Q1)
\[ \underline{\text{Pop. MDL}} \\ y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}\\ i \in[1,a] \text{ Number of Lvls} \\ j \in[1,b] \text{ Number of Lvls} \\ k \in[1,n] \text{ Number of Repitions} \]
## Analysis of Variance Table
##
## Response: Finish
## Df Sum Sq Mean Sq F value Pr(>F)
## FeedRate 2 3160.50 1580.25 55.0184 1.086e-09 ***
## Depth 3 2125.11 708.37 24.6628 1.652e-07 ***
## FeedRate:Depth 6 557.06 92.84 3.2324 0.01797 *
## Residuals 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Interpretation of Anova Table :
The ANOVA table indicates the Main
Effects Appear to be highly significant. However, the
interaction itself is also significant.
We are curious about the underlying assumptions. The data appears to have an average residual of 0, with approx. random scatter. The residuals themself appear to be approx. normal with some slight deviations at the tails.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## # A tibble: 3 × 2
## FeedRate Finish_Per_FR
## <fct> <dbl>
## 1 0.2 81.6
## 2 0.25 97.6
## 3 0.3 104.
Suppose we consider the following :
\[ \text{Sample MDL} \\ \hat{y} = \bar{y}+ F_r+D_{pth}+( F_r*D_{pth}) \]
Seen above is the sample, model where we are given the overall average ( \(\bar{y}\) ) and are curious if the main effects : \(F_r\) or \(D_{pth}\) or the interaction effect are statistically significant \(( F_r*D_{pth})\).
\[ \underline{\text{Pop. MDL}} \\ y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}\\ i \in[1,a] \text{ Number of Lvls} \\ j \in[1,b] \text{ Number of Lvls} \\ k \in[1,n] \text{ Number of Repitions} \]
We test this with the following Hypothesis :
\[ \text{Main Eff.} \\ H_o : \tau_1 = \tau_2 = \tau_3 = 0 \\ H_a : \tau_i \ne 0 \\ H_o : \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \\ H_a : \beta_i \ne 0 \\ \text{Interaction Eff.} \\ H_o : (\tau\beta)_{ij} =0 \\ H_a : (\tau\beta)_{ij} \ne 0 \\ \]
## Pr(>F)
## FeedRate < 2e-16 ***
## Depth 2e-07 ***
## FeedRate:Depth 0.01797 *
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mdl\(coefficients[mdl\)coefficients > 0
Research Questions :
Main-Effect : Does glass type or temperature affect lightoutput?
Interaction-Effect :
## Analysis of Variance Table
##
## Response: Resp
## Df Sum Sq Mean Sq F value Pr(>F)
## Glass_Type 2 149369 74684 205.99 3.948e-13 ***
## Temperature 2 1965241 982621 2710.26 < 2.2e-16 ***
## Glass_Type:Temperature 4 288254 72063 198.77 1.252e-14 ***
## Residuals 18 6526 363
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = Resp ~ Glass_Type * Temperature, data = df)
##
## Coefficients:
## (Intercept) Glass_TypeG2
## 572.6667 -19.6667
## Glass_TypeG3 Temperature125
## 0.6667 514.6667
## Temperature150 Glass_TypeG2:Temperature125
## 810.0000 -32.6667
## Glass_TypeG3:Temperature125 Glass_TypeG2:Temperature150
## -33.3333 -50.0000
## Glass_TypeG3:Temperature150
## -496.6667
According to the results, both the interaction and main effects are significant.