SEMPLSKKC Package

Segmentation of Partial Least Square Structural Equation Modeling Using Kernel K-Means Clustering (PLS SEM KKC) is the development of a new method in PLS SEM segmentation that uses non-linear clustering methods. Segmentation is carried out based on residual values of measurement and structural PLS SEM modeling which often exhibit non-linear separability and thus require a non-linear separable, thus requiring a non-linear PLS SEM segmentation. Main contribution of this study is the integration of kernel-based clustering into PLS SEM segmentation. Method effectively addresses unobserved heterogeneity by capturing non-linear residual patterns, leading to more accurate modelsSegmentation of Partial Least Square Structural Equation Modeling Using Kernel K-Means Clustering (PLS SEM KKC) is the development of a new method in PLS SEM segmentation that uses non-linear clustering methods. Segmentation is carried out based on residual values of measurement and structural PLS SEM modeling which often exhibit non-linear separability and thus require a non-linear separable, thus requiring a non-linear PLS SEM segmentation. Main contribution of this study is the integration of kernel-based clustering into PLS SEM segmentation. Method effectively addresses unobserved heterogeneity by capturing non-linear residual patterns, leading to more accurate models.

This package is an extension of the ResiPLS package, which develops SEMPLS analysis with segmentation using Kernel K-Means. If you are interested in this package, please contact me at ().

To run this package, you can do this:

library(SEMPLSKKC)

Running SEMPLSKKC

inputdata=import_dari_excel(file_path = "DataSeminter.xlsx")

hasil=plsalgorithm(data = inputdata$Data,inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel)
## Banyak Iterasi: 7 
## Outer Weight 
## Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.4078256
## [2,] 0.3948863
## [3,] 0.3516330
## 
## Variabel Laten  Effort Expectancy 
##           [,1]
## [1,] 0.4682900
## [2,] 0.3154480
## [3,] 0.3689983
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.7372356
## [2,] 0.4142433
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.3906090
## [2,] 0.4973840
## [3,] 0.3232516
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.3231985
## [2,] 0.3223177
## [3,] 0.2944332
## [4,] 0.1980679
## 
## Skor Variabel Laten 
## Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] -0.193634
## [2,] -0.193634
## [3,] -0.193634
## [4,] -0.621821
## [5,] -0.193634
## [6,] -0.193634
## 
## Variabel Laten  Effort Expectancy 
##             [,1]
## [1,] -0.63653562
## [2,]  1.29973203
## [3,]  0.61976369
## [4,] -0.63653562
## [5,]  0.04343272
## [6,] -0.63653562
## 
## Variabel Laten  Social Influence 
##            [,1]
## [1,] -2.0094775
## [2,] -1.6434825
## [3,] -0.3188389
## [4,]  0.1604853
## [5,] -0.6848340
## [6,]  0.1604853
## 
## Variabel Laten  Facilitating Conditions 
##            [,1]
## [1,] -1.9626047
## [2,] -0.2291284
## [3,] -0.2291284
## [4,] -0.2291284
## [5,]  0.3041491
## [6,] -0.2291284
## 
## Variabel Laten  Behavioral Intention 
##             [,1]
## [1,] -2.54378552
## [2,] -2.54378552
## [3,] -0.44374851
## [4,] -0.03466219
## [5,] -0.44838802
## [6,] -0.03466219
## 
## Koefisien Jalur:
##  Variabel Laten  Perfomance Expectancy 
## NULL
## 
## Variabel Laten  Effort Expectancy 
## NULL
## 
## Variabel Laten  Social Influence 
## NULL
## 
## Variabel Laten  Facilitating Conditions 
## NULL
## 
## Variabel Laten  Behavioral Intention 
##             [,1]
## [1,]  0.17984759
## [2,] -0.05737437
## [3,]  0.21005121
## [4,]  0.50697975
## 
## Outer Loading:
##  Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.8715220
## [2,] 0.8914727
## [3,] 0.8319485
## 
## Variabel Laten  Effort Expectancy 
##           [,1]
## [1,] 0.8868386
## [2,] 0.8781684
## [3,] 0.8338407
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.9304480
