# Read the data from indices_table.txt
df <- as.data.frame(readRDS("Israel Survey/data/il_pe.RDS"))
# Remove "Other" gender category (6 respondents) if it exists to prevent regression convergence issues
df <- df %>%
filter(gender != "Other") %>%
mutate(gender = droplevels(gender)) # Remove unused factor level
wave_var <- "Wave"
wave_order <- c("First", "Second", "Third", "Fourth", "Fifth", "Sixth")
community_var <- "pe_religiosity"
community_order <- c("Secular", "Religious", "National Religious", "Ultra-Orthodox") # Secular is the reference level.
dimensions_order <- c("Overall", "Cognitive", "Behavioral", "Social")
# Calculate the Political Extremism Gauge Indices
indices_result <- af_gauge_indices(df, pop_var1 = wave_var, comm_var1 = community_var)
df <- indices_result$df
# Convert data to a more manageable format for analysis
df <- df %>%
mutate(Wave = factor(Wave, levels = wave_order)) %>%
mutate(!!sym(community_var) := factor(!!sym(community_var), levels = community_order)) %>%
mutate(event_occurred = factor(1, levels = c(0, 1))) %>% # used for pairwise regression
mutate( # used for cumulative event effect regression
post_event1 = ifelse(Wave %in% c("Second", "Third", "Fourth", "Fifth", "Sixth"), 1, 0),
post_event2 = ifelse(Wave %in% c("Third", "Fourth", "Fifth", "Sixth"), 1, 0),
post_event3 = ifelse(Wave %in% c("Fourth", "Fifth", "Sixth"), 1, 0),
post_event4 = ifelse(Wave %in% c("Fifth", "Sixth"), 1, 0),
post_event5 = ifelse(Wave == "Sixth", 1, 0)
) %>%
mutate(
immediate_event1 = ifelse(Wave == "Second", 1, 0), # Event 1 impact (First → Second)
immediate_event2 = ifelse(Wave == "Third", 1, 0), # Event 2 impact (Second → Third)
immediate_event3 = ifelse(Wave == "Fourth", 1, 0), # Event 3 impact (Third → Fourth)
immediate_event4 = ifelse(Wave == "Fifth", 1, 0), # Event 4 impact (Fourth → Fifth)
immediate_event5 = ifelse(Wave == "Sixth", 1, 0) # Event 5 impact (Fifth → Sixth)
)
# Print Event Table
event_table <- data.frame(
event_name = c("Inland Terror", "Bennet Gov. Fall", "Judicial Reform", "Gallant Dismissal", "Oct. 7th War"),
waves = c("1-2", "2-3", "3-4", "4-5", "5-6"),
type = c("Security", "Political", "Political", "Political", "Security"),
stringsAsFactors = FALSE
)
gt(event_table) %>%
tab_header(
title = md("**Event Table**"),
)
Event Table |
event_name |
waves |
type |
Inland Terror |
1-2 |
Security |
Bennet Gov. Fall |
2-3 |
Political |
Judicial Reform |
3-4 |
Political |
Gallant Dismissal |
4-5 |
Political |
Oct. 7th War |
5-6 |
Security |
# add event_type and event_result info to df based on the event_table
df <- af_add_event_info(df, wave_var, wave_order, event_table, community_var)
