.9519 2
Ceballos-Laita2020 McT MiET -1.2417 1.2153 1.2153 2
Coste2021 MnT PlaSh -0.5960 0.4839 0.4839 2
Jamison2021 Elec PlaSh -0.4513 0.4853 0.4853 2
Nadal-Nicolas2020 MasT PlaSh -1.9459 1.1711 1.1711 2
Rodriguez-Mansilla2021 McT MiET -0.0000 0.4511 0.5643 3 *
Rodriguez-Mansilla2021 MiET WlNi -0.3805 0.4379 0.5309 3 *
Rodriguez-Mansilla2021 McT WlNi -0.3805 0.4379 0.5309 3 *
Sarmento2020 McT PlaSh 0.0000 0.8367 0.8367 2
Tanwar2020 PlaSh rTMS 2.2892 1.5061 1.5061 2
Udina-Cortés2020 Elec PlaSh 0.2429 0.9706 0.9706 2
Lacroix2022 PlaSh rTMS 0.1082 1.0267 1.0267 2
Paolucci2022 CBT MiET 0.6931 1.2860 1.2860 2
Park2021 FlET ReET -0.0000 0.7303 0.7303 2
Samartin-Veiga2022 PlaSh tDCS -0.0238 0.5576 0.5576 2
Number of treatment arms (by study):
narms
Albers2018 2
Alentorn-Geli2008 3
Alfano2001 2
Altan2004 2
Ang2010 2
Ardic2007 2
Assefi2005 2
Assis2006 2
Assumpçao2018 3
Astin2003 2
Baumueller2017 2
Bircan2008 2
Bongi2012 2
Bongi2010 2
Bourgault2015 2
Boyer2014 2
Calandre2009 2
Carretero2009 2
Carson2010 2
Casanueva2014 2
Collado-Mateo2017 2
Da Costa2005 2
Dailey2019 2
deMedeiros2020 2
Ekici2017 2
Ekici2008 2
Espi-Lopes2016 2
Fernandes2016 2
Fitzgibbon2018 2
Friedberg2019 2
Garcia-Martinez2012 2
Giannotti2014 2
Glasgow2017 2
Goldway2019 2
Gowans1999 2
Gunther1994 2
Hargrove2012 2
Hsu2010 2
Jensen2012 2
Jones2002 2
Jones2012 2
Karatay2018 2
Kurt2016 2
Lami2018 2
Lauche2016 2
Lopes-Rodrigues2012 2
Lopes-Rodrigues2013 2
Luciano2014 2
Lynch2012 2
Maestu2013 2
McCrae2019 2
Menzies2014 2
Mist2018 2
Norrengaard1997 3
Olivares2011 2
Paolucci2016 2
Paolucci2015 2
Parra-Delgado2013 2
Pereira-Pernambuco2018 2
Perez-Aranda2019 2
Picard2013 2
Redondo2004 2
Richards2002 2
Rivera2018 2
Salaffi2015 2
Schmidt2011 2
Silva2019 2
Simister2018 2
Soares2002 2
Sutbeyaz2009 2
Tomas-Carus2007b&c 2
Vas2016 2
Verkaik2013 2
Wang2018 2
Wicksell2013 2
Wong2018 2
Arakaki2021 2
Atan2020 2
Barranengoa-Cuadra 2021 2
Cao2020 2
Ceballos-Laita2020 2
Coste2021 2
Jamison2021 2
Nadal-Nicolas2020 2
Rodriguez-Mansilla2021 3
Sarmento2020 2
Tanwar2020 2
Udina-Cortés2020 2
Lacroix2022 2
Paolucci2022 2
Park2021 2
Samartin-Veiga2022 2
Results (random effects model):
treat1 treat2 OR 95%-CI
Albers2018 MnT WlNi 0.5819 [0.1658; 2.0422]
Alentorn-Geli2008 McT WBV 0.8882 [0.2081; 3.7905]
Alentorn-Geli2008 McT WlNi 0.9869 [0.6857; 1.4203]
Alentorn-Geli2008 WBV WlNi 1.1111 [0.2705; 4.5634]
Alfano2001 MfT PlaSh 0.8303 [0.3523; 1.9565]
Altan2004 AqET Bal 1.3629 [0.3654; 5.0835]
Ang2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Ardic2007 Bal WlNi 1.0603 [0.3278; 3.4296]
Assefi2005 Acu PlaSh 0.9142 [0.4044; 2.0664]
Assis2006 AeET AqET 1.0829 [0.4187; 2.8008]
Assumpçao2018 FlET ReET 1.0925 [0.4980; 2.3966]
