Copy then answer:
Simplify these expressions:
\(4a + 3a\)
\(8x - 5x\)
\(2m + m\)
\(7p - 2p - p\)
\(3n + 4n + n\)
\(10b - b\)
Ahmed’s (correct) working: \[\begin{align*} 5x + 2x &= 7x\\ \end{align*}\]
Answer these questions:
By the end of this lesson, you will be able to:
Copy these definitions:
Coefficient: The number in front of a variable
Term: A number, variable, or combination connected by multiplication
Copy this important difference:
Adding like terms: \(3x + 2x = 5x\) (add the coefficients)
Multiplying terms: \(3 \times 2x = 6x\) (multiply the number by the coefficient)
Key: When we multiply, we multiply ALL the numbers (including pronumerals) together
Copy these examples:
| Expression | Working | Answer |
|---|---|---|
| \(4 \times 3a\) | \(4 \times 3 \times a\) | \(12a\) |
| \(2 \times 5x\) | \(2 \times 5 \times x\) | \(10x\) |
| \(6m \times 3\) | \(6 \times m \times 3\) | \(18m\) |
Copy and complete:
\(5 \times 2b = ?\)
\(3 \times 4n = ?\)
\(7p \times 2 = ?\)
\(6 \times 3x = ?\)
\(4a \times 5 = ?\)
\(8 \times 2m = ?\)
Copy and fill in the missing steps:
Example: \(3 \times 7x\)
\[\begin{align*} 3 \times 7x &= 3 \times 7 \times x \\ &= \underline{\hspace{1cm}} \times x \\ &= \underline{\hspace{1cm}} \end{align*}\]Now complete: \(4 \times 5y\)
\[\begin{align*} 4 \times 5y &= \underline{\hspace{3cm}} \\ &= \underline{\hspace{1cm}} \times y \\ &= \underline{\hspace{1cm}} \end{align*}\]Copy this new rule:
Example 1:
\[x \times x = x^2\]
Example 2 (including coefficients):
\[\begin{align*} 2x \times 3x &= 2 \times x \times 3 \times x \\ &= 2 \times 3 \times x \times x \\ &= 6 \times x^2 \\ &= 6x^2 \end{align*}\]Answer:
Complete these with full working:
Which is correct? Circle the right answer:
Find the mistake and write the correct solution:
Charlie’s working: \[\begin{align*} 3x \times 4x &= 3 + 4 \times x + x \\ &= 7 \times 2x \\ &= 14x \end{align*}\]
What went wrong? Write the correct solution.
Complete these (remember: add or multiply?):
\(5x + 3x\)
\(4 \times 3y\)
\(2a \times 6a\)
\(8m - 3m\)
\(7 \times 2p\)
\(4x \times 5x\)
Today we learned:
Key difference compared to gathering like terms :
On scrap paper, write your name, then complete: