This dataset looks at all types of hate crimes in New York counties by the type of hate crime from 2010 to 2016.
Flawed hate crime data collection - we should know how the data was collected
(Nathan Yau of Flowing Data, Dec 5, 2017)
Data collection process is sometimes flawed.
In the United States: “Under a federal law passed in 1990, the FBI is required to track and tabulate crimes in which there was ‘manifest evvictim_catence of prejudice’ against a host of protected groups, regardless of differences in how state laws define who’s protected. The FBI, in turn, relies on local law enforcement agencies to collect and submit this data, but can’t compel them to do so.”.
So now we know that there is possible bias in the dataset, what can we do with it?
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.2 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
county year crimetype anti-male
Length:423 Min. :2010 Length:423 Min. :0.000000
Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
Mode :character Median :2013 Mode :character Median :0.000000
Mean :2013 Mean :0.007092
3rd Qu.:2015 3rd Qu.:0.000000
Max. :2016 Max. :1.000000
anti-female anti-transgender anti-genderidentityexpression
Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.01655 Mean :0.04728 Mean :0.05674
3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :5.00000 Max. :3.00000
anti-age* anti-white anti-black
Min. :0.00000 Min. : 0.0000 Min. : 0.000
1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
Median :0.00000 Median : 0.0000 Median : 1.000
Mean :0.05201 Mean : 0.3357 Mean : 1.761
3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
Max. :9.00000 Max. :11.0000 Max. :18.000
anti-americanindian/alaskannative anti-asian
Min. :0.000000 Min. :0.0000
1st Qu.:0.000000 1st Qu.:0.0000
Median :0.000000 Median :0.0000
Mean :0.007092 Mean :0.1773
3rd Qu.:0.000000 3rd Qu.:0.0000
Max. :1.000000 Max. :8.0000
anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0.00000 Median :0
Mean :0 Mean :0.08511 Mean :0
3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :3.00000 Max. :0
anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
anti-multi-religiousgroups anti-atheism/agnosticism
Min. : 0.00000 Min. :0
1st Qu.: 0.00000 1st Qu.:0
Median : 0.00000 Median :0
Mean : 0.07565 Mean :0
3rd Qu.: 0.00000 3rd Qu.:0
Max. :10.00000 Max. :0
anti-religiouspracticegenerally anti-otherreligion anti-buddhist
Min. :0.000000 Min. :0.000 Min. :0
1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
Median :0.000000 Median :0.000 Median :0
Mean :0.007092 Mean :0.104 Mean :0
3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
Max. :2.000000 Max. :4.000 Max. :0
anti-easternorthodox(greek,russian,etc.) anti-hindu
Min. :0.000000 Min. :0.000000
1st Qu.:0.000000 1st Qu.:0.000000
Median :0.000000 Median :0.000000
Mean :0.002364 Mean :0.002364
3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.000000 Max. :1.000000
anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
Min. :0 Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0 Median :0.00000 Median :0
Mean :0 Mean :0 Mean :0.01655 Mean :0
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :0 Max. :3.00000 Max. :0
anti-hispanic anti-arab anti-otherethnicity/nationalorigin
Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 0.3735 Mean :0.06619 Mean : 0.2837
3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :17.0000 Max. :2.00000 Max. :19.0000
anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0 Median : 0.000 Median :0.0000 Median :0.0000
Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
anti-heterosexual anti-bisexual anti-physicaldisability
Min. :0.000000 Min. :0.000000 Min. :0.00000
1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.000000 Median :0.000000 Median :0.00000
Mean :0.002364 Mean :0.004728 Mean :0.01182
3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :1.000000 Max. :1.000000 Max. :1.00000
anti-mentaldisability totalincidents totalvictims totaloffenders
Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
We choose the most prominent types of hate-crimes of max number 9 or more.
Look deeper into crimes against blacks, gay males, and jews
From the facet_wrap plot above, anti-black, anti-gay males, and anti-jewish categories seem to have highest rates of offenses reported. Filter out just for those 3 crimes.
plot2 <- hatenew |>ggplot() +geom_bar(aes(x=year, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot2
We can see that hate crimes against jews spiked in 2012. All other years were relatively consistent with a slight upward trend. There was also an upward trend in hate crimes against gay males. Finally, there appears to be a downward trend in hate crimes against blacks during this period.
What about the counties?
Checking counties using bar graphs by county instead of by year.
plot3 <- hatenew |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot3
So many counties
Focusing on the counties with the highest number of incidents.
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
Finally, create the barplot above, but only for the 5 counties in 2012 with the highest incidents of hate-crimes.
plot4 <- hatenew |>filter(county %in%c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(y ="Number of Hate Crime Incidents",title ="5 Counties in NY with Highest Incidents of Hate Crimes",subtitle ="Between 2010-2016", fill ="Hate Crime Type",caption ="Source: NY State Division of Criminal Justice Services")plot4
How would calculations be affected by looking at hate crimes in counties per year by population densities?
Bring in census data for populations of New York counties. These are estimates from the 2010 census.