# Create the wave list in the form
# list("Inland Terror"= c("First", "Second"), "Bennet Gov. Fall" = c("Second", "Third"), ...)
wave_list <- list()
for(i in 1:nrow(event_table)) {
wave_range <- as.numeric(unlist(strsplit(event_table$waves[i], "-")))
wave_list[[event_table$event_name[i]]] <- c(wave_order[wave_range[1]],
wave_order[wave_range[2]])
}
# Create demographics regression formula part
demographics <- c("gender", "age_group") # , "education"
d_fmla <- paste(demographics, collapse = "+")
# Set display names for regression results
display_names <- list(
"Wave" = "Wave",
"panel_wave" = "Panel Wave",
"post_event1" = "Inland Terror",
"post_event2" = "Bennet Gov. Fall",
"post_event3" = "Judicial Reform",
"post_event4" = "Gallant Dismissal",
"post_event5" = "Oct. 7th War",
"immediate_event1" = "Inland Terror",
"immediate_event2" = "Bennet Gov. Fall",
"immediate_event3" = "Judicial Reform",
"immediate_event4" = "Gallant Dismissal",
"immediate_event5" = "Oct. 7th War",
"pe_religiosity" = "Religiosity",
"event_occurred" = "Event Occured",
"event_type" = "Event Type",
"gender" = "Gender",
"age_group" = "Age Group",
"education" = "Education"
)
immediate_names = c(
"immediate_event1" = "Inland Terror",
"immediate_event2" = "Bennet Gov. Fall",
"immediate_event3" = "Judicial Reform",
"immediate_event4" = "Gallant Dismissal",
"immediate_event5" = "Oct. 7th War"
)
coef_names <- c(
"event_occurred1" = "Event Occurred",
"pe_religiosityReligious" = "Religiosity[Religious]",
"pe_religiosityNational Religious" = "Religiosity[National Religious]",
"pe_religiosityUltra-Orthodox" = "Religiosity[Ultra-Orthodox]",
"event_occurred1:pe_religiosityReligious" = "Event Occurred : Religiosity[Religious]",
"event_occurred1:pe_religiosityNational Religious" = "Event Occurred : Religiosity[National Religious]",
"event_occurred1:pe_religiosityUltra-Orthodox" = "Event Occurred : Religiosity[Ultra-Orthodox]"
)
Moderation by
Religiosity
Create panel dataset
# Create Panel Dataset
df1 <- df$respondent_id[df$Wave == "Third"]
df2 <- df$respondent_id[df$Wave == "Fourth"]
panel_respondents <- intersect(df1, df2)
panel_df <- df %>%
filter(Wave %in% c("Third", "Fourth")) %>%
filter(respondent_id %in% panel_respondents) %>%
mutate(event_occurred = factor(case_when(
Wave == "Third" ~ 0,
Wave == "Fourth" ~ 1
), levels = c(0, 1)))
p_data <- plm::pdata.frame(panel_df, index = c("respondent_id", "event_occurred"))
plm::pdim(p_data)
Balanced Panel: n = 671, T = 2, N = 1342
Create panel moderation models
# The within estimator will automatically drop the main effects of time-invariant variables
# (like pe_religiosity, gender, age_group) but keeps the interactions panel_wave * pe_religiosity.
mp1 <- plm(pe_ideology ~ event_occurred * pe_religiosity + gender + age_group, data = p_data, model = "random")
mp2 <- plm(pe_violence ~ event_occurred * pe_religiosity + gender + age_group, data = p_data, model = "random")
mp3 <- plm(pe_intolerance ~ event_occurred * pe_religiosity + gender + age_group, data = p_data, model = "random")
mp4 <- plm(pe_overall ~ event_occurred * pe_religiosity + gender + age_group, data = p_data, model = "random")
Perform Pairwise Regression
formula_str <- paste("pe_ideology ~ event_occurred * pe_religiosity","+", d_fmla)
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp1 # Override with panel model
coef_table <- af_coef_and_ci_table(models, coef_names)