## [2,] 0.7581066
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.8037971
## [2,] 0.9068410
## [3,] 0.7269303
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.9253825
## [2,] 0.8702525
## [3,] 0.9257141
## [4,] 0.7465068
## 
## Matriks Residual Gabungan:
##              [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
## [1,] -0.08791535 -0.1296811  0.2475975  0.2664125  0.04963479 -0.3805315
## [2,] -0.08791535 -0.1296811  0.2475975  0.1304387 -0.01545051 -0.1523294
## [3,] -0.08791535 -0.1296811  0.2475975  0.7334609  0.58167623 -1.4280850
## [4,]  0.28525906  0.2520359 -0.6138829  0.2664125  0.04963479 -0.3805315
## [5,] -0.08791535 -0.1296811  0.2475975 -0.3366097 -0.54749195  0.8952241
## [6,] -0.08791535 -0.1296811  0.2475975  0.2664125  0.04963479 -0.3805315
##             [,7]        [,8]       [,9]      [,10]      [,11]      [,12]
## [1,] -0.29818677  0.53068795 -1.1022605  0.3221855  0.8362000 -0.1498453
## [2,]  0.50788054 -0.90388342  0.1732348  0.1394588 -0.4239163 -0.1498453
## [3,]  0.42197524 -0.75099634  0.1732348  0.1394588 -0.4239163 -0.8274396
## [4,] -0.02401106  0.04273288  0.1732348  0.1394588 -0.4239163  0.0597423
## [5,] -0.38409207  0.68357502 -0.2554121 -0.3441392  0.8381570  0.4425970
## [6,] -0.02401106  0.04273288  0.1732348  0.1394588 -0.4239163  0.0597423
##           [,13]       [,14]      [,15]       [,16]
## [1,]  0.5135670 -0.51187444  0.1696938 -1.12838771
## [2,]  0.5135670 -0.51187444  0.1696938 -1.97301066
## [3,]  0.1230986  0.30880705  0.6908102 -0.19022938
## [4,] -0.2329097 -0.06988993  0.3854245  0.12310332
## [5,]  0.1271362  0.31310191 -1.3945346 -0.42141872
## [6,] -0.2329097 -0.06988993  0.3854245  0.04609492
## 
## CR:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.8993515
## 
## Variabel Laten  Effort Expectancy 
## [1] 0.9004078
## 
## Variabel Laten  Social Influence 
## [1] 0.8359482
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.8555591
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.9252116
## 
## AVE:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.7488042
## 
## Variabel Laten  Effort Expectancy 
## [1] 0.7509843
## 
## Variabel Laten  Social Influence 
## [1] 0.7202296
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.665626
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.7569728
## 
## HTMT Matrix:
##                          Perfomance Expectancy Effort Expectancy
## Perfomance Expectancy                      NA         0.3737800
## Effort Expectancy                   0.3737800                NA
## Social Influence                    0.6172193         0.6160426
## Facilitating Conditions             0.4824333         0.7979404
## Behavioral Intention                0.5167693         0.4471064
##                         Social Influence Facilitating Conditions
## Perfomance Expectancy          0.6172193               0.4824333
## Effort Expectancy              0.6160426               0.7979404
## Social Influence                      NA               0.8150128
## Facilitating Conditions        0.8150128                      NA
## Behavioral Intention           0.6839490               0.7799284
##                         Behavioral Intention
## Perfomance Expectancy              0.5167693
## Effort Expectancy                  0.4471064
## Social Influence                   0.6839490
## Facilitating Conditions            0.7799284
## Behavioral Intention                      NA
## 
##  R Square:
##  Variabel Laten  Perfomance Expectancy 
## [1] NA
## 
## Variabel Laten  Effort Expectancy 
## [1] NA
## 
## Variabel Laten  Social Influence 
## [1] NA
## 
## Variabel Laten  Facilitating Conditions 
## [1] NA
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.5115431
