Year 7 Mathematics
Calculate these:
Think about: How did you work them out?
Did anyone break the numbers apart?
Problem: Find the area of this rectangle
┌─────────────┬─────┐
│ 20 │ 3 │
│ │ │ ← height = 7
│ │ │
└─────────────┴─────┘
What’s the total width? 20 + 3 = 23
So the area is: 7 × 23 = ?
┌─────────────────────┐
│ width = 23 │
│ │ ← height = 7
│ │
└─────────────────────┘
Area = 7 × 23 = 161
But what if 23 is hard to multiply?
┌─────────────┬─────┐
│ │ │
│ 20 │ 3 │ ← height = 7
│ │ │
└─────────────┴─────┘
Left rectangle: 7 × 20 = 140
Right rectangle: 7 × 3 = 21
Total area: 140 + 21 = 161 ✓
One big rectangle: 7 × 23 = 161
Two smaller rectangles: 7 × 20 + 7 × 3 = 161
This means: 7 × (20 + 3) = 7 × 20 + 7 × 3
This is the Distributive Law!
When we multiply a number by a sum, we can multiply the number by each part separately, then add the results.
In symbols: × (□ + △) = × □ + × △
(We avoid letters for now!)
For any rectangle split into two parts:
┌─────────┬─────┐
│ A │ B │ ← height = h
└─────────┴─────┘
Total area = h × (A + B)
Also equals = h × A + h × B
Therefore: h × (A + B) = h × A + h × B
Method 1 (Hard): 6 × 47 = ?
Method 2 (Easy): Split 47 = 40 + 7
┌─────────┬───┐
│ 40 │ 7 │ ← height = 6
└─────────┴───┘
6 × (40 + 7) = 6 × 40 + 6 × 7 = 240 + 42 = 282
Let’s split 35 = 30 + 5
┌─────────┬───┐
│ 30 │ 5 │ ← height = 8
└─────────┴───┘
8 × (30 + 5) = 8 × 30 + 8 × 5 = 240 + 40 = 280
Check: 8 × 35 = 280 ✓
Problem: 9 × 48
Think: 48 is close to 50…
┌─────────────┬──┐
│ 50 │-2│ ← height = 9
└─────────────┴──┘
9 × 48 = 9 × (50 - 2) = 9 × 50 - 9 × 2 = 450 - 18 = 432
For Addition: × (□ + △) = × □ + × △
For Subtraction:
× (□ - △) = × □ - × △
The key: Break apart numbers to make multiplication easier!
Calculate using the distributive law:
7 × 26 = 7 × (20 + 6) = 7 × 20 + 7 × 6 = 140 + 42 = 182
5 × 83 = 5 × (80 + 3) = 5 × 80 + 5 × 3 = 400 + 15 = 415
4 × 29 = 4 × (30 - 1) = 4 × 30 - 4 × 1 = 120 - 4 = 116
6 × 198 = 6 × (200 - 2) = 6 × 200 - 6 × 2 = 1200 - 12 = 1188
Problem: 15 × 8 + 15 × 2 = ?
Notice: Both terms have 15 as a factor
┌─────────┬───┐
│ 8 │ 2 │ ← height = 15
└─────────┴───┘
15 × 8 + 15 × 2 = 15 × (8 + 2) = 15 × 10 = 150
Look for the common factor:
12 × 5 + 12 × 3 = 12 × (5 + 3) = 12 × 8 = 96
9 × 7 - 9 × 2 = 9 × (7 - 2) = 9 × 5 = 45
20 × 6 + 20 × 4 = 20 × (6 + 4) = 20 × 10 = 200
Problem: A school has two courtyards: - Court A: 12m × 8m
- Court B: 12m × 5m
Find the total area.
Court A Court B
┌─────────┐ ┌─────┐
│ 8 │ │ 5 │ ← height = 12
└─────────┘ └─────┘
Method 1: 12 × 8 + 12 × 5 = 96 + 60 = 156 m² Method 2: 12 × (8 + 5) = 12 × 13 = 156 m² ✓
Why use the distributive law?
✅ Mental maths
✅ Easier calculations
✅ Breaking down problems
✅ Checking answers
✅ Real-world applications
✅ Foundation for algebra
✅ Pattern recognition
✅ Strategic thinking
False! Should be 5 × 8 + 5 × 3
Second method: 23 × 20 - 23 × 1 = 460 - 23 = 437
Next lesson: We’ll use the same distributive law but with letters instead of numbers!
The pattern stays the same!
The Distributive Law helps us:
Remember: × (□ + △) = × □ + × △
Next time: Same idea, but with pronumerals!