library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("~/Google drive/My Drive/YEAR 2/PROJECTS/DEREK/Zero Sum Beliefs & Inclusivity/Study 1/data_June_6_2025.csv")
data <- data %>%
slice(-c(1:6)) %>%
filter(attn_bots != "14285733") %>%
filter(attn == 24) #%>%
# unite(geolocation, LocationLatitude, LocationLongitude) %>%
#group_by(geolocation) %>%
# mutate(geo_frequency = n()) %>%
#filter(geo_frequency < 3) %>%
# ungroup()
# We lose half the data with geolocation exclusion
df_numeric <- data %>%
select(c(ResponseId, zsm_1:inclusive_5, coop_1:sdo_8R, trust_1:trust_5, help_type_bipolar:jwb_personal_7, Extra_1:Open_10R, SWL)) %>%
mutate(across(-ResponseId, as.numeric))
df_numeric <- df_numeric %>%
mutate(across(ends_with("R"), ~ 8 - ., .names = "{.col}_Recoded")) %>%
select(-help_type_bipolar_Recoded)
df_numeric <- df_numeric %>%
mutate(
zsm_avg = rowMeans(select(.,
zsm_1,
zsm_2,
zsm_3,
zsm_4_Recoded,
zsm_5,
zsm_6,
zsm_7_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
bzs_avg = rowMeans(select(.,
bzs_1,
bzs_2,
bzs_3,
bzs_4,
bzs_5,
bzs_6
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
inclusive_avg = rowMeans(select(.,
inclusive_1,
inclusive_2,
inclusive_3,
inclusive_4,
inclusive_5
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
coop_avg = rowMeans(select(.,
coop_1,
coop_2_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
comp_avg = rowMeans(select(.,
hyper_comp_1,
hyper_comp_2,
hyper_comp_3
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
sdo_avg = rowMeans(select(.,
sdo_1,
sdo_2,
sdo_3R_Recoded,
sdo_4R_Recoded,
sdo_5,
sdo_6,
sdo_7R_Recoded,
sdo_8R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
trust_avg = rowMeans(select(.,
trust_1,
trust_2,
trust_3,
trust_4,
trust_5
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
sra_avg = rowMeans(select(.,
sra_1,
sra_2,
sra_3,
sra_4,
sra_6,
sra_9
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
jwb_general_avg = rowMeans(select(.,
jwb_general_1,
jwb_general_2,
jwb_general_3,
jwb_general_4,
jwb_general_5,
jwb_general_6
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
jwb_personal_avg = rowMeans(select(.,
jwb_personal_1,
jwb_personal_2,
jwb_personal_3,
jwb_personal_4,
jwb_personal_5,
jwb_personal_6,
jwb_personal_7
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
extraversion = rowMeans(select(., Extra_1, Extra_6R_Recoded), na.rm = TRUE),
agreeableness = rowMeans(select(., Agree_2, Agree_7R_Recoded), na.rm = TRUE),
conscientiousness = rowMeans(select(., Con_3, Con_8R_Recoded), na.rm = TRUE),
emotional_stability = rowMeans(select(., Neuro_4, Neuro_9R_Recoded), na.rm = TRUE),
openness = rowMeans(select(., Open_5, Open_10R_Recoded), na.rm = TRUE)
)
df_demo <- data %>%
select(c(ResponseId, gender:edu)) %>%
filter(gender == 1 | gender == 2) %>%
mutate(gender = ifelse(gender == 1, "man", "woman")) %>%
select(-gender_4_TEXT) %>%
filter(race == 1 | race == 2) %>%
mutate(race = ifelse(race == 1, "white", "black")) %>%
select(-c(race_8_TEXT, race_9_TEXT)) %>%
mutate(across(-c(ResponseId, gender, race, ancestry), as.numeric))
df_full <- df_demo %>%
left_join(df_numeric, by = "ResponseId")
summary_table <- df_full %>%
group_by(gender, race) %>%
summarise(mean_zsm = mean(zsm_avg, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
## gender race mean_zsm
## <chr> <chr> <dbl>
## 1 man black 2.97
## 2 man white 2.68
## 3 woman black 3.03
## 4 woman white 2.99
summary_table <- df_full %>%
group_by(gender, race) %>%
summarise(mean_zsb_chinoy = mean(zsb_chinoy_1, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
## gender race mean_zsb_chinoy
## <chr> <chr> <dbl>
## 1 man black 3.22
## 2 man white 2.91
## 3 woman black 3.56
## 4 woman white 3.52
summary_table <- df_full %>%
group_by(gender, race) %>%
summarise(mean_zsb_davidai = mean(bzs_avg, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'gender'. You can override using the