Assumpçao2018 FlET WlNi 1.2249 [0.5146; 2.9155]
Assumpçao2018 ReET WlNi 1.1212 [0.5497; 2.2869]
Astin2003 CBT McT 1.1930 [0.8139; 1.7487]
Baumueller2017 CBT WlNi 1.1774 [0.8906; 1.5566]
Bircan2008 AeET ReET 1.3957 [0.5806; 3.3549]
Bongi2012 CBT McT 1.1930 [0.8139; 1.7487]
Bongi2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Bourgault2015 McT WlNi 0.9869 [0.6857; 1.4203]
Boyer2014 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Calandre2009 AqET FlET 1.1798 [0.6684; 2.0824]
Carretero2009 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Carson2010 McT WlNi 0.9869 [0.6857; 1.4203]
Casanueva2014 DryN WlNi 1.0000 [0.3828; 2.6122]
Collado-Mateo2017 MiET WlNi 1.0008 [0.6534; 1.5329]
Da Costa2005 MiET WlNi 1.0008 [0.6534; 1.5329]
Dailey2019 Elec PlaSh 1.2559 [0.7828; 2.0149]
deMedeiros2020 AqET Plt 0.5244 [0.1223; 2.2479]
Ekici2017 MasT Plt 0.2745 [0.0699; 1.0779]
Ekici2008 MasT Plt 0.2745 [0.0699; 1.0779]
Espi-Lopes2016 MiET WlNi 1.0008 [0.6534; 1.5329]
Fernandes2016 AeET AqET 1.0829 [0.4187; 2.8008]
Fitzgibbon2018 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Friedberg2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Garcia-Martinez2012 MiET WlNi 1.0008 [0.6534; 1.5329]
Giannotti2014 McT WlNi 0.9869 [0.6857; 1.4203]
Glasgow2017 ReET WlNi 1.1212 [0.5497; 2.2869]
Goldway2019 CBT PlaSh 1.1874 [0.4723; 2.9856]
Gowans1999 McT WlNi 0.9869 [0.6857; 1.4203]
Gunther1994 Bal CBT 0.9006 [0.2761; 2.9373]
Hargrove2012 PlaSh tDCS 1.1462 [0.5193; 2.5302]
Hsu2010 CBT WlNi 1.1774 [0.8906; 1.5566]
Jensen2012 CBT WlNi 1.1774 [0.8906; 1.5566]
Jones2002 McT ReET 0.8802 [0.4337; 1.7862]
Jones2012 CBT McT 1.1930 [0.8139; 1.7487]
Karatay2018 Acu PlaSh 0.9142 [0.4044; 2.0664]
Kurt2016 Bal MiET 1.0595 [0.3329; 3.3715]
Lami2018 CBT WlNi 1.1774 [0.8906; 1.5566]
Lauche2016 MasT PlaSh 0.7628 [0.3395; 1.7142]
Lopes-Rodrigues2012 AqET FlET 1.1798 [0.6684; 2.0824]
Lopes-Rodrigues2013 AqET FlET 1.1798 [0.6684; 2.0824]
Luciano2014 CBT WlNi 1.1774 [0.8906; 1.5566]
Lynch2012 McT WlNi 0.9869 [0.6857; 1.4203]
Maestu2013 PlaSh rTMS 1.3352 [0.6113; 2.9162]
McCrae2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Menzies2014 CBT WlNi 1.1774 [0.8906; 1.5566]
Mist2018 Acu CBT 0.7699 [0.2592; 2.2868]
Norrengaard1997 AeET HtT 7.7705 [0.8074; 74.7823]
Norrengaard1997 AeET MiET 1.5636 [0.7378; 3.3138]
Norrengaard1997 HtT MiET 0.2012 [0.0207; 1.9520]
Olivares2011 WBV WlNi 1.1111 [0.2705; 4.5634]
Paolucci2016 MfT PlaSh 0.8303 [0.3523; 1.9565]
Paolucci2015 MiET WlNi 1.0008 [0.6534; 1.5329]
Parra-Delgado2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Pereira-Pernambuco2018 McT WlNi 0.9869 [0.6857; 1.4203]
Perez-Aranda2019 CBT WlNi 1.1774 [0.8906; 1.5566]
Picard2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Redondo2004 CBT MiET 1.1764 [0.7425; 1.8641]