af_coef_and_ci_plot(coef_table, xpose = TRUE, title = "Moderation: Cognitive Dimension")

notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Cognitive Political Extremism ~ Event Occurred x Religiosity + Demographics")
Cognitive Political Extremism ~ Event Occurred x Religiosity +
Demographics
|
|
Dependent variable:
|
|
|
|
pe_ideology
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
-0.113
|
0.044
|
0.032
|
0.137
|
0.157
|
|
(0.100)
|
(0.109)
|
(0.085)
|
(0.127)
|
(0.114)
|
Religiosity[Religious]
|
-0.303**
|
-0.555***
|
-0.444**
|
-0.472**
|
-0.586***
|
|
(0.101)
|
(0.092)
|
(0.147)
|
(0.147)
|
(0.100)
|
Religiosity[National Religious]
|
0.811**
|
0.605*
|
0.002
|
-0.265
|
0.209
|
|
(0.257)
|
(0.246)
|
(0.299)
|
(0.307)
|
(0.234)
|
Religiosity[Ultra-Orthodox]
|
0.190
|
0.010
|
-0.346
|
-0.362
|
-0.043
|
|
(0.163)
|
(0.151)
|
(0.236)
|
(0.240)
|
(0.160)
|
Gender[Female]
|
-0.522***
|
-0.528***
|
-0.659***
|
-0.566***
|
-0.457***
|
|
(0.067)
|
(0.070)
|
(0.125)
|
(0.076)
|
(0.071)
|
Age Group[31-45]
|
-0.015
|
-0.123
|
-0.303
|
-0.076
|
0.002
|
|
(0.088)
|
(0.092)
|
(0.161)
|
(0.099)
|
(0.096)
|
Age Group[46-60]
|
0.046
|
0.025
|
0.074
|
0.113
|
0.249*
|
|
(0.093)
|
(0.098)
|
(0.172)
|
(0.101)
|
(0.098)
|
Age Group[60+]
|
0.395***
|
0.458***
|
0.400*
|
0.509***
|
0.594***
|
|
(0.105)
|
(0.106)
|
(0.195)
|
(0.130)
|
(0.115)
|
Event Occured[1] × Religiosity[Religious]
|
-0.260
|
0.054
|
0.021
|
-0.124
|
-0.191
|
|
(0.143)
|
(0.156)
|
(0.119)
|
(0.178)
|
(0.155)
|
Event Occured[1] × Religiosity[National Religious]
|
-0.214
|
-0.819*
|
-0.211
|
0.456
|
-0.529
|
|
(0.373)
|
(0.366)
|
(0.244)
|
(0.384)
|
(0.352)
|
Event Occured[1] × Religiosity[Ultra-Orthodox]
|
-0.197
|
-0.334
|
0.054
|
0.294
|
-0.168
|
|
(0.231)
|
(0.250)
|
(0.192)
|
(0.287)
|
(0.246)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.051
|
0.067
|
0.045
|
0.060
|
0.065
|
Adjusted R2
|
0.048
|
0.063
|
0.038
|
0.055
|
0.061
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. The reference category for
Religiosity is ‘Secular’. The reference category for Gender is ‘Male’.
The reference category for Age Group is ‘18-30’. Standard errors in
parentheses.
|
formula_str <- paste("pe_violence ~ event_occurred * pe_religiosity","+", d_fmla)
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp2 # Override with panel model
coef_table <- af_coef_and_ci_table(models, coef_names)
af_coef_and_ci_plot(coef_table, xpose = TRUE, title = "Moderation: Behavioral Dimension")

notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Behavioral Political Extremism ~ Event Occurred x Religiosity + Demographics")
Behavioral Political Extremism ~ Event Occurred x Religiosity +
Demographics
|
|
Dependent variable:
|
|
|
|
pe_violence
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
0.111*
|
-0.050
|
0.055
|
0.091
|
0.158**
|
|
(0.051)
|
(0.063)
|
(0.050)
|
(0.067)
|
(0.060)
|
Religiosity[Religious]
|
0.188***
|
0.117*
|
0.251**
|
0.160*
|
0.035
|
|
(0.051)
|
(0.053)
|
(0.078)
|
(0.078)
|
(0.053)
|
Religiosity[National Religious]
|
-0.144
|
-0.216
|
-0.258
|
-0.229
|
-0.287*
|
|
(0.131)
|
(0.141)
|
(0.159)
|
(0.162)
|
(0.124)
|
Religiosity[Ultra-Orthodox]
|
-0.088
|
0.069
|
-0.159
|
-0.227
|
-0.171*
|
|
(0.083)
|
(0.086)
|
(0.125)
|
(0.126)
|
(0.085)
|
Gender[Female]
|
-0.209***
|
-0.236***
|
-0.278***
|
-0.281***
|
-0.258***
|
|
(0.034)
|
(0.040)
|
(0.065)
|
(0.040)
|
(0.038)
|
Age Group[31-45]
|
-0.158***
|
-0.188***
|
-0.079
|
-0.023
|
-0.070
|
|
(0.045)