resultbootstrap <- plsalgorithm_bootstrap(data = inputdata$Data,inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel, n_bootstrap=50)

print(resultbootstrap$path_coefficient)
## [[1]]
## data frame with 0 columns and 0 rows
## 
## [[2]]
## data frame with 0 columns and 0 rows
## 
## [[3]]
## data frame with 0 columns and 0 rows
## 
## [[4]]
## data frame with 0 columns and 0 rows
## 
## [[5]]
##   path_coefficient_original average_path_coefficient standar_error  t_hitung
## 1                0.17984759               0.17910816    0.06187145  2.906795
## 2               -0.05737437              -0.06524304    0.05622533 -1.020436
## 3                0.21005121               0.20984486    0.07238816  2.901734
## 4                0.50697975               0.51770036    0.06892711  7.355302
##        p_value
## 1 3.651530e-03
## 2 3.075216e-01
## 3 3.711030e-03
## 4 1.905143e-13
dfmatrikserror <- as.data.frame(hasil$`Matrix Residual`)
print(head(dfmatrikserror))
##            V1         V2         V3         V4          V5         V6
## 1 -0.08791535 -0.1296811  0.2475975  0.2664125  0.04963479 -0.3805315
## 2 -0.08791535 -0.1296811  0.2475975  0.1304387 -0.01545051 -0.1523294
## 3 -0.08791535 -0.1296811  0.2475975  0.7334609  0.58167623 -1.4280850
## 4  0.28525906  0.2520359 -0.6138829  0.2664125  0.04963479 -0.3805315
## 5 -0.08791535 -0.1296811  0.2475975 -0.3366097 -0.54749195  0.8952241
## 6 -0.08791535 -0.1296811  0.2475975  0.2664125  0.04963479 -0.3805315
##            V7          V8         V9        V10        V11        V12
## 1 -0.29818677  0.53068795 -1.1022605  0.3221855  0.8362000 -0.1498453
## 2  0.50788054 -0.90388342  0.1732348  0.1394588 -0.4239163 -0.1498453
## 3  0.42197524 -0.75099634  0.1732348  0.1394588 -0.4239163 -0.8274396
## 4 -0.02401106  0.04273288  0.1732348  0.1394588 -0.4239163  0.0597423
## 5 -0.38409207  0.68357502 -0.2554121 -0.3441392  0.8381570  0.4425970
## 6 -0.02401106  0.04273288  0.1732348  0.1394588 -0.4239163  0.0597423
##          V13         V14        V15         V16
## 1  0.5135670 -0.51187444  0.1696938 -1.12838771
## 2  0.5135670 -0.51187444  0.1696938 -1.97301066
## 3  0.1230986  0.30880705  0.6908102 -0.19022938
## 4 -0.2329097 -0.06988993  0.3854245  0.12310332
## 5  0.1271362  0.31310191 -1.3945346 -0.42141872
## 6 -0.2329097 -0.06988993  0.3854245  0.04609492
# Jalankan algoritma Kernel K-Means
hasil_kkmeans <- kernel_kmeans(dfmatrikserror, k=2, max_iter = 100, kernel_fun = rbf_kernel, sigma = 1)
## Kernel K-Means konvergen pada iterasi ke- 5
# Tampilkan hasil cluster
print(hasil_kkmeans$clusters)
##   [1] 2 2 2 1 2 1 2 1 1 2 1 1 1 1 2 2 1 2 2 1 2 2 1 2 1 2 2 2 2 1 2 2 1 2 1 2 2
##  [38] 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2
##  [75] 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2
## [112] 1 2 1 2 1 1 2 1 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2
## [149] 1 1 2 2 2 2 1 2 1 1 2 2 1 1 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 1 1 2 1
## [186] 2 1 1 2 1 1 1 1 2 2 1 2 2 1 2 2 1 2 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2
## [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2
## [260] 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 1 2 1
## [297] 1 1 1 2 2 1 2 2 1 2 1 2 1 1 1 1 2 2 1 2 2 1 2 2 1 2 1 2 2 2 2 2 1 1 1 2 1
## [334] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2
data_matrix=as.matrix(dfmatrikserror)