Richards2002 AeET McT 1.5857 [0.7954; 3.1612]
Rivera2018 Cry WlNi 2.3731 [0.0929; 60.6503]
Salaffi2015 McT WlNi 0.9869 [0.6857; 1.4203]
Schmidt2011 CBT WlNi 1.1774 [0.8906; 1.5566]
Silva2019 CBT ReET 1.0501 [0.5158; 2.1378]
Simister2018 CBT WlNi 1.1774 [0.8906; 1.5566]
Soares2002 CBT WlNi 1.1774 [0.8906; 1.5566]
Sutbeyaz2009 MfT PlaSh 0.8303 [0.3523; 1.9565]
Tomas-Carus2007b&c AqET WlNi 1.4451 [0.5955; 3.5068]
Vas2016 Acu PlaSh 0.9142 [0.4044; 2.0664]
Verkaik2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Wang2018 McT MiET 0.9861 [0.6481; 1.5004]
Wicksell2013 CBT WlNi 1.1774 [0.8906; 1.5566]
Wong2018 McT WlNi 0.9869 [0.6857; 1.4203]
Arakaki2021 FlET ReET 1.0925 [0.4980; 2.3966]
Atan2020 MiET WlNi 1.0008 [0.6534; 1.5329]
Barranengoa-Cuadra 2021 CBT WlNi 1.1774 [0.8906; 1.5566]
Cao2020 Acu MasT 1.1984 [0.4291; 3.3471]
Ceballos-Laita2020 McT MiET 0.9861 [0.6481; 1.5004]
Coste2021 MnT PlaSh 0.5869 [0.2354; 1.4632]
Jamison2021 Elec PlaSh 1.2559 [0.7828; 2.0149]
Nadal-Nicolas2020 MasT PlaSh 0.7628 [0.3395; 1.7142]
Rodriguez-Mansilla2021 McT MiET 0.9861 [0.6481; 1.5004]
Rodriguez-Mansilla2021 MiET WlNi 1.0008 [0.6534; 1.5329]
Rodriguez-Mansilla2021 McT WlNi 0.9869 [0.6857; 1.4203]
Sarmento2020 McT PlaSh 0.9953 [0.3890; 2.5470]
Tanwar2020 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Udina-Cortés2020 Elec PlaSh 1.2559 [0.7828; 2.0149]
Lacroix2022 PlaSh rTMS 1.3352 [0.6113; 2.9162]
Paolucci2022 CBT MiET 1.1764 [0.7425; 1.8641]
Park2021 FlET ReET 1.0925 [0.4980; 2.3966]
Samartin-Veiga2022 PlaSh tDCS 1.1462 [0.5193; 2.5302]
Number of studies: k = 92
Number of pairwise comparisons: m = 100
Number of observations: o = 6562
Number of treatments: n = 22
Number of designs: d = 40
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'WlNi'):
OR 95%-CI z p-value
Acu 0.9064 [0.3001; 2.7381] -0.17 0.8617
AeET 1.5649 [0.7452; 3.2863] 1.18 0.2368
AqET 1.4451 [0.5955; 3.5068] 0.81 0.4157
Bal 1.0603 [0.3278; 3.4296] 0.10 0.9221
CBT 1.1774 [0.8906; 1.5566] 1.15 0.2517
Cry 2.3731 [0.0929; 60.6503] 0.52 0.6012
DryN 1.0000 [0.3828; 2.6122] 0.00 1.0000
Elec 1.2453 [0.4358; 3.5585] 0.41 0.6822
FlET 1.2249 [0.5146; 2.9155] 0.46 0.6467
HtT 0.2014 [0.0204; 1.9872] -1.37 0.1701
MasT 0.7564 [0.2386; 2.3975] -0.47 0.6352
McT 0.9869 [0.6857; 1.4203] -0.07 0.9433
MfT 0.8232 [0.2311; 2.9323] -0.30 0.7641
MiET 1.0008 [0.6534; 1.5329] 0.00 0.9971
MnT 0.5819 [0.1658; 2.0422] -0.85 0.3980
PlaSh 0.9915 [0.3883; 2.5320] -0.02 0.9858
Plt 2.7557 [0.6206; 12.2373] 1.33 0.1826
ReET 1.1212 [0.5497; 2.2869] 0.31 0.7531
rTMS 0.7426 [0.2192; 2.5163] -0.48 0.6327
tDCS 0.8650 [0.2536; 2.9511] -0.23 0.8169
WBV 1.1111 [0.2705; 4.5634] 0.15 0.8838
WlNi . . . .