|
(0.053)
|
(0.084)
|
(0.052)
|
(0.051)
|
Age Group[46-60]
|
-0.213***
|
-0.284***
|
-0.414***
|
-0.270***
|
-0.211***
|
|
(0.047)
|
(0.056)
|
(0.089)
|
(0.053)
|
(0.052)
|
Age Group[60+]
|
-0.334***
|
-0.354***
|
-0.235*
|
-0.206**
|
-0.256***
|
|
(0.053)
|
(0.061)
|
(0.101)
|
(0.069)
|
(0.061)
|
Event Occured[1] × Religiosity[Religious]
|
-0.071
|
0.081
|
-0.095
|
-0.126
|
-0.171*
|
|
(0.073)
|
(0.089)
|
(0.070)
|
(0.094)
|
(0.082)
|
Event Occured[1] × Religiosity[National Religious]
|
-0.068
|
-0.107
|
0.009
|
-0.057
|
-0.049
|
|
(0.189)
|
(0.210)
|
(0.143)
|
(0.202)
|
(0.187)
|
Event Occured[1] × Religiosity[Ultra-Orthodox]
|
0.164
|
-0.265
|
-0.077
|
0.055
|
-0.096
|
|
(0.117)
|
(0.144)
|
(0.112)
|
(0.151)
|
(0.131)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.032
|
0.038
|
0.048
|
0.049
|
0.036
|
Adjusted R2
|
0.029
|
0.034
|
0.040
|
0.044
|
0.032
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. The reference category for
Religiosity is ‘Secular’. The reference category for Gender is ‘Male’.
The reference category for Age Group is ‘18-30’. Standard errors in
parentheses.
|
formula_str <- paste("pe_intolerance ~ event_occurred * pe_religiosity","+", d_fmla)
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp3 # Override with panel model
coef_table <- af_coef_and_ci_table(models, coef_names)
af_coef_and_ci_plot(coef_table, xpose = TRUE, title = "Moderation: Social Dimension")

notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Social Political Extremism ~ Event Occurred x Religiosity + Demographics")
Social Political Extremism ~ Event Occurred x Religiosity +
Demographics
|
|
Dependent variable:
|
|
|
|
pe_intolerance
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
-0.049
|
0.243*
|
-0.060
|
-0.213
|
0.061
|
|
(0.078)
|
(0.097)
|
(0.080)
|
(0.111)
|
(0.098)
|
Religiosity[Religious]
|
0.735***
|
0.780***
|
0.462***
|
0.491***
|
0.901***
|
|
(0.079)
|
(0.081)
|
(0.134)
|
(0.129)
|
(0.086)
|
Religiosity[National Religious]
|
0.838***
|
1.325***
|
0.217
|
0.293
|
1.276***
|
|
(0.201)
|
(0.217)
|
(0.273)
|
(0.268)
|
(0.201)
|
Religiosity[Ultra-Orthodox]
|
1.435***
|
1.586***
|
1.102***
|
0.733***
|
0.601***
|
|
(0.127)
|
(0.133)
|
(0.216)
|
(0.210)
|
(0.138)
|
Gender[Female]
|
-0.131*
|
-0.084
|
-0.222
|
-0.110
|
-0.052
|
|
(0.052)
|
(0.061)
|
(0.113)
|
(0.067)
|
(0.061)
|
Age Group[31-45]
|
0.180**
|
0.144
|
0.049
|
0.146
|
0.220**
|
|
(0.069)
|
(0.081)
|
(0.147)
|
(0.087)
|
(0.083)
|
Age Group[46-60]
|
0.257***
|
0.236**
|
0.286
|
0.313***
|
0.284***
|
|
(0.072)
|
(0.086)
|
(0.156)
|
(0.089)
|
(0.084)
|
Age Group[60+]
|
0.390***
|
0.431***
|
0.415*
|
0.419***
|
0.366***
|
|
(0.082)
|
(0.093)
|
(0.177)
|
(0.114)
|
(0.099)
|
Event Occured[1] × Religiosity[Religious]
|
0.046
|
-0.351*
|
0.078
|
0.413**
|
-0.284*
|
|
(0.112)
|
(0.137)
|
(0.113)
|
(0.155)
|
(0.133)
|
Event Occured[1] × Religiosity[National Religious]
|
0.482
|
-0.973**
|
0.073
|
0.983**
|
-0.464
|
|
(0.291)
|
(0.323)
|
(0.232)
|
(0.336)
|
(0.304)
|
Event Occured[1] × Religiosity[Ultra-Orthodox]
|
0.144
|
-0.583**
|
-0.358*
|
-0.132
|
0.411
|
|
(0.180)
|
(0.221)
|
(0.182)
|
(0.251)
|
(0.212)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.108
|
0.089
|
0.033
|
0.066
|
0.067
|
Adjusted R2
|
0.105
|
0.085
|
0.025
|
0.062
|
0.063
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. The reference category for
Religiosity is ‘Secular’. The reference category for Gender is ‘Male’.
