This exercise uses data from the UC Irvine Machine Learning Repository, a popular repository for machine learningdatasets. In particular, we will be using the “Individual household electric power consumption Data Set”.
## 'data.frame': 2075259 obs. of 9 variables:
## $ Date : Factor w/ 1442 levels "1/1/2007","1/1/2008",..: 342 342 342 342 342 342 342 342 342 342 ...
## $ Time : Factor w/ 1440 levels "00:00:00","00:01:00",..: 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 ...
## $ Global_active_power : num 4.22 5.36 5.37 5.39 3.67 ...
## $ Global_reactive_power: num 0.418 0.436 0.498 0.502 0.528 0.522 0.52 0.52 0.51 0.51 ...
## $ Voltage : num 235 234 233 234 236 ...
## $ Global_intensity : num 18.4 23 23 23 15.8 15 15.8 15.8 15.8 15.8 ...
## $ Sub_metering_1 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sub_metering_2 : num 1 1 2 1 1 2 1 1 1 2 ...
## $ Sub_metering_3 : num 17 16 17 17 17 17 17 17 17 16 ...
## [1] "Date"
## 'data.frame': 2075259 obs. of 9 variables:
## $ Date : Date, format: "2006-12-16" "2006-12-16" ...
## $ Time : Factor w/ 1440 levels "00:00:00","00:01:00",..: 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 ...
## $ Global_active_power : num 4.22 5.36 5.37 5.39 3.67 ...
## $ Global_reactive_power: num 0.418 0.436 0.498 0.502 0.528 0.522 0.52 0.52 0.51 0.51 ...
## $ Voltage : num 235 234 233 234 236 ...
## $ Global_intensity : num 18.4 23 23 23 15.8 15 15.8 15.8 15.8 15.8 ...
## $ Sub_metering_1 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Sub_metering_2 : num 1 1 2 1 1 2 1 1 1 2 ...
## $ Sub_metering_3 : num 17 16 17 17 17 17 17 17 17 16 ...
#Plot2
#Plot3
#Plot4