print(table(hasil_kkmeans$clusters))
## 
##   1   2 
## 121 245
data_terkelompok_kernel <- split(inputdata$Data,hasil_kkmeans$clusters)
hasil_k1=plsalgorithm(data = data_terkelompok_kernel$"1",inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel)
## Banyak Iterasi: 5 
## Outer Weight 
## Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.3837338
## [2,] 0.3243786
## [3,] 0.3408206
## 
## Variabel Laten  Effort Expectancy 
##           [,1]
## [1,] 0.3333333
## [2,] 0.3333333
## [3,] 0.3333333
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.5319346
## [2,] 0.5102544
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.3428930
## [2,] 0.3295562
## [3,] 0.3484066
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.2761567
## [2,] 0.2761567
## [3,] 0.2761567
## [4,] 0.2112467
## 
## Skor Variabel Laten 
## Variabel Laten  Perfomance Expectancy 
##            [,1]
## [1,] -1.0248007
## [2,] -0.4894076
## [3,] -1.6642881
## [4,] -0.4894076
## [5,] -0.4894076
## [6,]  1.4285703
## 
## Variabel Laten  Effort Expectancy 
##            [,1]
## [1,] -0.8075271
## [2,] -0.8075271
## [3,] -0.8075271
## [4,] -0.8075271
## [5,] -0.8075271
## [6,]  1.2281142
## 
## Variabel Laten  Social Influence 
##            [,1]
## [1,] -0.4319952
## [2,] -0.4319952
## [3,] -0.4319952
## [4,] -0.4319952
## [5,] -0.4319952
## [6,]  1.4348411
## 
## Variabel Laten  Facilitating Conditions 
##            [,1]
## [1,] -0.4990059
## [2,] -0.4990059
## [3,] -0.4990059
## [4,] -0.4990059
## [5,] -0.4990059
## [6,]  1.3538611
## 
## Variabel Laten  Behavioral Intention 
##            [,1]
## [1,] -0.4479663
## [2,] -0.4479663
## [3,] -0.4479663
## [4,] -0.4479663
## [5,] -0.4479663
## [6,]  1.1563593
## 
## Koefisien Jalur:
##  Variabel Laten  Perfomance Expectancy 
## NULL
## 
## Variabel Laten  Effort Expectancy 
## NULL
## 
## Variabel Laten  Social Influence 
## NULL
## 
## Variabel Laten  Facilitating Conditions 
## NULL
## 
## Variabel Laten  Behavioral Intention 
##            [,1]
## [1,] 0.01067045
## [2,] 0.03637059
## [3,] 0.20403669
## [4,] 0.76202446
## 
## Outer Loading:
##  Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.9584553
## [2,] 0.9528553
## [3,] 0.9480721
## 
## Variabel Laten  Effort Expectancy 
##      [,1]
## [1,]    1
## [2,]    1
## [3,]    1
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.9612035
## [2,] 0.9577626
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.9852916
## [2,] 0.9621544
## [3,] 0.9904132
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.9908249
## [2,] 0.9908249
## [3,] 0.9908249
## [4,] 0.8479716
## 
## Matriks Residual Gabungan:
##              [,1]       [,2]        [,3]          [,4]          [,5]
## [1,]  0.45409150  0.4062404 -0.89790921  2.220446e-16  2.220446e-16
## [2,] -0.05905885 -0.1039118  0.16539388  2.220446e-16  2.220446e-16
## [3,]  1.06701165 -0.9558438 -0.29162899  2.220446e-16  2.220446e-16
## [4,] -0.05905885 -0.1039118  0.16539388  2.220446e-16  2.220446e-16
## [5,] -0.05905885 -0.1039118  0.16539388  2.220446e-16  2.220446e-16
## [6,]  0.03913683  0.0399560 -0.08209303 -2.220446e-16 -2.220446e-16
##               [,6]        [,7]        [,8]        [,9]       [,10]       [,11]
## [1,]  2.220446e-16 -0.01009154  0.01052032 -0.03279443  0.09586926 -0.05840686
## [2,]  2.220446e-16 -0.01009154  0.01052032 -0.03279443  0.09586926 -0.05840686
## [3,]  2.220446e-16 -0.01009154  0.01052032 -0.03279443  0.09586926 -0.05840686
## [4,]  2.220446e-16 -0.01009154  0.01052032 -0.03279443  0.09586926 -0.05840686
## [5,]  2.220446e-16 -0.01009154  0.01052032 -0.03279443  0.09586926 -0.05840686
## [6,] -2.220446e-16  0.03351833 -0.03494249  0.00805459 -0.02635957  0.01700627
##            [,12]       [,13]       [,14]      [,15]       [,16]
## [1,] -0.08427797 -0.08427797 -0.08427797  0.3305225  0.06073662
## [2,] -0.08427797 -0.08427797 -0.08427797  0.3305225  0.05502373
## [3,] -0.08427797 -0.08427797 -0.08427797  0.3305225  0.06756024
## [4,] -0.08427797 -0.08427797 -0.08427797  0.3305225  0.05502373
## [5,] -0.08427797 -0.08427797 -0.08427797  0.3305225  0.05502373
## [6,]  0.26260809  0.26260809  0.26260809 -1.0299000 -0.22798694
## 
## CR:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.9675067
## 
## Variabel Laten  Effort Expectancy 
## [1] 1
## 
## Variabel Laten  Social Influence 
## [1] 0.9586644
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.986001
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.9775146
## 
## AVE:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.9084701
## 
## Variabel Laten  Effort Expectancy 
## [1] 1
## 
## Variabel Laten  Social Influence 
## [1] 0.9206107
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.959153
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.9160644
## 
## HTMT Matrix:
##                          Perfomance Expectancy Effort Expectancy
## Perfomance Expectancy                      NA         0.6923501
## Effort Expectancy                   0.6923501                NA
## Social Influence                    0.6849658         0.6076648
## Facilitating Conditions             0.8357941         0.7992708
## Behavioral Intention                0.8034515         0.7705566
##                         Social Influence Facilitating Conditions
## Perfomance Expectancy          0.6849658               0.8357941
## Effort Expectancy              0.6076648               0.7992708
## Social Influence                      NA               0.8360970
## Facilitating Conditions        0.8360970                      NA
## Behavioral Intention           0.8878069               0.9844447
##                         Behavioral Intention
## Perfomance Expectancy              0.8034515
## Effort Expectancy                  0.7705566
## Social Influence                   0.8878069
## Facilitating Conditions            0.9844447
## Behavioral Intention                      NA
## 
##  R Square:
##  Variabel Laten  Perfomance Expectancy 
## [1] NA
## 
## Variabel Laten  Effort Expectancy 
## [1] NA
## 
## Variabel Laten  Social Influence 
## [1] NA
## 
## Variabel Laten  Facilitating Conditions 
## [1] NA
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.9388645
resultbootstrap_k1 <- plsalgorithm_bootstrap(data = data_terkelompok_kernel$"1",inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel, n_bootstrap=500)
hasil_k2=plsalgorithm(data = data_terkelompok_kernel$"2",inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel)
## Banyak Iterasi: 9 
## Outer Weight 
## Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.4240390
## [2,] 0.4527869
## [3,] 0.3042690
## 
## Variabel Laten  Effort Expectancy 
##           [,1]
## [1,] 0.5053360
## [2,] 0.2482742
## [3,] 0.4409510
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.8631433
## [2,] 0.2887810
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.3768780
## [2,] 0.5697645
## [3,] 0.3177982
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.3509757