The reference category for Age Group is ‘18-30’. Standard errors in
parentheses.
|
formula_str <- paste("pe_overall ~ event_occurred * pe_religiosity","+", d_fmla)
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp4 # Override with panel model
coef_table <- af_coef_and_ci_table(models, coef_names)
af_coef_and_ci_plot(coef_table, xpose = TRUE, title = "Moderation: Overall (Combined Dimensions)")

notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Overall Political Extremism ~ Event Occurred * Religiosity + Demographics")
Overall Political Extremism ~ Event Occurred * Religiosity +
Demographics
|
|
Dependent variable:
|
|
|
|
pe_overall
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
-0.052
|
0.130*
|
0.003
|
-0.018
|
0.144*
|
|
(0.052)
|
(0.058)
|
(0.046)
|
(0.067)
|
(0.059)
|
Religiosity[Religious]
|
0.189***
|
0.098*
|
0.031
|
0.027
|
0.110*
|
|
(0.052)
|
(0.049)
|
(0.078)
|
(0.077)
|
(0.052)
|
Religiosity[National Religious]
|
0.571***
|
0.621***
|
-0.046
|
-0.068
|
0.459***
|
|
(0.132)
|
(0.131)
|
(0.158)
|
(0.161)
|
(0.122)
|
Religiosity[Ultra-Orthodox]
|
0.616***
|
0.624***
|
0.242
|
0.018
|
0.183*
|
|
(0.084)
|
(0.080)
|
(0.125)
|
(0.126)
|
(0.083)
|
Gender[Female]
|
-0.306***
|
-0.287***
|
-0.419***
|
-0.345***
|
-0.268***
|
|
(0.034)
|
(0.037)
|
(0.066)
|
(0.040)
|
(0.037)
|
Age Group[31-45]
|
0.049
|
-0.008
|
-0.121
|
0.021
|
0.074
|
|
(0.045)
|
(0.049)
|
(0.085)
|
(0.052)
|
(0.050)
|
Age Group[46-60]
|
0.116*
|
0.067
|
0.037
|
0.102
|
0.165**
|
|
(0.048)
|
(0.052)
|
(0.091)
|
(0.053)
|
(0.051)
|
Age Group[60+]
|
0.244***
|
0.269***
|
0.272**
|
0.308***
|
0.316***
|
|
(0.054)
|
(0.056)
|
(0.103)
|
(0.068)
|
(0.060)
|
Event Occured[1] × Religiosity[Religious]
|
-0.092
|
-0.130
|
0.026
|
0.079
|
-0.253**
|
|
(0.073)
|
(0.083)
|
(0.064)
|
(0.093)
|
(0.081)
|
Event Occured[1] × Religiosity[National Religious]
|
0.047
|
-0.721***
|
-0.009
|
0.519*
|
-0.401*
|
|
(0.192)
|
(0.195)
|
(0.133)
|
(0.202)
|
(0.184)
|
Event Occured[1] × Religiosity[Ultra-Orthodox]
|
0.004
|
-0.425**
|
-0.194
|
0.153
|
0.010
|
|
(0.119)
|
(0.133)
|
(0.104)
|
(0.151)
|
(0.128)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.069
|
0.063
|
0.045
|
0.049
|
0.043
|
Adjusted R2
|
0.066
|
0.059
|
0.037
|
0.045
|
0.039
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. The reference category for
Religiosity is ‘Secular’. The reference category for Gender is ‘Male’.