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 27.5%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
Q d.f. p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Details of network meta-analysis methods:
- Frequentist graph-theoretical approach
- DerSimonian-Laird estimator for tau^2
- Calculation of I^2 based on Q
League table (random effects model):
Acu . .
0.5792 [0.1611; 2.0830] AeET 1.7341 [0.3785; 7.9442]
0.6272 [0.1660; 2.3701] 1.0829 [0.4187; 2.8008] AqET
0.8549 [0.1763; 4.1451] 1.4759 [0.3956; 5.5061] 1.3629 [0.3654; 5.0835]
0.7699 [0.2592; 2.2868] 1.3291 [0.6267; 2.8188] 1.2274 [0.5023; 2.9991]
0.3819 [0.0124; 11.7261] 0.6594 [0.0237; 18.3266] 0.6089 [0.0212; 17.5302]
0.9064 [0.2096; 3.9198] 1.5649 [0.4650; 5.2659] 1.4451 [0.3911; 5.3389]
0.7279 [0.2836; 1.8683] 1.2566 [0.3679; 4.2922] 1.1604 [0.3227; 4.1725]
0.7400 [0.1955; 2.8017] 1.2776 [0.4872; 3.3499] 1.1798 [0.6684; 2.0824]
4.5008 [0.3617; 56.0073] 7.7705 [0.8074; 74.7823] 7.1755 [0.6532; 78.8241]
1.1984 [0.4291; 3.3471] 2.0690 [0.5593; 7.6530] 1.9106 [0.5109; 7.1441]
0.9185 [0.3019; 2.7938] 1.5857 [0.7954; 3.1612] 1.4643 [0.6039; 3.5502]
1.1011 [0.3373; 3.5946] 1.9009 [0.4589; 7.8749] 1.7554 [0.4052; 7.6037]
0.9057 [0.2859; 2.8695] 1.5636 [0.7378; 3.3138] 1.4439 [0.5727; 3.6406]
1.5576 [0.4625; 5.2459] 2.6891 [0.6552; 11.0373] 2.4833 [0.5768; 10.6907]
0.9142 [0.4044; 2.0664] 1.5783 [0.5079; 4.9042] 1.4574 [0.4437; 4.7869]
0.3289 [0.0680; 1.5915] 0.5679 [0.1172; 2.7511] 0.5244 [0.1223; 2.2479]
0.8084 [0.2291; 2.8532] 1.3957 [0.5806; 3.3549] 1.2889 [0.5406; 3.0725]
1.2206 [0.3945; 3.7759] 2.1072 [0.5318; 8.3498] 1.9459 [0.4690; 8.0734]
1.0478 [0.3362; 3.2656] 1.8090 [0.4538; 7.2117] 1.6705 [0.4003; 6.9717]
0.8158 [0.1361; 4.8915] 1.4084 [0.2872; 6.9074] 1.3006 [0.2462; 6.8705]
0.9064 [0.3001; 2.7381] 1.5649 [0.7452; 3.2863] 1.4451 [0.5955; 3.5068]
. 0.3571 [0.0544; 2.3438] .
. . .
0.3056 [0.0296; 3.1592] . .
Bal 3.2400 [0.1205; 87.1251] .
0.9006 [0.2761; 2.9373] CBT .