## `.groups` argument.
print(summary_table)
## # A tibble: 4 × 3
## gender race mean_zsb_davidai
## <chr> <chr> <dbl>
## 1 man black 5.31
## 2 man white 4.73
## 3 woman black 5.07
## 4 woman white 4.83
Focusing on ZSM going forward, but can always pull in the Chinoy or Davidai in future analyses.
df_full %>%
summarise(
mean = mean(inclusive_avg, na.rm = TRUE),
sd = sd(inclusive_avg, na.rm = TRUE),
min = min(inclusive_avg, na.rm = TRUE),
max = max(inclusive_avg, na.rm = TRUE),
n = sum(!is.na(inclusive_avg))
)
## mean sd min max n
## 1 5.478981 1.161604 1 7 471
ggplot(df_full, aes(x = inclusive_avg)) +
geom_histogram(binwidth = 0.2, fill = "steelblue", color = "white") +
labs(
title = "Distribution of Inclusivity Reports",
x = "Inclusivity Average",
y = "Frequency"
) +
theme_minimal()
## Warning: Removed 1 row containing non-finite outside the scale range
## (`stat_bin()`).
Yeah… As expected. Some variance but very skewed.
model1 <- lm(inclusive_avg ~ zsm_avg,
data = df_full)
summary(model1)
##
## Call:
## lm(formula = inclusive_avg ~ zsm_avg, data = df_full)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7936 -0.5473 0.1936 0.7997 1.9460
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.95808 0.14699 40.534 < 2e-16 ***
## zsm_avg -0.16444 0.04707 -3.493 0.000522 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.148 on 469 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.02536, Adjusted R-squared: 0.02328
## F-statistic: 12.2 on 1 and 469 DF, p-value: 0.000522
Yes. This varies from the LEAD data. The higher their zero-sum mindset, the less inclusive they report being.
white_sample <- df_full %>%
filter(race == "white")
black_sample <- df_full %>%
filter(race == "black")
model2 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model2)
##
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2370 -0.6054 0.0768 0.7241 2.2186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.87725 0.73343 5.286 2.82e-07 ***
## zsm_avg -0.06593 0.06159 -1.070 0.28550
## jwb_general_avg 0.06145 0.08419 0.730 0.46615
## jwb_personal_avg 0.05863 0.09217 0.636 0.52529
## extraversion 0.07631 0.05134 1.486 0.13848
## openness 0.20511 0.05678 3.612 0.00037 ***
## emotional_stability 0.08380 0.05712 1.467 0.14367
## agreeableness -0.36914 0.06985 -5.285 2.84e-07 ***
## conscientiousness 0.08032 0.07359 1.091 0.27617
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.019 on 238 degrees of freedom
## Multiple R-squared: 0.2929, Adjusted R-squared: 0.2691
## F-statistic: 12.32 on 8 and 238 DF, p-value: 9.643e-15
No relationship for white participants, es expected.
model3 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model3)
##
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4789 -0.5392 0.0847 0.5927 2.0746
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.03825 0.73819 5.471 1.24e-07 ***
## zsm_avg -0.12265 0.06040 -2.031 0.043512 *
## jwb_general_avg 0.33136 0.08519 3.890 0.000134 ***
## jwb_personal_avg -0.09636 0.08642 -1.115 0.266071
## extraversion 0.01041 0.04813 0.216 0.829030
## openness 0.14195 0.07749 1.832 0.068376 .
## emotional_stability 0.11412 0.06547 1.743 0.082752 .
## agreeableness -0.38485 0.07609 -5.058 9.07e-07 ***
## conscientiousness 0.09995 0.08458 1.182 0.238658
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.914 on 215 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.3618, Adjusted R-squared: 0.338
## F-statistic: 15.23 on 8 and 215 DF, p-value: < 2.2e-16
Negative relationship for black participants. Opposite of LEAD data.