## [2,] 0.3486298
## [3,] 0.3012877
## [4,] 0.1576645
## 
## Skor Variabel Laten 
## Variabel Laten  Perfomance Expectancy 
##          [,1]
## [1,] -0.10118
## [2,] -0.10118
## [3,] -0.10118
## [4,] -0.10118
## [5,] -0.10118
## [6,] -0.10118
## 
## Variabel Laten  Effort Expectancy 
##            [,1]
## [1,] -0.5927826
## [2,]  1.3248519
## [3,]  0.5388844
## [4,]  0.1931850
## [5,] -0.9690724
## [6,] -0.5927826
## 
## Variabel Laten  Social Influence 
##             [,1]
## [1,] -1.77242853
## [2,] -1.17860849
## [3,]  0.04094556
## [4,] -0.55287447
## [5,]  0.35381257
## [6,]  0.35381257
## 
## Variabel Laten  Facilitating Conditions 
##            [,1]
## [1,] -1.7966877
## [2,] -0.1039619
## [3,] -0.1039619
## [4,]  0.3915052
## [5,] -0.5736815
## [6,] -0.1039619
## 
## Variabel Laten  Behavioral Intention 
##             [,1]
## [1,] -2.24776698
## [2,] -2.24776698
## [3,] -0.31207207
## [4,] -0.21203489
## [5,]  0.09640565
## [6,]  1.49596720
## 
## Koefisien Jalur:
##  Variabel Laten  Perfomance Expectancy 
## NULL
## 
## Variabel Laten  Effort Expectancy 
## NULL
## 
## Variabel Laten  Social Influence 
## NULL
## 
## Variabel Laten  Facilitating Conditions 
## NULL
## 
## Variabel Laten  Behavioral Intention 
##            [,1]
## [1,]  0.1775119
## [2,] -0.0751141
## [3,]  0.2174542
## [4,]  0.4574628
## 
## Outer Loading:
##  Variabel Laten  Perfomance Expectancy 
##           [,1]
## [1,] 0.8522918
## [2,] 0.8923138
## [3,] 0.7709198
## 
## Variabel Laten  Effort Expectancy 
##           [,1]
## [1,] 0.8635967
## [2,] 0.8048812
## [3,] 0.8249495
## 
## Variabel Laten  Social Influence 
##           [,1]
## [1,] 0.9625411
## [2,] 0.5858731
## 
## Variabel Laten  Facilitating Conditions 
##           [,1]
## [1,] 0.7356745
## [2,] 0.9020437
## [3,] 0.6569828
## 
## Variabel Laten  Behavioral Intention 
##           [,1]
## [1,] 0.9147023
## [2,] 0.8515168
## [3,] 0.9112096
## [4,] 0.6822166
## 
## Matriks Residual Gabungan:
##              [,1]       [,2]     [,3]       [,4]        [,5]       [,6]
## [1,] -0.08131099 -0.1305332 0.307566  0.3837992  0.06882952 -0.4785932
## [2,] -0.08131099 -0.1305332 0.307566  0.2225381  0.04098366 -0.2781073
## [3,] -0.08131099 -0.1305332 0.307566  0.9012971  0.67359415 -1.4121613
## [4,] -0.08131099 -0.1305332 0.307566 -0.2949598 -0.56378098  0.6554607
## [5,] -0.08131099 -0.1305332 0.307566  0.7087619 -1.14392398 -0.1681731
## [6,] -0.08131099 -0.1305332 0.307566  0.3837992  0.06882952 -0.4785932
##             [,7]       [,8]       [,9]      [,10]      [,11]        [,12]
## [1,] -0.10330742  0.3087776 -1.0132096  0.3525524  0.5694953 -0.076867637
## [2,]  0.37556420 -1.1225313  0.2341828  0.1477415 -0.5425965 -0.076867637
## [3,]  0.25214108 -0.7536295  0.2341828  0.1477415 -0.5425965 -0.683617501
## [4,] -0.22673054  0.6776794 -0.1303198 -0.2991915  0.6909520  0.388712982
## [5,] -0.04900629  0.1464759 -0.6666003  0.5714491 -0.2339989  0.106581705
## [6,] -0.04900629  0.1464759  0.2341828  0.1477415 -0.5425965 -0.009765741
##              [,13]       [,14]       [,15]      [,16]
## [1,]  0.4279465131 -0.45597519  0.09617572 -1.0669928
## [2,]  0.4279465131 -0.45597519  0.09617572 -1.8264392
## [3,]  0.0846371074  0.31540639  0.73192149 -0.2149787
## [4,] -0.0005462354  0.22425155 -1.29263448 -0.2384375
## [5,] -0.2631885482 -0.05680242  0.45325120  0.2270752
## [6,] -0.1499713791 -0.06449365  0.47660157  1.4400222
## 
## CR:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.877539
## 
## Variabel Laten  Effort Expectancy 
## [1] 0.8703872
## 
## Variabel Laten  Social Influence 
## [1] 0.7665277
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.8127103