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Clean the county name to match the other dataset
Rename the variable “Geography” as “county” so that it matches in the other dataset.
# A tibble: 6 × 3
county year population
<chr> <dbl> <dbl>
1 Albany , New York 2010 304078
2 Allegany , New York 2010 48949
3 Bronx , New York 2010 1388240
4 Broome , New York 2010 200469
5 Cattaraugus , New York 2010 80249
6 Cayuga , New York 2010 79844
Focus on 2012
Since 2012 had the highest counts of hate crimes, let’s look at the populations of the counties in 2012.
nypoplong12 <- nypoplong |>filter(year ==2012) |>arrange(desc(population)) |>head(10)nypoplong12$county<-gsub(" , New York","",nypoplong12$county)nypoplong12
# A tibble: 10 × 3
county year population
<chr> <dbl> <dbl>
1 Kings 2012 2572282
2 Queens 2012 2278024
3 New York 2012 1625121
4 Suffolk 2012 1499382
5 Bronx 2012 1414774
6 Nassau 2012 1350748
7 Westchester 2012 961073
8 Erie 2012 920792
9 Monroe 2012 748947
10 Richmond 2012 470978
Not surprisingly, 4/5 of the counties with the highest populations also were listed in the counties with the highest number of hate crimes. Only the Bronx, which has the fifth highest population is not in the list with the highest number of total hate crimes over the period from 2010 to 2016.
Recall the total hate crime counts: Kings 713 New York 459 Suffolk 360 Nassau 298 Queens 235
# A tibble: 41 × 5
# Groups: year [1]
year county sum population rate
<dbl> <chr> <dbl> <dbl> <dbl>
1 2012 Suffolk 83 1499382 5.54
2 2012 Kings 136 2572282 5.29
3 2012 New York 71 1625121 4.37
4 2012 Richmond 18 470978 3.82
5 2012 Nassau 48 1350748 3.55
6 2012 Erie 28 920792 3.04
7 2012 Queens 48 2278024 2.11
8 2012 Bronx 23 1414774 1.63
9 2012 Westchester 13 961073 1.35
10 2012 Monroe 5 748947 0.668
# ℹ 31 more rows
Notice that the highest rates of hate crimes in 2012 happened in:
dt <- datajoinrate[,c("county","rate")]dt
# A tibble: 41 × 2
county rate
<chr> <dbl>
1 Suffolk 5.54
2 Kings 5.29
3 New York 4.37
4 Richmond 3.82
5 Nassau 3.55
6 Erie 3.04
7 Queens 2.11
8 Bronx 1.63
9 Westchester 1.35
10 Monroe 0.668
# ℹ 31 more rows
But the highest populated counties were: Kings (Brooklyn), Queens, New York, Suffolk (Long Island), Bronx, and Nassau. They do not correspond directly, though they are similar, to the counties with highest rates of hate crimes.
Important Findings: I wonder what the data would look like if there was a universally accepted requirement for this type of data collection.
The Bronx appears to have much lower than expected incvictim_catents of hate crimes relative to its population density in comparison to other NY counties.
In Kings County, NY (which is home to Brooklyn; according to Wikipedia, it is New York’s most populous borough and the second most densly populated county in the US) in 2012, there was a spike in hate crimes against jews.
All of these findings are corroborated in Hate Crime in New York State 2012 Annual Report: https://www.criminaljustice.ny.gov/crimnet/ojsa/hate-crime-in-nys-2012-annual-report.pdf
Essay
The Hate Crimes Dataset tutorial presents a focused analysis of hate crimes in New York counties from 2010 to 2016. The dataset is drawn from official state-level sources and includes detailed information about types of hate crimes, their victims, and associated demographics. One of the tutorial’s first focal points is the issue of flawed data collection, which is critical to any data analysis. The tutorial emphasizes how to clean these potentially flawed datasets to make them suitable for analysis, and secondly, how to merge two datasets, the hate crime incidents and county population estimates, to explore patterns in relation to population size and calculate more accurate rates per 100,000 people.
A strength of the dataset lies in its extent. It tracks dozens of categories of hate crimes, from anti-religious to anti-ethnic and anti-LGBTQ motivations. Furthermore, the final data join with population estimates adds essential context, showing that some counties, for instance the Bronx, report lower-than-expected hate crime rates despite their larger population size.
However, the dataset is not without its limitations. As emphasized early in the tutorial, hate crime data collection is inherently flawed and often underreported. Differences in law enforcement reporting practices and culture between counties introduce bias, making this dataset an incomplete reflection of reality.
If I were to explore this data further, I would first investigate public trust and perception on law enforcement in these areas. Multiple federal and private studies have found that hate-crime incidents go unreported if the victim distrusts police, with studies suggesting 40-70% of violent hate crimes go unreported. Second, I would investigate how public understanding and government-led education around hate crimes affect reporting patterns. Culture can greatly vary from neighborhood to neighborhood especially in areas like New York.
The tutorial does a great job of walking through data preparation, visualization, and interpretation, while also highlighting how data collection and analysis deeply matters to conclusions.