# Load necessary libraries
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(janitor)
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
# Load the dataset
df <- read_excel("~/project/R PROGRAM/NMRL/for data analysis.xlsx") %>% clean_names()
head(df)
## # A tibble: 6 × 13
## sample_number villlage collection_date collection_time source_of_water
## <dbl> <chr> <chr> <dttm> <chr>
## 1 1 Makina 22/07/2024 1899-12-31 17:05:00 Water track
## 2 2 Makina 22/07/2024 1899-12-31 17:06:00 Public supply
## 3 3 Makina 22/07/2024 1899-12-31 17:09:00 Public supply
## 4 4 Makina 22/07/2024 1899-12-31 17:10:00 Public supply
## 5 5 Makina 22/07/2024 1899-12-31 17:12:00 Public supply
## 6 6 Makina 22/07/2024 1899-12-31 17:15:00 Public supply
## # ℹ 8 more variables: exact_site_of_collection <chr>,
## # any_source_of_pollution <chr>, source_of_pollution <chr>,
## # is_water_treated <chr>, treatment_method <chr>, organism <chr>,
## # e_coli_cfu_in_100ml <dbl>, pathotypes <chr>
#change e_coli_cfu_in_100ml to water_contamination
df <- df %>% rename(water_contamination = e_coli_cfu_in_100ml)
#change columns to character
df <- df %>% mutate(across(where(is.character),as.factor))
#change to date
df$collection_date <- as.Date(df$collection_date, format = "%d/%m/%Y")
#water contamination by source of water
kruskal.test(water_contamination ~ source_of_water, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: water_contamination by source_of_water
## Kruskal-Wallis chi-squared = 11.533, df = 3, p-value = 0.009166
#water contamination by source of pollution
kruskal.test(water_contamination ~ source_of_pollution, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: water_contamination by source_of_pollution
## Kruskal-Wallis chi-squared = 8.1942, df = 3, p-value = 0.04216
#water contamination by is water treatment
kruskal.test(water_contamination ~ is_water_treated, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: water_contamination by is_water_treated
## Kruskal-Wallis chi-squared = 21.928, df = 1, p-value = 2.831e-06
# Chi-square test
chisq_res <- chisq.test(table(df$source_of_water, df$pathotypes))
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
p_val <- signif(chisq_res$p.value, 3) # Round to 3 significant figures
# Create a bar plot (position = "fill" gives proportions; use "stack" for counts)
ggplot(df, aes(x = source_of_water, fill = pathotypes)) +
geom_bar(position = "fill") +
scale_y_continuous(labels = scales::percent_format()) +
labs(title = "Distribution of Pathotypes by Source of Water",
x = "Source of Water",
y = "Proportion",
fill = "Pathotype") +
theme_minimal() +
annotate("text", x = Inf, y = Inf, label = paste("Chi-square p =", p_val),
hjust = 1.1, vjust = 1.5, size = 5, color = "red")

#variation of phanotypes by source of water
df %>%
filter(!is.na(pathotypes) & pathotypes != "Negative") %>%
group_by(source_of_water, pathotypes) %>%
summarise(count = n()) %>%
ggplot(aes(x = source_of_water, y = count, fill = pathotypes)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Distribution of Pathotypes by Water Source",
x = "Water Source", y = "Count") +
theme_minimal()
## `summarise()` has grouped output by 'source_of_water'. You can override using
## the `.groups` argument.

#variation of phanotypes by source of pollution
df %>%
filter(!is.na(pathotypes) & pathotypes != "Negative") %>%
group_by(source_of_pollution, pathotypes) %>%
summarise(count = n()) %>%
ggplot(aes(x = source_of_pollution, y = count, fill = pathotypes)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Distribution of Pathotypes by Source of Pollution",
x = "Source of Pollution", y = "Count") +
theme_minimal()
## `summarise()` has grouped output by 'source_of_pollution'. You can override
## using the `.groups` argument.

# Treatment
ggplot(df, aes(x = is_water_treated, y = water_contamination)) +
geom_boxplot(fill = "lightgreen") +
labs(title = "E. coli by Water Treatment", x = "Treated?", y = "E. coli CFU in 100ml") +
theme_minimal()