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.908082
## 
## AVE:
##  Variabel Laten  Perfomance Expectancy 
## [1] 0.7056476
## 
## Variabel Laten  Effort Expectancy 
## [1] 0.6913916
## 
## Variabel Laten  Social Influence 
## [1] 0.6348664
## 
## Variabel Laten  Facilitating Conditions 
## [1] 0.5955087
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.7143709
## 
## HTMT Matrix:
##                          Perfomance Expectancy Effort Expectancy
## Perfomance Expectancy                      NA         0.2129749
## Effort Expectancy                   0.2129749                NA
## Social Influence                    0.5786560         0.6518371
## Facilitating Conditions             0.2853007         0.7734470
## Behavioral Intention                0.3922148         0.3211511
##                         Social Influence Facilitating Conditions
## Perfomance Expectancy          0.5786560               0.2853007
## Effort Expectancy              0.6518371               0.7734470
## Social Influence                      NA               0.8214224
## Facilitating Conditions        0.8214224                      NA
## Behavioral Intention           0.5747911               0.6840497
##                         Behavioral Intention
## Perfomance Expectancy              0.3922148
## Effort Expectancy                  0.3211511
## Social Influence                   0.5747911
## Facilitating Conditions            0.6840497
## Behavioral Intention                      NA
## 
##  R Square:
##  Variabel Laten  Perfomance Expectancy 
## [1] NA
## 
## Variabel Laten  Effort Expectancy 
## [1] NA
## 
## Variabel Laten  Social Influence 
## [1] NA
## 
## Variabel Laten  Facilitating Conditions 
## [1] NA
## 
## Variabel Laten  Behavioral Intention 
## [1] 0.4021558
resultbootstrap_k2 <- plsalgorithm_bootstrap(data = data_terkelompok_kernel$"2",inner_weight_scheme = "Path",matrix_outer_model = inputdata$MOM, matrix_inner_model = inputdata$MIM, indicator = inputdata$Indikator, laten_variables = inputdata$Variabel, n_bootstrap=500)
resultbootstrap_k1$path_coefficient
## [[1]]
## data frame with 0 columns and 0 rows
## 
## [[2]]
## data frame with 0 columns and 0 rows
## 
## [[3]]
## data frame with 0 columns and 0 rows
## 
## [[4]]
## data frame with 0 columns and 0 rows
## 
## [[5]]
##   path_coefficient_original average_path_coefficient standar_error  t_hitung
## 1                0.01067045               0.01413965    0.06739955 0.1583163
## 2                0.03637059               0.03199431    0.02004987 1.8140064
## 3                0.20403669               0.20368414    0.08712341 2.3419273
## 4                0.76202446               0.76199453    0.11381854 6.6950822
##        p_value
## 1 8.742075e-01
## 2 6.967675e-02
## 3 1.918445e-02
## 4 2.155498e-11
resultbootstrap_k2$path_coefficient
## [[1]]
## data frame with 0 columns and 0 rows
## 
## [[2]]
## data frame with 0 columns and 0 rows
## 
## [[3]]
## data frame with 0 columns and 0 rows
## 
## [[4]]
## data frame with 0 columns and 0 rows
## 
## [[5]]
##   path_coefficient_original average_path_coefficient standar_error  t_hitung
## 1                 0.1775119               0.18588040    0.07788788  2.279069
## 2                -0.0751141              -0.07794092    0.05960726 -1.260150
## 3                 0.2174542               0.22380002    0.08626445  2.520786
## 4                 0.4574628               0.45371741    0.07991712  5.724215
##        p_value
## 1 2.266294e-02
## 2 2.076152e-01
## 3 1.170930e-02
## 4 1.039130e-08