man_sample <- df_full %>%
filter(gender == "man")
woman_sample <- df_full %>%
filter(gender == "woman")
model4 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model4)
##
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3159 -0.5420 0.0740 0.6526 2.3497
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.65577 0.77132 3.443 0.000685 ***
## zsm_avg -0.03744 0.06320 -0.592 0.554224
## jwb_general_avg 0.24547 0.08545 2.873 0.004456 **
## jwb_personal_avg -0.03021 0.09200 -0.328 0.742918
## extraversion 0.11099 0.05248 2.115 0.035540 *
## openness 0.21885 0.06631 3.300 0.001121 **
## emotional_stability 0.14772 0.07230 2.043 0.042193 *
## agreeableness -0.40836 0.07888 -5.177 4.97e-07 ***
## conscientiousness 0.14639 0.08194 1.787 0.075329 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.028 on 227 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.3641, Adjusted R-squared: 0.3416
## F-statistic: 16.24 on 8 and 227 DF, p-value: < 2.2e-16
No relationship for men participants, as expected.
model5 <- lm(inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model5)
##
## Call:
## lm(formula = inclusive_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9306 -0.5472 0.1207 0.6101 1.8092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.34687 0.66409 8.051 4.65e-14 ***
## zsm_avg -0.17060 0.05511 -3.096 0.00221 **
## jwb_general_avg 0.04597 0.08313 0.553 0.58082
## jwb_personal_avg 0.05378 0.08278 0.650 0.51656
## extraversion -0.02697 0.04453 -0.606 0.54536
## openness 0.15666 0.05680 2.758 0.00629 **
## emotional_stability -0.01417 0.05044 -0.281 0.77902
## agreeableness -0.27160 0.06660 -4.078 6.30e-05 ***
## conscientiousness 0.04587 0.07105 0.646 0.51922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8675 on 226 degrees of freedom
## Multiple R-squared: 0.3163, Adjusted R-squared: 0.2921
## F-statistic: 13.07 on 8 and 226 DF, p-value: 1.852e-15
Negative relationship for women participants. Opposite of LEAD data.
model6 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model6)
##
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2525 -0.5568 0.0117 0.7253 2.6164
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.22226 0.73072 3.041 0.00262 **
## zsm_avg 0.06893 0.06137 1.123 0.26243
## jwb_general_avg 0.52329 0.08388 6.238 2e-09 ***
## jwb_personal_avg -0.12333 0.09183 -1.343 0.18053
## extraversion 0.15835 0.05115 3.096 0.00220 **
## openness 0.14449 0.05657 2.554 0.01127 *
## emotional_stability -0.09052 0.05691 -1.591 0.11304
## agreeableness -0.01925 0.06959 -0.277 0.78231
## conscientiousness -0.12036 0.07332 -1.642 0.10198
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.016 on 238 degrees of freedom
## Multiple R-squared: 0.3698, Adjusted R-squared: 0.3486
## F-statistic: 17.46 on 8 and 238 DF, p-value: < 2.2e-16
model7 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model7)
##
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.65565 -0.72991 -0.00969 0.79011 2.54095
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.149193 0.846495 3.720 0.000254 ***
## zsm_avg 0.074829 0.069553 1.076 0.283195
## jwb_general_avg 0.327098 0.098157 3.332 0.001013 **
## jwb_personal_avg 0.093970 0.099591 0.944 0.346447
## extraversion 0.060279 0.055468 1.087 0.278364
## openness -0.007669 0.089246 -0.086 0.931600
## emotional_stability -0.101415 0.075213 -1.348 0.178951
## agreeableness -0.106979 0.086587 -1.236 0.217986
## conscientiousness -0.033740 0.097324 -0.347 0.729172
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.053 on 216 degrees of freedom
## Multiple R-squared: 0.2135, Adjusted R-squared: 0.1844
## F-statistic: 7.33 on 8 and 216 DF, p-value: 1.3e-08
model8 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model8)
##
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4016 -0.7010 -0.0011 0.7146 2.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.754251 0.802266 2.187 0.0298 *
## zsm_avg 0.110295 0.065903 1.674 0.0956 .
## jwb_general_avg 0.444529 0.089156 4.986 1.22e-06 ***
## jwb_personal_avg -0.002652 0.096002 -0.028 0.9780
## extraversion 0.122007 0.054771 2.228 0.0269 *
## openness 0.133335 0.069126 1.929 0.0550 .
## emotional_stability -0.031276 0.075260 -0.416 0.6781
## agreeableness -0.062893 0.081428 -0.772 0.4407
## conscientiousness -0.077899 0.085494 -0.911 0.3632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.072 on 228 degrees of freedom
## Multiple R-squared: 0.2965, Adjusted R-squared: 0.2718
## F-statistic: 12.01 on 8 and 228 DF, p-value: 2.787e-14
model9 <- lm(sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model9)
##
## Call:
## lm(formula = sra_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4836 -0.6682 0.0513 0.7163 2.3609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.34782 0.76085 4.400 1.67e-05 ***
## zsm_avg 0.02947 0.06314 0.467 0.641107
## jwb_general_avg 0.36392 0.09524 3.821 0.000172 ***
## jwb_personal_avg -0.01157 0.09485 -0.122 0.903005
## extraversion 0.07794 0.05102 1.527 0.128035
## openness 0.09015 0.06507 1.385 0.167313
## emotional_stability -0.21930 0.05779 -3.795 0.000190 ***
## agreeableness 0.01598 0.07631 0.209 0.834268
## conscientiousness -0.08105 0.08140 -0.996 0.320458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9939 on 226 degrees of freedom
## Multiple R-squared: 0.3131, Adjusted R-squared: 0.2888
## F-statistic: 12.88 on 8 and 226 DF, p-value: 3.058e-15
No relationships between ZSM and altruism.
model10 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model10)
##
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3837 -0.7228 0.3210 0.8724 2.1703
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.02726 0.93485 7.517 1.13e-12 ***
## zsm_avg -0.30317 0.07851 -3.862 0.000145 ***
## jwb_general_avg -0.34861 0.10731 -3.249 0.001327 **
## jwb_personal_avg 0.17986 0.11748 1.531 0.127101
## extraversion -0.02445 0.06544 -0.374 0.708947
## openness 0.07710 0.07238 1.065 0.287840
## emotional_stability -0.02707 0.07281 -0.372 0.710371
## agreeableness -0.28457 0.08903 -3.196 0.001581 **
## conscientiousness 0.08509 0.09380 0.907 0.365257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.299 on 238 degrees of freedom
## Multiple R-squared: 0.2071, Adjusted R-squared: 0.1804
## F-statistic: 7.769 on 8 and 238 DF, p-value: 2.949e-09
model11 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model11)
##
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4790 -0.6196 0.2022 0.7461 3.4717
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.24577 0.97245 7.451 2.20e-12 ***
## zsm_avg -0.41031 0.07990 -5.135 6.28e-07 ***
## jwb_general_avg 0.19213 0.11276 1.704 0.08985 .
## jwb_personal_avg -0.13950 0.11441 -1.219 0.22406
## extraversion -0.12815 0.06372 -2.011 0.04555 *
## openness 0.11632 0.10253 1.135 0.25783
## emotional_stability 0.03283 0.08640 0.380 0.70431
## agreeableness -0.32124 0.09947 -3.230 0.00143 **
## conscientiousness -0.03960 0.11180 -0.354 0.72355
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.21 on 216 degrees of freedom
## Multiple R-squared: 0.2553, Adjusted R-squared: 0.2277
## F-statistic: 9.256 on 8 and 216 DF, p-value: 5.979e-11
model12 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model12)
##
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7083 -0.6751 0.2455 0.8585 3.1298
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.04062 0.94108 6.419 7.87e-10 ***
## zsm_avg -0.27607 0.07731 -3.571 0.000433 ***
## jwb_general_avg -0.11542 0.10458 -1.104 0.270901
## jwb_personal_avg -0.01514 0.11261 -0.134 0.893145
## extraversion 0.01242 0.06425 0.193 0.846894
## openness 0.11743 0.08109 1.448 0.148926
## emotional_stability -0.03542 0.08828 -0.401 0.688622
## agreeableness -0.13232 0.09552 -1.385 0.167327
## conscientiousness 0.10510 0.10029 1.048 0.295760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.258 on 228 degrees of freedom
## Multiple R-squared: 0.1529, Adjusted R-squared: 0.1232
## F-statistic: 5.145 on 8 and 228 DF, p-value: 6.538e-06
model13 <- lm(coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model13)
##
## Call:
## lm(formula = coop_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2430 -0.6675 0.2380 0.7343 3.3908
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.558068 0.967445 8.846 2.65e-16 ***
## zsm_avg -0.393819 0.080287 -4.905 1.78e-06 ***
## jwb_general_avg -0.066635 0.121102 -0.550 0.5827
## jwb_personal_avg 0.064012 0.120600 0.531 0.5961
## extraversion -0.121076 0.064875 -1.866 0.0633 .
## openness 0.056609 0.082742 0.684 0.4946
## emotional_stability 0.002513 0.073483 0.034 0.9728
## agreeableness -0.469153 0.097025 -4.835 2.46e-06 ***
## conscientiousness -0.113444 0.103503 -1.096 0.2742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.264 on 226 degrees of freedom
## Multiple R-squared: 0.2828, Adjusted R-squared: 0.2575
## F-statistic: 11.14 on 8 and 226 DF, p-value: 2.964e-13
Higher ZSM predicts less cooperation across groups.
model14 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model14)
##
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5870 -0.7901 -0.1703 0.6550 4.4705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.30272 0.80562 1.617 0.107195
## zsm_avg 0.28359 0.06766 4.192 3.91e-05 ***
## jwb_general_avg 0.34355 0.09248 3.715 0.000253 ***
## jwb_personal_avg -0.08303 0.10124 -0.820 0.412963
## extraversion 0.02023 0.05639 0.359 0.720043
## openness -0.10829 0.06237 -1.736 0.083817 .
## emotional_stability -0.07432 0.06274 -1.184 0.237410
## agreeableness 0.35137 0.07672 4.580 7.51e-06 ***
## conscientiousness -0.12852 0.08083 -1.590 0.113174
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.12 on 238 degrees of freedom
## Multiple R-squared: 0.2814, Adjusted R-squared: 0.2572
## F-statistic: 11.65 on 8 and 238 DF, p-value: 5.892e-14
model15 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model15)
##
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1353 -0.6190 -0.1074 0.6385 3.6985
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.98999 0.72846 2.732 0.00682 **
## zsm_avg 0.34899 0.05985 5.831 1.99e-08 ***
## jwb_general_avg 0.07951 0.08447 0.941 0.34762
## jwb_personal_avg 0.11548 0.08570 1.347 0.17927
## extraversion -0.01847 0.04773 -0.387 0.69916
## openness -0.08322 0.07680 -1.084 0.27976
## emotional_stability -0.01035 0.06472 -0.160 0.87313
## agreeableness 0.17231 0.07451 2.312 0.02170 *
## conscientiousness -0.22414 0.08375 -2.676 0.00802 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9065 on 216 degrees of freedom
## Multiple R-squared: 0.3887, Adjusted R-squared: 0.366
## F-statistic: 17.17 on 8 and 216 DF, p-value: < 2.2e-16
model16 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model16)
##
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1229 -0.6693 -0.1263 0.6476 3.5282
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.95808 0.76242 2.568 0.010860 *
## zsm_avg 0.32472 0.06263 5.185 4.77e-07 ***
## jwb_general_avg 0.12003 0.08473 1.417 0.157938
## jwb_personal_avg 0.01753 0.09123 0.192 0.847769
## extraversion 0.04888 0.05205 0.939 0.348651
## openness -0.09486 0.06569 -1.444 0.150097
## emotional_stability -0.03559 0.07152 -0.498 0.619216
## agreeableness 0.27903 0.07738 3.606 0.000382 ***
## conscientiousness -0.20997 0.08125 -2.584 0.010381 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.019 on 228 degrees of freedom
## Multiple R-squared: 0.2998, Adjusted R-squared: 0.2753
## F-statistic: 12.2 on 8 and 228 DF, p-value: 1.684e-14
model17 <- lm(sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model17)
##
## Call:
## lm(formula = sdo_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4207 -0.7058 -0.1478 0.5714 4.3296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.166096 0.797143 1.463 0.14490
## zsm_avg 0.320506 0.066154 4.845 2.35e-06 ***
## jwb_general_avg 0.309764 0.099784 3.104 0.00215 **
## jwb_personal_avg 0.006833 0.099371 0.069 0.94524
## extraversion -0.042101 0.053455 -0.788 0.43176
## openness -0.126283 0.068177 -1.852 0.06529 .
## emotional_stability -0.056225 0.060548 -0.929 0.35409
## agreeableness 0.280239 0.079945 3.505 0.00055 ***
## conscientiousness -0.110405 0.085283 -1.295 0.19679
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.041 on 226 degrees of freedom
## Multiple R-squared: 0.3353, Adjusted R-squared: 0.3117
## F-statistic: 14.25 on 8 and 226 DF, p-value: < 2.2e-16
model18 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model18)
##
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3006 -0.8578 -0.1777 0.8109 4.5843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.01844 0.97139 -1.048 0.295501
## zsm_avg 0.53308 0.08158 6.535 3.84e-10 ***
## jwb_general_avg 0.51570 0.11151 4.625 6.16e-06 ***
## jwb_personal_avg -0.12792 0.12207 -1.048 0.295747
## extraversion 0.06928 0.06799 1.019 0.309312
## openness 0.10012 0.07520 1.331 0.184340
## emotional_stability -0.05994 0.07565 -0.792 0.429010
## agreeableness 0.34467 0.09251 3.726 0.000243 ***
## conscientiousness -0.08025 0.09747 -0.823 0.411135
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.35 on 238 degrees of freedom
## Multiple R-squared: 0.3497, Adjusted R-squared: 0.3279
## F-statistic: 16 on 8 and 238 DF, p-value: < 2.2e-16
model19 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model19)
##
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.779 -1.153 -0.025 1.078 3.271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.099862 1.167246 0.086 0.93190
## zsm_avg 0.423961 0.095908 4.421 1.56e-05 ***
## jwb_general_avg 0.090993 0.135350 0.672 0.50212
## jwb_personal_avg 0.252365 0.137327 1.838 0.06748 .
## extraversion 0.002724 0.076485 0.036 0.97162
## openness 0.080855 0.123063 0.657 0.51187
## emotional_stability 0.311473 0.103712 3.003 0.00299 **
## agreeableness -0.015382 0.119397 -0.129 0.89761
## conscientiousness -0.112360 0.134201 -0.837 0.40338
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.452 on 216 degrees of freedom
## Multiple R-squared: 0.2418, Adjusted R-squared: 0.2137
## F-statistic: 8.61 on 8 and 216 DF, p-value: 3.564e-10
model20 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model20)
##
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1269 -0.9858 -0.1846 1.0907 3.8412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.95420 1.02139 -0.934 0.351180
## zsm_avg 0.38845 0.08390 4.630 6.15e-06 ***
## jwb_general_avg 0.43327 0.11351 3.817 0.000174 ***
## jwb_personal_avg -0.10426 0.12222 -0.853 0.394543
## extraversion 0.11602 0.06973 1.664 0.097515 .
## openness 0.04753 0.08801 0.540 0.589655
## emotional_stability 0.14315 0.09582 1.494 0.136540
## agreeableness 0.10157 0.10367 0.980 0.328267
## conscientiousness 0.07425 0.10884 0.682 0.495850
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.365 on 228 degrees of freedom
## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2147
## F-statistic: 9.063 on 8 and 228 DF, p-value: 8.474e-11
model21 <- lm(comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model21)
##
## Call:
## lm(formula = comp_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9903 -1.0489 -0.1964 1.0487 4.2541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.80719 1.11856 -0.722 0.4713
