install.packages(c(“ISLR”, “caret”))
library(ISLR) library(caret)
data(“Default”, package = “ISLR”) set.seed(456)
trainIndex <- createDataPartition(Default$default, p = 0.7, list = FALSE) train <- Default[trainIndex,] test <- Default[-trainIndex,]
logit_model <- glm(default ~ income + balance, data = train, family = binomial) logit_preds <- predict(logit_model, test, type = “response”) logit_class <- ifelse(logit_preds > 0.5, “Yes”, “No”)
validation_error <- mean(logit_class != test$default) print(paste(“Validation Error:”, round(validation_error, 4)))
set.seed(789) trainIndex2 <- createDataPartition(Default$default, p = 0.7, list = FALSE) train2 <- Default[trainIndex2,] test2 <- Default[-trainIndex2,]
logit_model2 <- glm(default ~ income + balance, data = train2, family = binomial) logit_preds2 <- predict(logit_model2, test2, type = “response”) logit_class2 <- ifelse(logit_preds2 > 0.5, “Yes”, “No”) validation_error2 <- mean(logit_class2 != test2$default)
print(paste(“Second Validation Error:”, round(validation_error2, 4)))
logit_model_student <- glm(default ~ income + balance + student, data = train, family = binomial) logit_preds_student <- predict(logit_model_student, test, type = “response”) logit_class_student <- ifelse(logit_preds_student > 0.5, “Yes”, “No”) validation_error_student <- mean(logit_class_student != test$default)
print(paste(“Validation Error with Student:”, round(validation_error_student, 4)))