The reference category for Age Group is ‘18-30’. Standard errors in
parentheses.
|
Multicollinearity
(VIF) Test
formula_str <- paste("pe_overall ~ Wave * pe_religiosity","+", d_fmla)
model <- lm(formula_str, data=df, na.action = na.omit)
result <- af_vif_test(model, interactions = TRUE)
print(result$interpretation)
[1] “We use VIF to test for multicollinearity. The results indicate
that all adjusted GVIF values are ≤ 2.is not a concern.adjusted GVIF
value: 1.011.”
Multicollinearity Assessment (with Interactions) |
Predictor |
Adjusted GVIF |
Wave |
1.002 |
pe_religiosity |
1.002 |
gender |
1.011 |
age_group |
1.011 |
Robustness
Impact of Occurred
Events
mp1 <- plm(pe_ideology ~ event_occurred, data = p_data, model = "within")
mp2 <- plm(pe_violence ~ event_occurred, data = p_data, model = "within")
mp3 <- plm(pe_intolerance ~ event_occurred, data = p_data, model = "within")
mp4 <- plm(pe_overall ~ event_occurred, data = p_data, model = "within")
formula_str <- "pe_ideology ~ event_occurred"
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp1 # Override with panel model
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Cognitive Political Extremism ~ Event Occurred")
Cognitive Political Extremism ~ Event Occurred
|
|
Dependent variable:
|
|
|
|
pe_ideology
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
-0.210**
|
-0.047
|
0.035
|
0.106
|
0.121
|
|
(0.068)
|
(0.074)
|
(0.054)
|
(0.084)
|
(0.073)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.003
|
0.0002
|
0.001
|
0.001
|
0.001
|
Adjusted R2
|
0.003
|
-0.0002
|
-1.000
|
0.0003
|
0.001
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. Standard errors in parentheses.
|
formula_str <- "pe_violence ~ event_occurred"
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp2 # Override with panel model
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Behavioral Political Extremism ~ Event Occurred")
Behavioral Political Extremism ~ Event Occurred
|
|
Dependent variable:
|
|
|
|
pe_violence
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
0.075*
|
-0.038
|
0.005
|
0.054
|
0.034
|
|
(0.034)
|
(0.042)
|
(0.032)
|
(0.044)
|
(0.038)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.001
|
0.0003
|
0.00004
|
0.001
|
0.0003
|
Adjusted R2
|
0.001
|
-0.0001
|
-1.001
|
0.0002
|
-0.0001
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. Standard errors in parentheses.
|
formula_str <- "pe_intolerance ~ event_occurred"
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp3 # Override with panel model
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Social Political Extremism ~ Event Occurred")
Social Political Extremism ~ Event Occurred
|
|
Dependent variable:
|
|
|
|
pe_intolerance
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
0.0004
|
-0.001
|
-0.057
|
0.000
|
0.000
|
|
(0.055)
|
(0.066)
|
(0.052)
|
(0.073)
|
(0.063)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.000
|
0.00000
|
0.002
|
0.000
|
0.000
|
Adjusted R2
|
-0.0003
|
-0.0004
|
-0.998
|
-0.0005
|
-0.0004
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. Standard errors in parentheses.