## zsm_avg 0.61254 0.09283 6.599 2.91e-10 ***
## jwb_general_avg 0.36300 0.14002 2.592 0.0101 *
## jwb_personal_avg 0.06264 0.13944 0.449 0.6537
## extraversion -0.02148 0.07501 -0.286 0.7749
## openness 0.16824 0.09567 1.759 0.0800 .
## emotional_stability 0.02500 0.08496 0.294 0.7688
## agreeableness 0.27228 0.11218 2.427 0.0160 *
## conscientiousness -0.20310 0.11967 -1.697 0.0910 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.461 on 226 degrees of freedom
## Multiple R-squared: 0.3351, Adjusted R-squared: 0.3116
## F-statistic: 14.24 on 8 and 226 DF, p-value: < 2.2e-16
model22 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = white_sample)
summary(model22)
##
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = white_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9906 -0.6285 0.1538 0.6125 3.0936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.602272 0.763493 3.408 0.000767 ***
## zsm_avg -0.048371 0.064118 -0.754 0.451349
## jwb_general_avg 0.288609 0.087643 3.293 0.001142 **
## jwb_personal_avg 0.321184 0.095949 3.347 0.000948 ***
## extraversion 0.014419 0.053442 0.270 0.787543
## openness 0.070361 0.059109 1.190 0.235088
## emotional_stability -0.009966 0.059462 -0.168 0.867036
## agreeableness -0.225382 0.072713 -3.100 0.002171 **
## conscientiousness -0.054746 0.076606 -0.715 0.475532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.061 on 238 degrees of freedom
## Multiple R-squared: 0.3708, Adjusted R-squared: 0.3496
## F-statistic: 17.53 on 8 and 238 DF, p-value: < 2.2e-16
model23 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = black_sample)
summary(model23)
##
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = black_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1875 -0.6289 0.1416 0.7041 2.5707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.96196 0.90775 4.365 1.97e-05 ***
## zsm_avg -0.16801 0.07459 -2.253 0.0253 *
## jwb_general_avg 0.56696 0.10526 5.386 1.87e-07 ***
## jwb_personal_avg 0.18290 0.10680 1.713 0.0882 .
## extraversion -0.03005 0.05948 -0.505 0.6139
## openness -0.11037 0.09570 -1.153 0.2501
## emotional_stability -0.03369 0.08066 -0.418 0.6766
## agreeableness -0.17086 0.09285 -1.840 0.0671 .
## conscientiousness -0.18133 0.10437 -1.737 0.0837 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.13 on 216 degrees of freedom
## Multiple R-squared: 0.3526, Adjusted R-squared: 0.3287
## F-statistic: 14.71 on 8 and 216 DF, p-value: < 2.2e-16
model24 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = man_sample)
summary(model24)
##
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = man_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2576 -0.6039 0.1101 0.6702 3.0019
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.96104 0.85133 3.478 0.000605 ***
## zsm_avg -0.15380 0.06993 -2.199 0.028868 *
## jwb_general_avg 0.42740 0.09461 4.518 1e-05 ***
## jwb_personal_avg 0.23467 0.10187 2.304 0.022149 *
## extraversion 0.03011 0.05812 0.518 0.604905
## openness 0.01747 0.07335 0.238 0.811935
## emotional_stability 0.04324 0.07986 0.541 0.588726
## agreeableness -0.17351 0.08641 -2.008 0.045824 *
## conscientiousness -0.13512 0.09072 -1.489 0.137774
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 228 degrees of freedom
## Multiple R-squared: 0.3094, Adjusted R-squared: 0.2852
## F-statistic: 12.77 on 8 and 228 DF, p-value: 3.82e-15
model25 <- lm(trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg + extraversion + openness + emotional_stability + agreeableness + conscientiousness,
data = woman_sample)
summary(model25)
##
## Call:
## lm(formula = trust_avg ~ zsm_avg + jwb_general_avg + jwb_personal_avg +
## extraversion + openness + emotional_stability + agreeableness +
## conscientiousness, data = woman_sample)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7885 -0.5756 0.1896 0.6550 3.3619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.55470 0.81578 4.357 2e-05 ***
## zsm_avg -0.02095 0.06770 -0.309 0.757273
## jwb_general_avg 0.31578 0.10212 3.092 0.002236 **
## jwb_personal_avg 0.35460 0.10169 3.487 0.000587 ***
## extraversion -0.05203 0.05471 -0.951 0.342530
## openness -0.04372 0.06977 -0.627 0.531528
## emotional_stability -0.10067 0.06196 -1.625 0.105617
## agreeableness -0.22474 0.08181 -2.747 0.006500 **
## conscientiousness -0.09200 0.08728 -1.054 0.292967
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.066 on 226 degrees of freedom
## Multiple R-squared: 0.3921, Adjusted R-squared: 0.3706
## F-statistic: 18.22 on 8 and 226 DF, p-value: < 2.2e-16