# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.

1 Import stock prices

symbols <- c("Asker.st", "Atco-B.st", "Axfo.st", "Bahn-b.st", "BRK-B", "Cers", "LLY", "Embrac-b.st", "Indu-c.st", "Inve-b.st", "Inwi.st", "Novo-b.co", "NVDA", "Yubico.st")

prices <- tq_get(x    = symbols, 
                 get  = "stock.prices", 
                 from = "2020-04-01",
                 to   = "2025-06-01")
prices
## # A tibble: 16,672 × 8
##    symbol   date        open  high   low close   volume adjusted
##    <chr>    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 Asker.st 2025-03-27  83    87.2  80.2  83.7 16441271     83.7
##  2 Asker.st 2025-03-28  83    84.0  81.7  82    1262083     82  
##  3 Asker.st 2025-03-31  81.3  81.9  80.1  80.5   626988     80.5
##  4 Asker.st 2025-04-01  80.8  82.2  80.6  81.9   356628     81.9
##  5 Asker.st 2025-04-02  81.9  82.1  80.9  82.1   576561     82.1
##  6 Asker.st 2025-04-03  81    81.8  80.1  80.7   235131     80.7
##  7 Asker.st 2025-04-04  80.5  81.2  77.3  78.6   780928     78.6
##  8 Asker.st 2025-04-07  74.8  80.1  71.4  77.8   377461     77.8
##  9 Asker.st 2025-04-08  79.2  79.9  75    77     371563     77  
## 10 Asker.st 2025-04-09  76.1  78.7  72.8  74.2  1171607     74.2
## # ℹ 16,662 more rows

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>% 
    
    group_by(symbol) %>%  
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 type      = "log") %>% 
    
    slice(-1) %>% 
    
    ungroup() %>% 
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

symbols <- asset_returns_tbl %>% distinct(asset) %>% pull() 
symbols
##  [1] "Asker.st"    "Atco-B.st"   "Axfo.st"     "BRK-B"       "Bahn-b.st"  
##  [6] "Cers"        "Embrac-b.st" "Indu-c.st"   "Inve-b.st"   "Inwi.st"    
## [11] "LLY"         "NVDA"        "Novo-b.co"   "Yubico.st"
weights <- c(0.0314, 0.0133, 0.0136, 0.0589, 0.0112, 0.0068, 0.0201, 0.1858, 0.2298, 0.0584, 0.0892, 0.2504, 0.0168, 0.0143)
weights
##  [1] 0.0314 0.0133 0.0136 0.0589 0.0112 0.0068 0.0201 0.1858 0.2298 0.0584
## [11] 0.0892 0.2504 0.0168 0.0143
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 14 × 2
##    symbols     weights
##    <chr>         <dbl>
##  1 Asker.st     0.0314
##  2 Atco-B.st    0.0133
##  3 Axfo.st      0.0136
##  4 BRK-B        0.0589
##  5 Bahn-b.st    0.0112
##  6 Cers         0.0068
##  7 Embrac-b.st  0.0201
##  8 Indu-c.st    0.186 
##  9 Inve-b.st    0.230 
## 10 Inwi.st      0.0584
## 11 LLY          0.0892
## 12 NVDA         0.250 
## 13 Novo-b.co    0.0168
## 14 Yubico.st    0.0143

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset, 
                 returns_col  = returns, 
                 weights      = w_tbl, 
                 rebalance_on = "months",
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 68 × 2
##    date       returns
##    <date>       <dbl>
##  1 2020-05-29  0.0285
##  2 2020-06-30  0.0121
##  3 2020-07-31  0.0243
##  4 2020-08-31  0.0373
##  5 2020-09-30  0.0430
##  6 2020-10-30 -0.0622
##  7 2020-11-30  0.0746
##  8 2020-12-30  0.0297
##  9 2020-12-31  0.0128
## 10 2021-01-29  0.0187
## # ℹ 58 more rows

5 Compute Sharpe Ratio

#Define Risk Free Rate
rfr <- 0.0003

portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
    
    tq_performance(Ra = returns, 
                   performance_fun = SharpeRatio,
                   Rf              = rfr,
                   FUN             = "StdDev")

portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
##   `StdDevSharpe(Rf=0%,p=95%)`
##                         <dbl>
## 1                       0.297

6 Plot: Rolling Sharpe Ratio

calculate_rolling_SharpeRatio <- function(data) {
    
   rolling_SR <-  SharpeRatio(R = data, 
                Rf = rfr, 
                FUN = "StdDev") 
    
    return(rolling_SR)
}

# Define Window 
window <- 24 

# Transform data: Calculate Rolling Sharpe Ratio
rolling_sr_tbl <- portfolio_returns_tbl %>% 
    
    tq_mutate(select = returns, 
              mutate_fun = rollapply,
              width = window, 
              FUN = calculate_rolling_SharpeRatio, 
              col_rename = "rolling_sr") %>% 
    
    select(-returns) %>% 
    na.omit() 

rolling_sr_tbl 
## # A tibble: 45 × 2
##    date       rolling_sr
##    <date>          <dbl>
##  1 2021-12-31      0.674
##  2 2022-01-31      0.448
##  3 2022-02-28      0.392
##  4 2022-03-31      0.421
##  5 2022-04-29      0.359
##  6 2022-05-31      0.318
##  7 2022-06-30      0.335
##  8 2022-07-29      0.342
##  9 2022-08-31      0.207
## 10 2022-09-30      0.155
## # ℹ 35 more rows
#Plot 
rolling_sr_tbl %>% 
    
    ggplot(aes(x = date, y = rolling_sr)) + 
    geom_line(color = "skyblue1") + 
    
    #Labeling 
    labs(x = NULL, y = "Rolling Sharpe Ratio")

How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?

Since 2023 the portfolio has performed well. However, as mentioned in previous assignments we can see how the sharpe ratio relates to the macro trends. There is a clear structural break towards the end of 2024. The reason could be quite simple, the portfolio saw high returns when recovering from covid and probably with big help of Nvidia that saw high returns and is one of the biggest holds. Towards the end of 2024, we have seen an increased market volatility, a change in leadership and the return of stocks have cooled, specifically for Nvidia. The risk might not be a lot higher even if the Sharpe ratio has fallen a lot however, combined with the cooling of returns the sharpe ratio will fall. It would be interesting putting a comparison with indexes to see how the portfolio stand compared to different index. A quick search tells me that S&P 500 Sharpe ratio has also fallen to around 0.5