NYC_Flights

Author

Charanpreet Singh

Loading NYC Flights package

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights23)

data(flights)

data(airlines)

#Calculate Avg departure delay by each carrier

avg_delay <- flights |>
  group_by(carrier) |>
  summarize(mean_dep_delay = mean(dep_delay, na.rm = TRUE)) |>
  left_join(airlines, by = "carrier")

Cite: Chat GPT - made life easier with left_join instead of manually mutating

Creating the Bar Chart of Avg Departure Delay

ggplot(avg_delay, aes(x = reorder(name, mean_dep_delay), y = mean_dep_delay, fill = mean_dep_delay > 10)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("lightgreen", "lightblue"), labels = c("≤ 10 min", "> 10 min")) +
  coord_flip() +
  labs(
    title = "Average Departure Delay by Airline in NYC 2023",
    x = "Airline",
    y = "Average Departure Delay (minutes)",
    fill = "Delay Level",
    caption = "Source: nycflights23 package (2023 data)"
  ) +
  theme_minimal()