0.4468 [0.0142; 14.0314] 0.4961 [0.0192; 12.8328] Cry
1.0603 [0.2327; 4.8313] 1.1774 [0.4332; 3.2003] 2.3731 [0.0808; 69.7118]
0.8514 [0.1827; 3.9679] 0.9455 [0.3355; 2.6645] 1.9057 [0.0632; 57.4888]
0.8656 [0.2274; 3.2956] 0.9612 [0.4012; 2.3030] 1.9375 [0.0676; 55.4961]
5.2650 [0.4185; 66.2399] 5.8464 [0.5897; 57.9656] 11.7839 [0.2229; 623.0541]
1.4019 [0.2824; 6.9585] 1.5567 [0.4967; 4.8781] 3.1376 [0.1006; 97.8653]
1.0744 [0.3290; 3.5084] 1.1930 [0.8139; 1.7487] 2.4047 [0.0922; 62.7226]
1.2880 [0.2360; 7.0298] 1.4302 [0.4061; 5.0366] 2.8827 [0.0887; 93.6650]
1.0595 [0.3329; 3.3715] 1.1764 [0.7425; 1.8641] 2.3712 [0.0902; 62.3182]
1.8221 [0.3367; 9.8604] 2.0233 [0.5813; 7.0425] 4.0781 [0.1262; 131.7906]
1.0694 [0.2472; 4.6262] 1.1874 [0.4723; 2.9856] 2.3934 [0.0820; 69.8617]
0.3848 [0.0620; 2.3891] 0.4272 [0.0965; 1.8910] 0.8612 [0.0243; 30.5045]
0.9457 [0.2565; 3.4869] 1.0501 [0.5158; 2.1378] 2.1166 [0.0766; 58.4504]
1.4278 [0.2715; 7.5091] 1.5854 [0.4735; 5.3085] 3.1956 [0.1001; 101.9865]
1.2257 [0.2319; 6.4789] 1.3611 [0.4037; 4.5888] 2.7434 [0.0858; 87.7657]
0.9543 [0.1524; 5.9742] 1.0597 [0.2515; 4.4643] 2.1359 [0.0623; 73.2838]
1.0603 [0.3278; 3.4296] 1.1774 [0.8906; 1.5566] 2.3731 [0.0929; 60.6503]
. . .
. . .
. . 1.3467 [0.7329; 2.4746]
. . .
. . .
. . .
DryN . .
0.8030 [0.1936; 3.3315] Elec .
0.8164 [0.2239; 2.9773] 1.0167 [0.2820; 3.6658] FlET
4.9655 [0.4148; 59.4414] 6.1836 [0.5097; 75.0217] 6.0821 [0.5533; 66.8546]
1.3221 [0.2947; 5.9312] 1.6464 [0.6447; 4.2047] 1.6194 [0.4270; 6.1418]
1.0133 [0.3629; 2.8295] 1.2618 [0.4408; 3.6125] 1.2412 [0.5204; 2.9600]
1.2147 [0.2471; 5.9710] 1.5127 [0.5684; 4.0261] 1.4879 [0.3427; 6.4608]
0.9992 [0.3495; 2.8570] 1.2443 [0.4151; 3.7296] 1.2239 [0.4917; 3.0467]
1.7184 [0.3538; 8.3475] 2.1400 [0.7651; 5.9856] 2.1049 [0.4883; 9.0739]
1.0085 [0.2636; 3.8593] 1.2559 [0.7828; 2.0149] 1.2353 [0.3750; 4.0697]
0.3629 [0.0616; 2.1373] 0.4519 [0.0982; 2.0793] 0.4445 [0.0982; 2.0110]
0.8919 [0.2698; 2.9489] 1.1107 [0.3309; 3.7278] 1.0925 [0.4980; 2.3966]
1.3466 [0.2850; 6.3622] 1.6769 [0.6729; 4.1788] 1.6494 [0.3965; 6.8604]
1.1560 [0.2434; 5.4913] 1.4396 [0.5725; 3.6203] 1.4160 [0.3385; 5.9241]
0.9000 [0.1631; 4.9671] 1.1208 [0.1934; 6.4953] 1.1024 [0.2108; 5.7651]
1.0000 [0.3828; 2.6122] 1.2453 [0.4358; 3.5585] 1.2249 [0.5146; 2.9155]
. 1.5556 [0.2408; 10.0492] .
14.0000 [1.3295; 147.4289] . 0.9649 [0.3995; 2.3304]
. . .
. . .
. . 1.0378 [0.5585; 1.9285]
. . .
. . .
. . .
. . .
HtT . .
0.2663 [0.0210; 3.3703] MasT .
