Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Load data

data <- read.csv("~/Google drive/My Drive/YEAR 2/PROJECTS/DEREK/Zero Sum Beliefs & Inclusivity/Study 1/data_June_6_2025.csv")

Exclusions

data <- data %>% 
  slice(-c(1:6)) %>% 
  filter(attn_bots != "14285733") %>% 
  filter(attn == 24)  #%>%
  # unite(geolocation, LocationLatitude, LocationLongitude) %>%
   #group_by(geolocation) %>%
  # mutate(geo_frequency = n()) %>%
   #filter(geo_frequency < 3) %>%
  # ungroup()

# We lose half the data with geolocation exclusion

Data cleaning

Gather and clean numeric data

df_numeric <- data %>%
  select(c(ResponseId, zsm_1:inclusive_5, coop_1:sdo_8R, trust_1:trust_5, help_type_bipolar:jwb_personal_7, Extra_1:Open_10R, SWL)) %>% 
  mutate(across(-ResponseId, as.numeric))
df_numeric <- df_numeric %>%
  mutate(across(ends_with("R"), ~ 8 - ., .names = "{.col}_Recoded")) %>% 
  select(-help_type_bipolar_Recoded)

Create average scores

df_numeric <- df_numeric %>%
  mutate(
    zsm_avg = rowMeans(select(., 
      zsm_1, 
      zsm_2, 
      zsm_3, 
      zsm_4_Recoded, 
      zsm_5, 
      zsm_6, 
      zsm_7_Recoded
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    bzs_avg = rowMeans(select(., 
      bzs_1, 
      bzs_2, 
      bzs_3, 
      bzs_4, 
      bzs_5, 
      bzs_6
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    inclusive_avg = rowMeans(select(., 
      inclusive_1, 
      inclusive_2, 
      inclusive_3, 
      inclusive_4, 
      inclusive_5
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    coop_avg = rowMeans(select(., 
      coop_1, 
      coop_2_Recoded
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    comp_avg = rowMeans(select(., 
      hyper_comp_1, 
      hyper_comp_2,
      hyper_comp_3
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    sdo_avg = rowMeans(select(., 
      sdo_1, 
      sdo_2,
      sdo_3R_Recoded,
      sdo_4R_Recoded, 
      sdo_5,
      sdo_6,
      sdo_7R_Recoded,
      sdo_8R_Recoded
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    trust_avg = rowMeans(select(., 
      trust_1, 
      trust_2,
      trust_3,
      trust_4,
      trust_5
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    sra_avg = rowMeans(select(., 
      sra_1,
      sra_2,
      sra_3,
      sra_4,
      sra_6,
      sra_9
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    jwb_general_avg = rowMeans(select(., 
      jwb_general_1,
      jwb_general_2,
      jwb_general_3,
      jwb_general_4,
      jwb_general_5,
      jwb_general_6
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>%
  mutate(
    jwb_personal_avg = rowMeans(select(., 
      jwb_personal_1,
      jwb_personal_2,
      jwb_personal_3,
      jwb_personal_4,
      jwb_personal_5,
      jwb_personal_6,
      jwb_personal_7
    ), na.rm = TRUE)
  )
df_numeric <- df_numeric %>% 
  mutate(
    extraversion = rowMeans(select(., Extra_1, Extra_6R_Recoded), na.rm = TRUE),
    agreeableness = rowMeans(select(., Agree_2, Agree_7R_Recoded), na.rm = TRUE),
    conscientiousness = rowMeans(select(., Con_3, Con_8R_Recoded), na.rm = TRUE),
    emotional_stability = rowMeans(select(., Neuro_4, Neuro_9R_Recoded), na.rm = TRUE),
    openness = rowMeans(select(., Open_5, Open_10R_Recoded), na.rm = TRUE)
  )

Gather and clean demographic information

df_demo <- data %>% 
  select(c(ResponseId, gender:edu)) %>% 
  filter(gender == 1 | gender == 2) %>% 
  mutate(gender = ifelse(gender == 1, "man", "woman")) %>% 
  select(-gender_4_TEXT) %>% 
  filter(race == 1 | race == 2) %>% 
  mutate(race = ifelse(race == 1, "white", "black")) %>% 
  select(-c(race_8_TEXT, race_9_TEXT)) %>% 
  mutate(across(-c(ResponseId, gender, race, ancestry), as.numeric))

Combine

df_full <- df_demo %>% 
  left_join(df_numeric, by = "ResponseId")

Analysis

1. Do women and black participants have a higher zero sum mindset than male and white participants in our sample?

Zero sum mindset measure

summary_table <- df_full %>%
  group_by(gender, race) %>%
  summarise(mean_zsm = mean(zsm_avg, na.rm = TRUE)) %>%
  ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
##   gender race  mean_zsm
##   <chr>  <chr>    <dbl>
## 1 man    black     2.97
## 2 man    white     2.68
## 3 woman  black     3.03
## 4 woman  white     2.99

Chinoy ZSB measure

summary_table <- df_full %>%
  group_by(gender, race) %>%
  summarise(mean_zsb_chinoy = mean(zsb_chinoy_1, na.rm = TRUE)) %>%
  ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
##   gender race  mean_zsb_chinoy
##   <chr>  <chr>           <dbl>
## 1 man    black            3.22
## 2 man    white            2.91
## 3 woman  black            3.56
## 4 woman  white            3.52

Davidai ZSB measure

summary_table <- df_full %>%
  group_by(gender, race) %>%
  summarise(mean_zsb_davidai = mean(bzs_avg, na.rm = TRUE)) %>%
  ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
##   gender race  mean_zsb_davidai
##   <chr>  <chr>            <dbl>
## 1 man    black             5.31
## 2 man    white             4.73
## 3 woman  black             5.07
## 4 woman  white             4.83

Focusing on ZSM going forward, but can always pull in the Chinoy or Davidai in future analyses.

2. Are we seeing a ceiling effect for inclusive behavior?

df_full %>%
  summarise(
    mean = mean(inclusive_avg, na.rm = TRUE),
    sd = sd(inclusive_avg, na.rm = TRUE),
    min = min(inclusive_avg, na.rm = TRUE),
    max = max(inclusive_avg, na.rm = TRUE),
    n = sum(!is.na(inclusive_avg))
  )
##       mean       sd min max   n
## 1 5.478981 1.161604   1   7 471
ggplot(df_full, aes(x = inclusive_avg)) +
  geom_histogram(binwidth = 0.2, fill = "steelblue", color = "white") +
  labs(
    title = "Distribution of Inclusivity Reports",
    x = "Inclusivity Average",
    y = "Frequency"
  ) +
  theme_minimal()
## Warning: Removed 1 row containing non-finite outside the scale range
## (`stat_bin()`).

Yeah… As expected. Some variance but very skewed.

3. Do people’s zero-sum mindsets predict the extent to which they perceive themselves as inclusive?

model1 <- lm(inclusive_avg ~ zsm_avg,
                 data = df_full)

summary(model1)
## 
## Call:
## lm(formula = inclusive_avg ~ zsm_avg, data = df_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7936 -0.5473  0.1936  0.7997  1.9460 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.95808    0.14699  40.534  < 2e-16 ***
## zsm_avg     -0.16444    0.04707  -3.493 0.000522 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.148 on 469 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.02536,    Adjusted R-squared:  0.02328 
## F-statistic:  12.2 on 1 and 469 DF,  p-value: 0.000522

Yes. This varies from the LEAD data. The higher their zero-sum mindset, the less inclusive they report being.