|
formula_str <- "pe_overall ~ event_occurred"
models <- af_wave_pair_regression(df, wave_var = wave_var, wave_list = wave_list,
formula_str = formula_str, regression_type = "OLS")
models[[3]] <- mp4 # Override with panel model
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Overall Political Extremism ~ Event Occurred")
Overall Political Extremism ~ Event Occurred
|
|
Dependent variable:
|
|
|
|
pe_overall
|
|
OLS
|
panel
|
OLS
|
|
|
linear
|
|
|
Inland Terror
|
Bennet Gov. Fall
|
Judicial Reform
|
Gallant Dismissal
|
Oct. 7th War
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
Event Occured[1]
|
-0.078*
|
-0.013
|
-0.006
|
0.050
|
0.057
|
|
(0.035)
|
(0.039)
|
(0.030)
|
(0.044)
|
(0.038)
|
|
Observations
|
3,215
|
2,493
|
1,342
|
2,221
|
2,638
|
R2
|
0.002
|
0.00004
|
0.0001
|
0.001
|
0.001
|
Adjusted R2
|
0.001
|
-0.0004
|
-1.001
|
0.0001
|
0.001
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Occured is ‘0’. Standard errors in parentheses.
|
Six-Waves
Analysis
Religiosity and
Event Type
We now test whether the interaction of event type and Religiosity
impacts political extremism. Note that event type has multicolinearity
with Wave (or immediate event) since there is only one event type per
each wave.
# Create immediate event interaction with Religiosity regression formula part
int_fmla <- paste0("event_type * pe_religiosity +", d_fmla)
formula_str <- paste("pe_overall ~",int_fmla)
m1 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_ideology ~",int_fmla)
m2 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_violence ~",int_fmla)
m3 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_intolerance ~",int_fmla)
m4 <- lm(formula_str, data=df, na.action = na.omit)
models <- list(m1, m2, m3, m4)
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Political Extremism ~ Event Type * Religiosity + Demographics")
Political Extremism ~ Event Type * Religiosity +
Demographics
|
|
Dependent variable:
|
|
|
|
pe_overall
|
pe_ideology
|
pe_violence
|
pe_intolerance
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
Event Type[Security]
|
0.036
|
0.010
|
0.183***
|
-0.021
|
|
(0.046)
|
(0.088)
|
(0.046)
|
(0.073)
|
Event Type[Political]
|
0.059
|
-0.002
|
0.097*
|
0.086
|
|
(0.045)
|
(0.086)
|
(0.045)
|
(0.072)
|
Religiosity[Religious]
|
0.190***
|
-0.304**
|
0.191***
|
0.735***
|
|
(0.051)
|
(0.098)
|
(0.051)
|
(0.082)
|
Religiosity[National Religious]
|
0.572***
|
0.812**
|
-0.137
|
0.837***
|
|
(0.129)
|
(0.249)
|
(0.130)
|
(0.208)
|
Religiosity[Ultra-Orthodox]
|
0.619***
|
0.198
|
-0.084
|
1.434***
|
|
(0.082)
|
(0.157)
|
(0.082)
|
(0.132)
|
Gender[Female]
|
-0.316***
|
-0.518***
|
-0.238***
|
-0.133***
|
|
(0.022)
|
(0.043)
|
(0.022)
|
(0.036)
|
Age Group[31-45]
|
0.033
|
-0.051
|
-0.113***
|
0.178***
|
|
(0.029)
|
(0.057)
|
(0.030)
|
(0.047)
|
Age Group[46-60]
|
0.123***
|
0.139*
|
-0.255***
|
0.274***
|
|
(0.031)
|
(0.059)
|
(0.031)
|
(0.049)
|
Age Group[60+]
|
0.283***
|
0.498***
|
-0.297***
|
0.379***
|
|
(0.035)
|
(0.068)
|
(0.035)
|
(0.056)
|
Event Type[Security] × Religiosity[Religious]
|
-0.179**
|
-0.326**
|
-0.175**
|
-0.014
|
|
(0.064)
|
(0.124)
|
(0.065)
|
(0.103)
|
Event Type[Political] × Religiosity[Religious]
|
-0.140*
|
-0.237*
|
-0.084
|
-0.059
|
|
(0.063)
|
(0.121)
|
(0.063)
|
(0.101)
|
Event Type[Security] × Religiosity[National Religious]
|
-0.199
|
-0.624*
|
-0.115
|
0.247
|
|
(0.161)
|
(0.311)
|
(0.162)
|
(0.260)
|
Event Type[Political] × Religiosity[National Religious]
|
-0.418**
|
-0.863**
|
-0.151
|
-0.083
|
|
(0.153)
|
(0.295)
|
(0.154)
|
(0.247)
|
Event Type[Security] × Religiosity[Ultra-Orthodox]
|
-0.165
|
-0.267
|
0.013
|
-0.085
|
|
(0.103)
|
(0.199)
|
(0.104)
|
(0.166)
|
Event Type[Political] × Religiosity[Ultra-Orthodox]
|
-0.472***
|
-0.395*
|
-0.107
|
-0.702***
|
|
(0.101)
|
(0.194)
|
(0.101)
|
(0.162)
|
|
Observations
|
7,436
|
7,436
|
7,436
|
7,436
|
R2
|
0.054
|
0.057
|
0.036
|
0.073
|
Adjusted R2
|
0.052
|
0.055
|
0.034
|
0.071
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. The reference
category for Event Type is ‘No-Event’. The reference category for
Religiosity is ‘Secular’. The reference category for Gender is ‘Male’.