0.2041 [0.0209; 1.9951] 0.7664 [0.2412; 2.4351] McT
0.2446 [0.0182; 3.2815] 0.9188 [0.2826; 2.9875] 1.1988 [0.3360; 4.2767]
0.2012 [0.0207; 1.9520] 0.7558 [0.2285; 2.5000] 0.9861 [0.6481; 1.5004]
0.3461 [0.0259; 4.6166] 1.2997 [0.3860; 4.3769] 1.6959 [0.4806; 5.9847]
0.2031 [0.0175; 2.3554] 0.7628 [0.3395; 1.7142] 0.9953 [0.3890; 2.5470]
0.0731 [0.0049; 1.0830] 0.2745 [0.0699; 1.0779] 0.3581 [0.0806; 1.5915]
0.1796 [0.0170; 1.8947] 0.6746 [0.1862; 2.4440] 0.8802 [0.4337; 1.7862]
0.2712 [0.0207; 3.5511] 1.0185 [0.3306; 3.1375] 1.3289 [0.3916; 4.5100]
0.2328 [0.0177; 3.0585] 0.8744 [0.2817; 2.7135] 1.1409 [0.3339; 3.8983]
0.1813 [0.0123; 2.6629] 0.6807 [0.1102; 4.2054] 0.8882 [0.2081; 3.7905]
0.2014 [0.0204; 1.9872] 0.7564 [0.2386; 2.3975] 0.9869 [0.6857; 1.4203]
. . .
. 5.5000 [1.1453; 26.4124] .
. . .
. 0.7297 [0.1525; 3.4925] .
. 1.3461 [0.3729; 4.8594] .
. . .
. . .
. . .
. . .
. 0.3929 [0.0361; 4.2764] .
. . .
. 0.7675 [0.4524; 1.3019] .
MfT . .
0.8226 [0.2219; 3.0489] MiET .
1.4147 [0.4042; 4.9511] 1.7198 [0.4696; 6.2983] MnT
0.8303 [0.3523; 1.9565] 1.0094 [0.3748; 2.7184] 0.5869 [0.2354; 1.4632]
0.2987 [0.0554; 1.6118] 0.3632 [0.0795; 1.6600] 0.2112 [0.0387; 1.1529]
0.7342 [0.1799; 2.9961] 0.8926 [0.4125; 1.9314] 0.5190 [0.1284; 2.0981]
1.1085 [0.3476; 3.5354] 1.3477 [0.3816; 4.7591] 0.7836 [0.2355; 2.6069]
0.9517 [0.2963; 3.0569] 1.1570 [0.3255; 4.1127] 0.6727 [0.2008; 2.2535]
0.7409 [0.1112; 4.9388] 0.9008 [0.2068; 3.9240] 0.5238 [0.0793; 3.4575]
0.8232 [0.2311; 2.9323] 1.0008 [0.6534; 1.5329] 0.5819 [0.1658; 2.0422]
1.0451 [0.3959; 2.7591] . .
. . 1.0000 [0.1218; 8.2099]
. 0.6316 [0.0943; 4.2302] .
. . .
0.7200 [0.1481; 3.5009] . 0.8214 [0.2398; 2.8140]
. . .
. . .
1.2559 [0.7828; 2.0149] . .
. . 1.4031 [0.5560; 3.5411]
. . .
0.8492 [0.3380; 2.1336] 0.2387 [0.0459; 1.2405] .
1.0000 [0.1940; 5.1543] . 1.0000 [0.2874; 3.4797]
0.8303 [0.3523; 1.9565] . .
. . .
0.5510 [0.2135; 1.4224] . .
PlaSh . .
0.3598 [0.0843; 1.5359] Plt .
0.8843 [0.2901; 2.6962] 2.4578 [0.5229; 11.5532] ReET
1.3352 [0.6113; 2.9162] 3.7108 [0.7140; 19.2874] 1.5098 [0.3870; 5.8898]
1.1462 [0.5193; 2.5302] 3.1857 [0.6098; 16.6420] 1.2961 [0.3302; 5.0873]
0.8924 [0.1643; 4.8473] 2.4803 [0.3189; 19.2880] 1.0091 [0.2082; 4.8922]
0.9915 [0.3883; 2.5320] 2.7557 [0.6206; 12.2373] 1.1212 [0.5497; 2.2869]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . 0.3067 [0.0113; 8.3086]
. . .
. . .
. . .
1.3352 [0.6113; 2.9162] 1.1462 [0.5193; 2.5302] .
. . .
. . .
rTMS . .
0.8585 [0.2823; 2.6110] tDCS .
0.6684 [0.1036; 4.3101] 0.7786 [0.1202; 5.0431] WBV
0.7426 [0.2192; 2.5163] 0.8650 [0.2536; 2.9511] 1.1111 [0.2705; 4.5634]
.