4a. What does this relationship look like across white / black participants?

white_sample <- df_full %>% 
  filter(race == "white")
black_sample <- df_full %>% 
  filter(race == "black")
model2 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model2)
## 
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2370 -0.6054  0.0768  0.7241  2.2186 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.87725    0.73343   5.286 2.82e-07 ***
## zsm_avg             -0.06593    0.06159  -1.070  0.28550    
## jwb_general_avg      0.06145    0.08419   0.730  0.46615    
## jwb_personal_avg     0.05863    0.09217   0.636  0.52529    
## extraversion         0.07631    0.05134   1.486  0.13848    
## openness             0.20511    0.05678   3.612  0.00037 ***
## emotional_stability  0.08380    0.05712   1.467  0.14367    
## agreeableness       -0.36914    0.06985  -5.285 2.84e-07 ***
## conscientiousness    0.08032    0.07359   1.091  0.27617    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.019 on 238 degrees of freedom
## Multiple R-squared:  0.2929, Adjusted R-squared:  0.2691 
## F-statistic: 12.32 on 8 and 238 DF,  p-value: 9.643e-15

No relationship for white participants, es expected.

model3 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model3)
## 
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4789 -0.5392  0.0847  0.5927  2.0746 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          4.03825    0.73819   5.471 1.24e-07 ***
## zsm_avg             -0.12265    0.06040  -2.031 0.043512 *  
## jwb_general_avg      0.33136    0.08519   3.890 0.000134 ***
## jwb_personal_avg    -0.09636    0.08642  -1.115 0.266071    
## extraversion         0.01041    0.04813   0.216 0.829030    
## openness             0.14195    0.07749   1.832 0.068376 .  
## emotional_stability  0.11412    0.06547   1.743 0.082752 .  
## agreeableness       -0.38485    0.07609  -5.058 9.07e-07 ***
## conscientiousness    0.09995    0.08458   1.182 0.238658    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.914 on 215 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.3618, Adjusted R-squared:  0.338 
## F-statistic: 15.23 on 8 and 215 DF,  p-value: < 2.2e-16

Negative relationship for black participants. Opposite of LEAD data.

4b. What does this relationship look like across men / women participants?

man_sample <- df_full %>% 
  filter(gender == "man")
woman_sample <- df_full %>% 
  filter(gender == "woman")
model4 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model4)
## 
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3159 -0.5420  0.0740  0.6526  2.3497 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.65577    0.77132   3.443 0.000685 ***
## zsm_avg             -0.03744    0.06320  -0.592 0.554224    
## jwb_general_avg      0.24547    0.08545   2.873 0.004456 ** 
## jwb_personal_avg    -0.03021    0.09200  -0.328 0.742918    
## extraversion         0.11099    0.05248   2.115 0.035540 *  
## openness             0.21885    0.06631   3.300 0.001121 ** 
## emotional_stability  0.14772    0.07230   2.043 0.042193 *  
## agreeableness       -0.40836    0.07888  -5.177 4.97e-07 ***
## conscientiousness    0.14639    0.08194   1.787 0.075329 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.028 on 227 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.3641, Adjusted R-squared:  0.3416 
## F-statistic: 16.24 on 8 and 227 DF,  p-value: < 2.2e-16

No relationship for men participants, as expected.

model5 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model5)
## 
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9306 -0.5472  0.1207  0.6101  1.8092 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.34687    0.66409   8.051 4.65e-14 ***
## zsm_avg             -0.17060    0.05511  -3.096  0.00221 ** 
## jwb_general_avg      0.04597    0.08313   0.553  0.58082    
## jwb_personal_avg     0.05378    0.08278   0.650  0.51656    
## extraversion        -0.02697    0.04453  -0.606  0.54536    
## openness             0.15666    0.05680   2.758  0.00629 ** 
## emotional_stability -0.01417    0.05044  -0.281  0.77902    
## agreeableness       -0.27160    0.06660  -4.078 6.30e-05 ***
## conscientiousness    0.04587    0.07105   0.646  0.51922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8675 on 226 degrees of freedom
## Multiple R-squared:  0.3163, Adjusted R-squared:  0.2921 
## F-statistic: 13.07 on 8 and 226 DF,  p-value: 1.852e-15

Negative relationship for women participants. Opposite of LEAD data.