The reference category for Age Group is ‘18-30’. Standard errors in
parentheses.
|
Cummulative
Events
We further test whether there is a cumulative impact for the events
on political extremism. Cumulative effects captures how events build
upon each other over time. Each coefficient isolates the unique
contribution of that specific event.
If post_event1 = 0.5 and post_event2 = 0.3, then:
- After Event 1: response increases by 0.5
- After Event 2: response increases by additional 0.3 (total =
0.8)
- Wave “Third” respondents have 0.8 higher response than Wave
“First”
# Create post event regression formula part
post_fmla <- "post_event1 + post_event2 + post_event3 + post_event4 + post_event5"
formula_str <- paste("pe_overall ~",post_fmla)
m1 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_ideology ~",post_fmla)
m2 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_violence ~",post_fmla)
m3 <- lm(formula_str, data=df, na.action = na.omit)
formula_str <- paste("pe_intolerance ~",post_fmla)
m4 <- lm(formula_str, data=df, na.action = na.omit)
models <- list(m1, m2, m3, m4)
notes <- af_create_regression_notes(df, models = models, display_names = display_names,
show_significance = TRUE, significance_levels = c(0.05, 0.01, 0.001))
cov_labels <- af_cov_names(df, models, display_names)
af_stargazer(models = models, cov_labels = cov_labels, notes = notes,
title = "Cumulative Post-Event Impact: Political Extremism ~ Event")
Cumulative Post-Event Impact: Political Extremism ~
Event
|
|
Dependent variable:
|
|
|
|
pe_overall
|
pe_ideology
|
pe_violence
|
pe_intolerance
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
Inland Terror
|
-0.078*
|
-0.210**
|
0.075*
|
0.0004
|
|
(0.034)
|
(0.066)
|
(0.034)
|
(0.056)
|
Bennet Gov. Fall
|
-0.013
|
-0.047
|
-0.038
|
-0.001
|
|
(0.041)
|
(0.078)
|
(0.040)
|
(0.066)
|
Judicial Reform
|
0.001
|
0.030
|
-0.039
|
-0.000
|
|
(0.049)
|
(0.095)
|
(0.049)
|
(0.080)
|
Gallant Dismissal
|
0.050
|
0.106
|
0.054
|
0.000
|
|
(0.044)
|
(0.086)
|
(0.044)
|
(0.072)
|
Oct. 7th War
|
0.057
|
0.121
|
0.034
|
-0.000
|
|
(0.038)
|
(0.074)
|
(0.038)
|
(0.062)
|
|
Observations
|
7,436
|
7,436
|
7,436
|
7,436
|
R2
|
0.002
|
0.003
|
0.001
|
0.00000
|
Adjusted R2
|
0.001
|
0.002
|
0.001
|
-0.001
|
|
Note: * p < 0.050; ** p < 0.010; *** p < 0.001. Standard errors
in parentheses.
|