Bootstrap dalam Regresi & Estimasi Missing Value

Praktikum

Dataset Simulasi

set.seed(123)  
# Jumlah observasi 
n <- 100

# Generate variabel x dari distribusi normal (mean=10, sd=2)
x <- rnorm(n, mean = 10, sd = 2)

# Generate variabel y dengan pola hubungan linear terhadap x plus error
y <- 3 + 1.5 * x + rnorm(n, mean = 0, sd = 2)

# Gabungkan menjadi data frame
data <- data.frame(x, y)

# Introduksi missing value secara acak pada 10 observasi x
data[sample(1:n, 10), "x"] <- NA

# Lihat 6 baris pertama
head(data)
##           x        y
## 1  8.879049 14.89776
## 2  9.539645 17.82323
## 3 13.117417 22.18274
## 4 10.141017 17.51644
## 5 10.258575 16.48463
## 6 13.430130 23.05514

Penjelasan:

  • set.seed(123) menjamin hasil random yang konsisten

  • rnorm() menghasilkan data dari distribusi normal

  • Hubungan antara y dan x sengaja dibuat linear (y = 3 + 1.5x + error)

  • sample() memilih 10 baris secara acak untuk dijadikan NA

Praktikum 1: Bootstrap untuk Regresi (tanpa missing)

# Hapus baris yang mengandung NA
clean_data <- na.omit(data)

# Fungsi untuk bootstrap regresi
boot_regression <- function(data, indices) {
  # Ambil sampel bootstrap sesuai indices 
  d <- data[indices, ] 
  # Fit model regresi linear 
  model <- lm(y ~ x, data = d) 
  # Return koefisien model 
  return(coef(model))
  }

# Load library boot 
library(boot)

# Lakukan bootstrap dengan 1000 replikasi 
boot_result <- boot(
  data = clean_data, 
  statistic = boot_regression, 
  R = 1000
  )

# Tampilkan hasil
boot_result 
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = clean_data, statistic = boot_regression, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 3.581084  0.06067069   1.1482885
## t2* 1.412127 -0.00547455   0.1074228
# Plot distribusi bootstrap 
plot(boot_result)

# Hitung confidence interval 95% untuk koefisien x (index=2) 
boot.ci(boot_result, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot_result, type = "perc", index = 2)
## 
## Intervals : 
## Level     Percentile     
## 95%   ( 1.176,  1.596 )  
## Calculations and Intervals on Original Scale

Penjelasan:

  • na.omit() menghapus baris dengan missing values

  • Fungsi boot_regression:

    • indices menentukan sampel yang diambil

    • lm() melakukan regresi linear

    • coef() mengambil koefisien model

  • boot() menjalankan bootstrap dengan:

    • data: dataset bersih

    • statistic: fungsi yang di-bootstrap

    • R: jumlah replikasi

  • boot.ci() menghitung interval kepercayaan percentile

Praktikum 2: Estimasi pada Missing Value dengan Bootstrap

Menggunakan mean imputation + botstrap

# Hitung mean x (abaikan NA) 
mean_x <- mean(data$x, na.rm = TRUE)

# Buat variabel baru dengan imputasi mean 
data$ximp <- ifelse(is.na(data$x), mean_x, data$x)

# Fit model setelah imputasi 
model_imp <- lm(y ~ ximp, data = data)  
summary(model_imp)
## 
## Call:
## lm(formula = y ~ ximp, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1153 -1.4394 -0.0902  1.2053  6.5280 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.6538     1.2332   2.963  0.00383 ** 
## ximp          1.4121     0.1191  11.854  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.109 on 98 degrees of freedom
## Multiple R-squared:  0.5891, Adjusted R-squared:  0.5849 
## F-statistic: 140.5 on 1 and 98 DF,  p-value: < 2.2e-16
# Fungsi bootstrap setelah imputasi 
boot_imp <- function(data, indices) {
  d <- data[indices, ] 
  model <- lm(y ~ ximp, data = d) 
  return(coef(model)) 
  }
 
# Jalankan bootstrap
boot_result_imp <- boot(data = data, statistic = boot_imp, R = 1000) 

# Hasil 
boot_result_imp
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = data, statistic = boot_imp, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original       bias    std. error
## t1* 3.653794  0.053055397   1.1350004
## t2* 1.412127 -0.005093136   0.1064137
plot(boot_result_imp)

boot.ci(boot_result_imp, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot_result_imp, type = "perc", index = 2)
## 
## Intervals : 
## Level     Percentile     
## 95%   ( 1.188,  1.603 )  
## Calculations and Intervals on Original Scale

Catatan Penting:

  • mean(na.rm=TRUE) menghitung mean tanpa NA

  • ifelse() mengganti NA dengan mean

  • Model setelah imputasi cenderung underestimate variance

  • Proses bootstrap sama seperti sebelumnya tetapi menggunakan data yang sudah diimputasi

  • Mean imputation bisa mengurangi variabilitas → bias underestimation.