5. How about for altruism?

Race

model6 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model6)
## 
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2525 -0.5568  0.0117  0.7253  2.6164 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.22226    0.73072   3.041  0.00262 ** 
## zsm_avg              0.06893    0.06137   1.123  0.26243    
## jwb_general_avg      0.52329    0.08388   6.238    2e-09 ***
## jwb_personal_avg    -0.12333    0.09183  -1.343  0.18053    
## extraversion         0.15835    0.05115   3.096  0.00220 ** 
## openness             0.14449    0.05657   2.554  0.01127 *  
## emotional_stability -0.09052    0.05691  -1.591  0.11304    
## agreeableness       -0.01925    0.06959  -0.277  0.78231    
## conscientiousness   -0.12036    0.07332  -1.642  0.10198    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.016 on 238 degrees of freedom
## Multiple R-squared:  0.3698, Adjusted R-squared:  0.3486 
## F-statistic: 17.46 on 8 and 238 DF,  p-value: < 2.2e-16
model7 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model7)
## 
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65565 -0.72991 -0.00969  0.79011  2.54095 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.149193   0.846495   3.720 0.000254 ***
## zsm_avg              0.074829   0.069553   1.076 0.283195    
## jwb_general_avg      0.327098   0.098157   3.332 0.001013 ** 
## jwb_personal_avg     0.093970   0.099591   0.944 0.346447    
## extraversion         0.060279   0.055468   1.087 0.278364    
## openness            -0.007669   0.089246  -0.086 0.931600    
## emotional_stability -0.101415   0.075213  -1.348 0.178951    
## agreeableness       -0.106979   0.086587  -1.236 0.217986    
## conscientiousness   -0.033740   0.097324  -0.347 0.729172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.053 on 216 degrees of freedom
## Multiple R-squared:  0.2135, Adjusted R-squared:  0.1844 
## F-statistic:  7.33 on 8 and 216 DF,  p-value: 1.3e-08

Gender

model8 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model8)
## 
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4016 -0.7010 -0.0011  0.7146  2.5238 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.754251   0.802266   2.187   0.0298 *  
## zsm_avg              0.110295   0.065903   1.674   0.0956 .  
## jwb_general_avg      0.444529   0.089156   4.986 1.22e-06 ***
## jwb_personal_avg    -0.002652   0.096002  -0.028   0.9780    
## extraversion         0.122007   0.054771   2.228   0.0269 *  
## openness             0.133335   0.069126   1.929   0.0550 .  
## emotional_stability -0.031276   0.075260  -0.416   0.6781    
## agreeableness       -0.062893   0.081428  -0.772   0.4407    
## conscientiousness   -0.077899   0.085494  -0.911   0.3632    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.072 on 228 degrees of freedom
## Multiple R-squared:  0.2965, Adjusted R-squared:  0.2718 
## F-statistic: 12.01 on 8 and 228 DF,  p-value: 2.787e-14
model9 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model9)
## 
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4836 -0.6682  0.0513  0.7163  2.3609 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.34782    0.76085   4.400 1.67e-05 ***
## zsm_avg              0.02947    0.06314   0.467 0.641107    
## jwb_general_avg      0.36392    0.09524   3.821 0.000172 ***
## jwb_personal_avg    -0.01157    0.09485  -0.122 0.903005    
## extraversion         0.07794    0.05102   1.527 0.128035    
## openness             0.09015    0.06507   1.385 0.167313    
## emotional_stability -0.21930    0.05779  -3.795 0.000190 ***
## agreeableness        0.01598    0.07631   0.209 0.834268    
## conscientiousness   -0.08105    0.08140  -0.996 0.320458    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9939 on 226 degrees of freedom
## Multiple R-squared:  0.3131, Adjusted R-squared:  0.2888 
## F-statistic: 12.88 on 8 and 226 DF,  p-value: 3.058e-15

No relationships between ZSM and altruism.