.
3.0000 [0.1142; 78.8136]
0.1086 [0.0050; 2.3645]
1.2413 [0.9090; 1.6951]
2.3731 [0.0929; 60.6503]
1.0000 [0.3828; 2.6122]
.
2.0000 [0.3138; 12.7450]
.
.
0.8968 [0.5343; 1.5051]
.
0.8168 [0.4627; 1.4421]
1.2254 [0.0471; 31.8681]
.
.
1.5894 [0.3012; 8.3878]
.
.
0.9721 [0.2310; 4.0920]
WlNi
Lower triangle: results from network meta-analysis (column vs row)
Upper triangle: results from direct comparisons (row vs column)
Code
P-score
HtT 0.8996
MnT 0.7745
rTMS 0.6707
MasT 0.6675
MfT 0.6121
tDCS 0.5881
Acu 0.5665
McT 0.5474
WlNi 0.5389
MiET 0.5321
DryN 0.5183
PlaSh 0.5123
Bal 0.4880
WBV 0.4671
ReET 0.4539
FlET 0.4066
CBT 0.3930
Elec 0.3646
Cry 0.3123
AqET 0.3047
AeET 0.2530
Plt 0.1286
Q statistics to assess homogeneity / consistency
Q df p-value
Total 64.44 75 0.8027
Within designs 48.63 52 0.6073
Between designs 15.81 23 0.8632
Design-specific decomposition of within-designs Q statistic
Design Q df p-value
MasT:PlaSh 2.76 1 0.0966
WlNi:McT 9.60 7 0.2122
WlNi:MiET 6.62 5 0.2505
Elec:PlaSh 2.65 2 0.2657
MasT:Plt 0.84 1 0.3585
Acu:PlaSh 1.91 2 0.3842
CBT:McT 1.78 2 0.4100
McT:MiET 0.50 1 0.4773
AeET:AqET 0.48 1 0.4890
FlET:ReET 0.43 1 0.5102
WlNi:CBT 16.29 18 0.5721
PlaSh:rTMS 3.37 5 0.6427
AqET:FlET 0.79 2 0.6738
PlaSh:tDCS 0.17 1 0.6766
CBT:MiET 0.13 1 0.7206
MfT:PlaSh 0.28 2 0.8709
Between-designs Q statistic after detaching of single designs
(influential designs have p-value markedly different from 0.8632)
Detached design Q df p-value
AeET:McT 12.67 22 0.9420
WlNi:Bal 13.35 22 0.9228
McT:MiET 13.46 22 0.9195
AqET:Bal 13.51 22 0.9181
AqET:FlET 14.39 22 0.8870
Acu:CBT 14.85 22 0.8686
Bal:CBT 15.15 22 0.8559
WlNi:McT:WBV 14.37 21 0.8532
AeET:AqET 15.21 22 0.8530
CBT:PlaSh 15.23 22 0.8521
WlNi:CBT 15.25 22 0.8512
Bal:MiET 15.33 22 0.8476
WlNi:McT:MiET 14.55 21 0.8449
CBT:McT 15.50 22 0.8399
WlNi:ReET 15.51 22 0.8396
FlET:ReET 15.53 22 0.8383
WlNi:McT 15.56 22 0.8369
Acu:PlaSh 15.56 22 0.8369
MnT:PlaSh 15.58 22 0.8363
WlNi:MnT 15.58 22 0.8363
CBT:ReET 15.58 22 0.8360
MasT:PlaSh 15.58 22 0.8360
WlNi:WBV 15.60 22 0.8352
WlNi:AqET 15.61 22 0.8349
AeET:ReET 15.70 22 0.8307
Acu:MasT 15.71 22 0.8302
MasT:Plt 15.72 22 0.8293
AqET:Plt 15.72 22 0.8293
McT:ReET 15.75 22 0.8279
CBT:MiET 15.76 22 0.8274
WlNi:MiET 15.77 22 0.8270
McT:PlaSh 15.81 22 0.8251
WlNi:FlET:ReET 15.40 21 0.8024
Q statistic to assess consistency under the assumption of
a full design-by-treatment interaction random effects model
Q df p-value tau.within tau2.within
Between designs 15.81 23 0.8632 0 0
Code
Separate indirect from direct evidence (SIDE) using back-calculation method
