# Load packages
# Core
library(tidyverse)
library(tidyquant)
symbols <- c("LULU", "NKE","UA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "LULU" "NKE" "UA"
# weights
weights <- c(0.35, 0.45, 0.20)
weights
## [1] 0.35 0.45 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 LULU 0.35
## 2 NKE 0.45
## 3 UA 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0140
## 2 2013-02-28 -0.00489
## 3 2013-03-28 0.0107
## 4 2013-04-30 0.104
## 5 2013-05-31 -0.00480
## 6 2013-06-28 -0.0458
## 7 2013-07-31 0.0157
## 8 2013-08-30 0.00711
## 9 2013-09-30 0.0765
## 10 2013-10-31 -0.000965
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.497
portfolio_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_histogram()
# Transform Data
mean_kurt_tbl <- asset_returns_tbl %>%
# Calculate mean return and kurtosis for assets
group_by(asset) %>%
summarise (mean = mean(returns),
kurt = kurtosis(returns)) %>%
ungroup() %>%
# Add portfolio stats
add_row(portfolio_returns_tbl %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
mutate(asset= "Portfolio"))
#Plot
mean_kurt_tbl %>%
ggplot(aes(x = kurt, y = mean)) +
geom_point() +
ggrepel:: geom_text_repel(aes(label = asset, color = asset)) +
# Formatting
theme(legend.position = "none") +
scale_y_continuous(labels = scales:: percent_format(accuracy = 0.1)) +
# Labeling
labs(x = "Kurtosis",
y = "Expected Returns")
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate (select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
#Plot
rolling_kurt_tbl %>%
ggplot(aes(x=date, y=kurt)) +
geom_line(color = "cornflowerblue") +
#Formatting
scale_y_continuous(breaks = seq (-1,4, 0.5))+
scale_x_date(breaks = scales:: pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust=0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title =paste0("Rolling", window, "Month Kurtosis")) +
annotate(geom= "text", x = as.Date("2016-07-01"), y= 3,size = 4, color = "red", label = str_glue ("Downside risk skyrocketed toward the end of 2016"))
The downside risk of my portfolio (consisting of Lululemon, Nike, and Under Armour) saw an increased downside risk until around 2016 when the start of a very steady decreased downside risk occurred and did not change much until around August 2016 when the downside risk skyrocketed and went back to an increased value before decreasing in the middle of 2017 and continuing to fluctuate.