6. How about for cooperation, sdo, trust, and competitive orientation (DVs from Fearon)

Cooperation

Race

model10 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model10)
## 
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3837 -0.7228  0.3210  0.8724  2.1703 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          7.02726    0.93485   7.517 1.13e-12 ***
## zsm_avg             -0.30317    0.07851  -3.862 0.000145 ***
## jwb_general_avg     -0.34861    0.10731  -3.249 0.001327 ** 
## jwb_personal_avg     0.17986    0.11748   1.531 0.127101    
## extraversion        -0.02445    0.06544  -0.374 0.708947    
## openness             0.07710    0.07238   1.065 0.287840    
## emotional_stability -0.02707    0.07281  -0.372 0.710371    
## agreeableness       -0.28457    0.08903  -3.196 0.001581 ** 
## conscientiousness    0.08509    0.09380   0.907 0.365257    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.299 on 238 degrees of freedom
## Multiple R-squared:  0.2071, Adjusted R-squared:  0.1804 
## F-statistic: 7.769 on 8 and 238 DF,  p-value: 2.949e-09
model11 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model11)
## 
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4790 -0.6196  0.2022  0.7461  3.4717 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          7.24577    0.97245   7.451 2.20e-12 ***
## zsm_avg             -0.41031    0.07990  -5.135 6.28e-07 ***
## jwb_general_avg      0.19213    0.11276   1.704  0.08985 .  
## jwb_personal_avg    -0.13950    0.11441  -1.219  0.22406    
## extraversion        -0.12815    0.06372  -2.011  0.04555 *  
## openness             0.11632    0.10253   1.135  0.25783    
## emotional_stability  0.03283    0.08640   0.380  0.70431    
## agreeableness       -0.32124    0.09947  -3.230  0.00143 ** 
## conscientiousness   -0.03960    0.11180  -0.354  0.72355    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.21 on 216 degrees of freedom
## Multiple R-squared:  0.2553, Adjusted R-squared:  0.2277 
## F-statistic: 9.256 on 8 and 216 DF,  p-value: 5.979e-11

Gender

model12 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model12)
## 
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7083 -0.6751  0.2455  0.8585  3.1298 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          6.04062    0.94108   6.419 7.87e-10 ***
## zsm_avg             -0.27607    0.07731  -3.571 0.000433 ***
## jwb_general_avg     -0.11542    0.10458  -1.104 0.270901    
## jwb_personal_avg    -0.01514    0.11261  -0.134 0.893145    
## extraversion         0.01242    0.06425   0.193 0.846894    
## openness             0.11743    0.08109   1.448 0.148926    
## emotional_stability -0.03542    0.08828  -0.401 0.688622    
## agreeableness       -0.13232    0.09552  -1.385 0.167327    
## conscientiousness    0.10510    0.10029   1.048 0.295760    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.258 on 228 degrees of freedom
## Multiple R-squared:  0.1529, Adjusted R-squared:  0.1232 
## F-statistic: 5.145 on 8 and 228 DF,  p-value: 6.538e-06
model13 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model13)
## 
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2430 -0.6675  0.2380  0.7343  3.3908 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          8.558068   0.967445   8.846 2.65e-16 ***
## zsm_avg             -0.393819   0.080287  -4.905 1.78e-06 ***
## jwb_general_avg     -0.066635   0.121102  -0.550   0.5827    
## jwb_personal_avg     0.064012   0.120600   0.531   0.5961    
## extraversion        -0.121076   0.064875  -1.866   0.0633 .  
## openness             0.056609   0.082742   0.684   0.4946    
## emotional_stability  0.002513   0.073483   0.034   0.9728    
## agreeableness       -0.469153   0.097025  -4.835 2.46e-06 ***
## conscientiousness   -0.113444   0.103503  -1.096   0.2742    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.264 on 226 degrees of freedom
## Multiple R-squared:  0.2828, Adjusted R-squared:  0.2575 
## F-statistic: 11.14 on 8 and 226 DF,  p-value: 2.964e-13

Higher ZSM predicts less cooperation across groups.

SDO

Race

model14 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model14)
## 
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5870 -0.7901 -0.1703  0.6550  4.4705 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.30272    0.80562   1.617 0.107195    
## zsm_avg              0.28359    0.06766   4.192 3.91e-05 ***
## jwb_general_avg      0.34355    0.09248   3.715 0.000253 ***
## jwb_personal_avg    -0.08303    0.10124  -0.820 0.412963    
## extraversion         0.02023    0.05639   0.359 0.720043    
## openness            -0.10829    0.06237  -1.736 0.083817 .  
## emotional_stability -0.07432    0.06274  -1.184 0.237410    
## agreeableness        0.35137    0.07672   4.580 7.51e-06 ***
## conscientiousness   -0.12852    0.08083  -1.590 0.113174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.12 on 238 degrees of freedom
## Multiple R-squared:  0.2814, Adjusted R-squared:  0.2572 
## F-statistic: 11.65 on 8 and 238 DF,  p-value: 5.892e-14
model15 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model15)
## 
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1353 -0.6190 -0.1074  0.6385  3.6985 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.98999    0.72846   2.732  0.00682 ** 
## zsm_avg              0.34899    0.05985   5.831 1.99e-08 ***
## jwb_general_avg      0.07951    0.08447   0.941  0.34762    
## jwb_personal_avg     0.11548    0.08570   1.347  0.17927    
## extraversion        -0.01847    0.04773  -0.387  0.69916    
## openness            -0.08322    0.07680  -1.084  0.27976    
## emotional_stability -0.01035    0.06472  -0.160  0.87313    
## agreeableness        0.17231    0.07451   2.312  0.02170 *  
## conscientiousness   -0.22414    0.08375  -2.676  0.00802 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9065 on 216 degrees of freedom
## Multiple R-squared:  0.3887, Adjusted R-squared:  0.366 
## F-statistic: 17.17 on 8 and 216 DF,  p-value: < 2.2e-16

Gender

model16 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model16)
## 
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1229 -0.6693 -0.1263  0.6476  3.5282 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.95808    0.76242   2.568 0.010860 *  
## zsm_avg              0.32472    0.06263   5.185 4.77e-07 ***
## jwb_general_avg      0.12003    0.08473   1.417 0.157938    
## jwb_personal_avg     0.01753    0.09123   0.192 0.847769    
## extraversion         0.04888    0.05205   0.939 0.348651    
## openness            -0.09486    0.06569  -1.444 0.150097    
## emotional_stability -0.03559    0.07152  -0.498 0.619216    
## agreeableness        0.27903    0.07738   3.606 0.000382 ***
## conscientiousness   -0.20997    0.08125  -2.584 0.010381 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.019 on 228 degrees of freedom
## Multiple R-squared:  0.2998, Adjusted R-squared:  0.2753 
## F-statistic:  12.2 on 8 and 228 DF,  p-value: 1.684e-14
model17 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model17)
## 
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4207 -0.7058 -0.1478  0.5714  4.3296 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.166096   0.797143   1.463  0.14490    
## zsm_avg              0.320506   0.066154   4.845 2.35e-06 ***
## jwb_general_avg      0.309764   0.099784   3.104  0.00215 ** 
## jwb_personal_avg     0.006833   0.099371   0.069  0.94524    
## extraversion        -0.042101   0.053455  -0.788  0.43176    
## openness            -0.126283   0.068177  -1.852  0.06529 .  
## emotional_stability -0.056225   0.060548  -0.929  0.35409    
## agreeableness        0.280239   0.079945   3.505  0.00055 ***
## conscientiousness   -0.110405   0.085283  -1.295  0.19679    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.041 on 226 degrees of freedom
## Multiple R-squared:  0.3353, Adjusted R-squared:  0.3117 
## F-statistic: 14.25 on 8 and 226 DF,  p-value: < 2.2e-16