Random effects model:
comparison k prop nma direct indir. RoR z p-value
Acu:CBT 1 0.33 0.7699 0.3571 1.1333 0.3151 -0.98 0.3265
Acu:MasT 1 0.30 1.1984 1.5556 1.0699 1.4540 0.33 0.7427
Acu:PlaSh 3 0.71 0.9142 1.0451 0.6631 1.5762 0.50 0.6183
AeET:AqET 2 0.39 1.0829 1.7341 0.8016 2.1633 0.78 0.4376
AeET:HtT 1 0.92 7.7705 14.0000 0.0055 2558.3630 1.79 0.0736
AeET:McT 1 0.61 1.5857 0.9649 3.4739 0.2778 -1.77 0.0762
AeET:MiET 1 0.23 1.5636 5.5000 1.0759 5.1119 1.79 0.0736
AeET:ReET 1 0.17 1.3957 1.0000 1.4969 0.6680 -0.34 0.7328
AqET:Bal 1 0.32 1.3629 0.3056 2.7331 0.1118 -1.52 0.1288
AqET:FlET 3 0.87 1.1798 1.3467 0.4784 2.8150 1.19 0.2332
AqET:Plt 1 0.59 0.5244 0.6316 0.4031 1.5668 0.30 0.7658
AqET:WlNi 1 0.07 1.4451 3.0000 1.3636 2.2000 0.46 0.6490
Bal:CBT 1 0.13 0.9006 3.2400 0.7450 4.3489 0.82 0.4140
Bal:MiET 1 0.55 1.0595 0.7297 1.6608 0.4394 -0.69 0.4882
Bal:WlNi 1 0.15 1.0603 0.1086 1.5614 0.0695 -1.57 0.1169
CBT:McT 3 0.38 1.1930 1.0378 1.2998 0.7984 -0.56 0.5753
CBT:MiET 2 0.13 1.1764 1.3461 1.1533 1.1672 0.22 0.8256
CBT:PlaSh 1 0.34 1.1874 0.7200 1.5363 0.4687 -0.76 0.4454
CBT:ReET 1 0.33 1.0501 0.8214 1.1873 0.6918 -0.48 0.6321
CBT:WlNi 19 0.80 1.1774 1.2413 0.9492 1.3077 0.75 0.4538
FlET:ReET 3 0.72 1.0925 1.4031 0.5737 2.4457 1.00 0.3165
FlET:WlNi 1 0.22 1.2249 2.0000 1.0673 1.8739 0.59 0.5570
HtT:MiET 1 0.91 0.2012 0.3929 0.0003 1213.4924 1.79 0.0736
MasT:PlaSh 2 0.77 0.7628 0.8492 0.5301 1.6020 0.48 0.6324
MasT:Plt 2 0.69 0.2745 0.2387 0.3740 0.6382 -0.30 0.7658
McT:MiET 3 0.63 0.9861 0.7675 1.5132 0.5072 -1.53 0.1261
McT:PlaSh 1 0.33 0.9953 1.0000 0.9930 1.0070 0.01 0.9945
McT:ReET 1 0.32 0.8802 1.0000 0.8284 1.2071 0.24 0.8075
McT:WBV 1 0.19 0.8882 0.3067 1.1463 0.2675 -0.70 0.4818
McT:WlNi 10 0.49 0.9869 0.8968 1.0837 0.8275 -0.51 0.6103
MiET:WlNi 7 0.56 1.0008 0.8168 1.2996 0.6285 -1.06 0.2895
MnT:PlaSh 1 0.93 0.5869 0.5510 1.3211 0.4171 -0.49 0.6274
MnT:WlNi 1 0.15 0.5819 1.2254 0.5111 2.3976 0.49 0.6274
ReET:WlNi 2 0.18 1.1212 1.5894 1.0366 1.5334 0.46 0.6490
WBV:WlNi 2 0.97 1.1111 0.9721 50.3217 0.0193 -0.99 0.3221
Legend:
comparison - Treatment comparison
k - Number of studies providing direct evidence
prop - Direct evidence proportion
nma - Estimated treatment effect (OR) in network meta-analysis
direct - Estimated treatment effect (OR) derived from direct evidence
indir. - Estimated treatment effect (OR) derived from indirect evidence
RoR - Ratio of Ratios (direct versus indirect)
z - z-value of test for disagreement (direct versus indirect)
p-value - p-value of test for disagreement (direct versus indirect)