T=read.csv("Centro.csv")
table(T$Estado)
##
## 9 13 15 17 21 29
## 431 356 588 410 363 384
tlaxcala=subset(T,T$Estado==29)#Elige solo los de Tlaxcala
tlaxcala_urbano=subset(tlaxcala,tlaxcala$localidad=="U")
tlaxcala_rural=subset(tlaxcala,tlaxcala$localidad=="R")
library("BSDA")
## Cargando paquete requerido: lattice
##
## Adjuntando el paquete: 'BSDA'
## The following object is masked from 'package:datasets':
##
## Orange
z.test(tlaxcala_urbano$ing_cor, sigma.x=sd(tlaxcala_urbano$ing_cor))
##
## One-sample z-Test
##
## data: tlaxcala_urbano$ing_cor
## z = 24.803, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 45018.94 52744.25
## sample estimates:
## mean of x
## 48881.6
z.test(tlaxcala_rural$ing_cor,sigma.x=sd(tlaxcala_rural$ing_cor))
##
## One-sample z-Test
##
## data: tlaxcala_rural$ing_cor
## z = 11.509, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 36803.59 51911.86
## sample estimates:
## mean of x
## 44357.72
T=read.csv("Centro.csv")
tlaxcala=subset(T,T$Estado==29)
library("BSDA")
IC=tapply(tlaxcala$ing_cor,list(tlaxcala$localidad),function(x) z.test(x,sigma.x=sd(x))$conf.int)
IC_df=data.frame(
inferior=sapply(IC, function(x) x[1]),
superior=sapply(IC, function(x) x[2]),
names=c("R", "U")
)
options(scipen=999)
plot(NA, xlim = c(0, 100000), ylim=c(1,7), ylab ="ZONA", xlab = "INGRESO CORRIENTE")
arrows(IC_df[1,1], 2, IC_df[1,2], 2, code = 3, angle=90, col = "green", lwd = 1, cex=0.9)
arrows(IC_df[2,1], 5, IC_df[2,2], 5, code = 3, angle=90, col = "red", lwd = 1, cex=0.9)
text(1,2,"R",col="green", cex=0.7)
text(1,5,"U",col="red",cex=0.7)
## Prueba de normalidad de Shapiro-Wilk
shapiro.test(tlaxcala_rural$ing_cor)
##
## Shapiro-Wilk normality test
##
## data: tlaxcala_rural$ing_cor
## W = 0.73785, p-value = 0.00000000005115
shapiro.test(tlaxcala_urbano$ing_cor)
##
## Shapiro-Wilk normality test
##
## data: tlaxcala_urbano$ing_cor
## W = 0.83907, p-value < 0.00000000000000022
T=read.csv("Centro.csv")
tlaxcala=subset(T,T$Estado==29)#Elige solo los de Tlaxcala
tlaxcala_urbano=subset(tlaxcala,tlaxcala$localidad=="U")
tlaxcala_rural=subset(tlaxcala,tlaxcala$localidad=="R")
#Salario Mínimo Trimestral de Tlaxcala Calculado
library(BSDA)
miu = 25092
#Desviación estándar de la muestra
sTlaxcalaingu=sd(tlaxcala_urbano$ing_cor)
sTlaxcalaingr=sd(tlaxcala_rural$ing_cor)
#Zona Urbana
z.test(tlaxcala_urbano$ing_cor, mu=miu, alternative = "greater", sigma.x=sTlaxcalaingu)
##
## One-sample z-Test
##
## data: tlaxcala_urbano$ing_cor
## z = 12.071, p-value < 0.00000000000000022
## alternative hypothesis: true mean is greater than 25092
## 95 percent confidence interval:
## 45639.96 NA
## sample estimates:
## mean of x
## 48881.6
#Zona Rural
z.test(tlaxcala_rural$ing_cor, mu=miu, alternative = "greater", sigma.x = sTlaxcalaingr)
##
## One-sample z-Test
##
## data: tlaxcala_rural$ing_cor
## z = 4.9986, p-value = 0.0000002887
## alternative hypothesis: true mean is greater than 25092
## 95 percent confidence interval:
## 38018.09 NA
## sample estimates:
## mean of x
## 44357.72