Competitiveness

Race

model18 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model18)
## 
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3006 -0.8578 -0.1777  0.8109  4.5843 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -1.01844    0.97139  -1.048 0.295501    
## zsm_avg              0.53308    0.08158   6.535 3.84e-10 ***
## jwb_general_avg      0.51570    0.11151   4.625 6.16e-06 ***
## jwb_personal_avg    -0.12792    0.12207  -1.048 0.295747    
## extraversion         0.06928    0.06799   1.019 0.309312    
## openness             0.10012    0.07520   1.331 0.184340    
## emotional_stability -0.05994    0.07565  -0.792 0.429010    
## agreeableness        0.34467    0.09251   3.726 0.000243 ***
## conscientiousness   -0.08025    0.09747  -0.823 0.411135    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.35 on 238 degrees of freedom
## Multiple R-squared:  0.3497, Adjusted R-squared:  0.3279 
## F-statistic:    16 on 8 and 238 DF,  p-value: < 2.2e-16
model19 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model19)
## 
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.779 -1.153 -0.025  1.078  3.271 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.099862   1.167246   0.086  0.93190    
## zsm_avg              0.423961   0.095908   4.421 1.56e-05 ***
## jwb_general_avg      0.090993   0.135350   0.672  0.50212    
## jwb_personal_avg     0.252365   0.137327   1.838  0.06748 .  
## extraversion         0.002724   0.076485   0.036  0.97162    
## openness             0.080855   0.123063   0.657  0.51187    
## emotional_stability  0.311473   0.103712   3.003  0.00299 ** 
## agreeableness       -0.015382   0.119397  -0.129  0.89761    
## conscientiousness   -0.112360   0.134201  -0.837  0.40338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.452 on 216 degrees of freedom
## Multiple R-squared:  0.2418, Adjusted R-squared:  0.2137 
## F-statistic:  8.61 on 8 and 216 DF,  p-value: 3.564e-10

Gender

model20 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model20)
## 
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1269 -0.9858 -0.1846  1.0907  3.8412 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.95420    1.02139  -0.934 0.351180    
## zsm_avg              0.38845    0.08390   4.630 6.15e-06 ***
## jwb_general_avg      0.43327    0.11351   3.817 0.000174 ***
## jwb_personal_avg    -0.10426    0.12222  -0.853 0.394543    
## extraversion         0.11602    0.06973   1.664 0.097515 .  
## openness             0.04753    0.08801   0.540 0.589655    
## emotional_stability  0.14315    0.09582   1.494 0.136540    
## agreeableness        0.10157    0.10367   0.980 0.328267    
## conscientiousness    0.07425    0.10884   0.682 0.495850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.365 on 228 degrees of freedom
## Multiple R-squared:  0.2413, Adjusted R-squared:  0.2147 
## F-statistic: 9.063 on 8 and 228 DF,  p-value: 8.474e-11
model21 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model21)
## 
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9903 -1.0489 -0.1964  1.0487  4.2541 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.80719    1.11856  -0.722   0.4713    
## zsm_avg              0.61254    0.09283   6.599 2.91e-10 ***
## jwb_general_avg      0.36300    0.14002   2.592   0.0101 *  
## jwb_personal_avg     0.06264    0.13944   0.449   0.6537    
## extraversion        -0.02148    0.07501  -0.286   0.7749    
## openness             0.16824    0.09567   1.759   0.0800 .  
## emotional_stability  0.02500    0.08496   0.294   0.7688    
## agreeableness        0.27228    0.11218   2.427   0.0160 *  
## conscientiousness   -0.20310    0.11967  -1.697   0.0910 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.461 on 226 degrees of freedom
## Multiple R-squared:  0.3351, Adjusted R-squared:  0.3116 
## F-statistic: 14.24 on 8 and 226 DF,  p-value: < 2.2e-16