  • Lebih canggih: gunakan Multiple Imputation + Bootstrap (dengan mice package).

library(mice) 
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
# Lakukan multiple imputation (m=5) dengan Predictive Mean Matching 

imp <- mice(
  data[ , c("x", "y")], 
  m = 5, 
  method = 'pmm', 
  seed = 123
)
## 
##  iter imp variable
##   1   1  x
##   1   2  x
##   1   3  x
##   1   4  x
##   1   5  x
##   2   1  x
##   2   2  x
##   2   3  x
##   2   4  x
##   2   5  x
##   3   1  x
##   3   2  x
##   3   3  x
##   3   4  x
##   3   5  x
##   4   1  x
##   4   2  x
##   4   3  x
##   4   4  x
##   4   5  x
##   5   1  x
##   5   2  x
##   5   3  x
##   5   4  x
##   5   5  x
# Gabungkan dataset imputasi dalam long format 
imp_data <- complete(imp, "long") 

# Fit model di setiap dataset imputasi dan gabungkan hasilnya 
model_mi <- with(imp, lm(y ~ x)) 
summary(pool(model_mi))
##          term estimate std.error statistic       df      p.value
## 1 (Intercept) 3.619991 1.1112706  3.257524 78.99385 1.657655e-03
## 2           x 1.408248 0.1068028 13.185496 78.10532 1.472407e-21

Gabungan Hasil

# Pastikan semua package sudah terinstall
library(mice)
library(broom)
# 1. Model Data Lengkap 
model_clean <- lm(y ~ x, data = clean_data) 
clean_summary <- tidy(model_clean, conf.int = TRUE) 

# 2. Model Mean Imputation + Bootstrap 
# Asumsi boot_result_imp sudah dibuat sebelumnya 
boot_ci <- boot.ci(boot_result_imp, type = "perc", index = 2) 
boot_summary <- tidy(model_imp, conf.int = TRUE) 

# 3. Model MICE 
model_mice <- with(imp, lm(y ~ x)) 
mice_summary <- summary(pool(model_mice), conf.int = TRUE) 

# Membuat data frame yang lebih robust 
results_table <- data.frame(
  Metode = c("Data Lengkap", "Mean Imputation + Bootstrap", "MICE"), 
  Intercept = c(
    clean_summary$estimate[1], 
    boot_summary$estimate[1], 
    mice_summary$estimate[1]
    ), 
  Slope = c(
    clean_summary$estimate[2], 
    boot_summary$estimate[2], 
    mice_summary$estimate[2]
    ), 
  SE_Slope = c(
    clean_summary$std.error[2], 
    boot_summary$std.error[2], 
    mice_summary$std.error[2]
    ), 
  CI_Slope = c(
    sprintf("(%.3f, %.3f)", clean_summary$conf.low[2], clean_summary$conf.high[2]), 
    sprintf("(%.3f, %.3f)", boot_ci$percent[4], boot_ci$percent[5]), 
    sprintf("(%.3f, %.3f)", mice_summary$`2.5 %`[2], mice_summary$`97.5 %`[2])
    ), 
  stringsAsFactors = FALSE
  ) 

# Tampilkan hasil 
print(results_table)
##                        Metode Intercept    Slope  SE_Slope       CI_Slope
## 1                Data Lengkap  3.581084 1.412127 0.1079083 (1.198, 1.627)
## 2 Mean Imputation + Bootstrap  3.653794 1.412127 0.1191314 (1.188, 1.603)
## 3                        MICE  3.619991 1.408248 0.1068028 (1.196, 1.621)
library(ggplot2)
# Data untuk plot 
results <- data.frame(
  Method = c("Data Lengkap", "Mean Imp + Bootstrap", "MICE"), 
  Slope = c(1.412127, 1.412127, 1.408248), 
  SE = c(0.1079083, 0.1191314, 0.1068028), 
  CI_lower = c(1.198, 1.188, 1.196), 
  CI_upper = c(1.627, 1.603, 1.621)
  ) 
ggplot(results, aes(x = Method, y = Slope, color = Method)) + 
  geom_point(size = 3) + 
  geom_errorbar(aes(ymin = CI_lower, ymax = CI_upper), width = 0.2) + 
  labs(title = "Perbandingan Estimasi Slope dengan Berbagai Metode", 
       y = "Estimasi Slope (y ~ x)") + 
  theme_minimal()

Analisis Perbedaan Estimasi

  1. Estimasi Slope (Koefisien x)

Konsistensi Nilai:

  • Ketiga metode menghasilkan slope yang sangat mirip (~1.41)

  • Perbedaan <0.004 (hanya 0.3% variasi)

  • Indikasi bahwa pola missing tidak terlalu memengaruhi hubungan x-y

Perbedaan Kecil:

  • MICE memberikan slope paling rendah (1.408)

  • Data lengkap dan mean imputation sama (1.412)

  1. Estimasi Intercept
  • Variasi Lebih Nyata*:

  • Rentang nilai: 3.581 (data lengkap) hingga 3.654 (mean imputation)

  • Perbedaan ~0.073 (2% dari nilai intercept)

  • Mean imputation menghasilkan intercept tertinggi, mungkin karena imputasi mean cenderung menarik intercept ke arah rata-rata dan sedikit bias karena pengisian nilai konstan.

  1. Standard Error (SE) Slope

Konsistensi:

  • SE data lengkap (0.108) vs MICE (0.107) sangat mirip

  • Mean imputation memiliki SE lebih besar (0.119), mencerminkan ketidakpastian dari imputasi sederhana dan sesuai ekspektasi teori karena mean imputation meremehkan variabilitas

  1. Confidence Interval (CI)

Lebar CI:

  • Data lengkap: 0.429 (1.627-1.198)

  • Mean imputation: 0.415 (1.603-1.188)

  • MICE: 0.425 (1.621-1.196)

Pola Unik:

Mean imputation memiliki CI paling sempit (bertentangan dengan teori), kemungkinan penyebab:

  • Jumlah bootstrap tidak cukup (misal hanya 100 iterasi)

  • Missing values sedikit (<10%) sehingga dampak imputasi minimal

  • Data missing completely at random (MCAR)