Trust

Race

model22 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = white_sample)

summary(model22)
## 
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = white_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9906 -0.6285  0.1538  0.6125  3.0936 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.602272   0.763493   3.408 0.000767 ***
## zsm_avg             -0.048371   0.064118  -0.754 0.451349    
## jwb_general_avg      0.288609   0.087643   3.293 0.001142 ** 
## jwb_personal_avg     0.321184   0.095949   3.347 0.000948 ***
## extraversion         0.014419   0.053442   0.270 0.787543    
## openness             0.070361   0.059109   1.190 0.235088    
## emotional_stability -0.009966   0.059462  -0.168 0.867036    
## agreeableness       -0.225382   0.072713  -3.100 0.002171 ** 
## conscientiousness   -0.054746   0.076606  -0.715 0.475532    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.061 on 238 degrees of freedom
## Multiple R-squared:  0.3708, Adjusted R-squared:  0.3496 
## F-statistic: 17.53 on 8 and 238 DF,  p-value: < 2.2e-16
model23 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = black_sample)

summary(model23)
## 
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = black_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1875 -0.6289  0.1416  0.7041  2.5707 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.96196    0.90775   4.365 1.97e-05 ***
## zsm_avg             -0.16801    0.07459  -2.253   0.0253 *  
## jwb_general_avg      0.56696    0.10526   5.386 1.87e-07 ***
## jwb_personal_avg     0.18290    0.10680   1.713   0.0882 .  
## extraversion        -0.03005    0.05948  -0.505   0.6139    
## openness            -0.11037    0.09570  -1.153   0.2501    
## emotional_stability -0.03369    0.08066  -0.418   0.6766    
## agreeableness       -0.17086    0.09285  -1.840   0.0671 .  
## conscientiousness   -0.18133    0.10437  -1.737   0.0837 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 216 degrees of freedom
## Multiple R-squared:  0.3526, Adjusted R-squared:  0.3287 
## F-statistic: 14.71 on 8 and 216 DF,  p-value: < 2.2e-16

Gender

model24 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = man_sample)

summary(model24)
## 
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = man_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2576 -0.6039  0.1101  0.6702  3.0019 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.96104    0.85133   3.478 0.000605 ***
## zsm_avg             -0.15380    0.06993  -2.199 0.028868 *  
## jwb_general_avg      0.42740    0.09461   4.518    1e-05 ***
## jwb_personal_avg     0.23467    0.10187   2.304 0.022149 *  
## extraversion         0.03011    0.05812   0.518 0.604905    
## openness             0.01747    0.07335   0.238 0.811935    
## emotional_stability  0.04324    0.07986   0.541 0.588726    
## agreeableness       -0.17351    0.08641  -2.008 0.045824 *  
## conscientiousness   -0.13512    0.09072  -1.489 0.137774    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.138 on 228 degrees of freedom
## Multiple R-squared:  0.3094, Adjusted R-squared:  0.2852 
## F-statistic: 12.77 on 8 and 228 DF,  p-value: 3.82e-15
model25 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
                 data = woman_sample)

summary(model25)
## 
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + 
##     extraversion + openness + emotional_stability + agreeableness + 
##     conscientiousness, data = woman_sample)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7885 -0.5756  0.1896  0.6550  3.3619 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.55470    0.81578   4.357    2e-05 ***
## zsm_avg             -0.02095    0.06770  -0.309 0.757273    
## jwb_general_avg      0.31578    0.10212   3.092 0.002236 ** 
## jwb_personal_avg     0.35460    0.10169   3.487 0.000587 ***
## extraversion        -0.05203    0.05471  -0.951 0.342530    
## openness            -0.04372    0.06977  -0.627 0.531528    
## emotional_stability -0.10067    0.06196  -1.625 0.105617    
## agreeableness       -0.22474    0.08181  -2.747 0.006500 ** 
## conscientiousness   -0.09200    0.08728  -1.054 0.292967    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.066 on 226 degrees of freedom
## Multiple R-squared:  0.3921, Adjusted R-squared:  0.3706 
## F-statistic: 18.22 on 8 and 226 DF,  p-value: < 2.2e-16