As a baseline, let us fit a lasso with a multinomial loss (since we have three categories: Cereals, Snacks, and Sweets). We use cross validation to select the tuning parameter.
library(glmnet)
library(varSelRF)
library(plot3D)
library(FSelector)
library(mlbench)
library(knitr)
library(rgl)
library(R.basic)
set.seed(123)
# dat <- read.csv("C:/Users/Prashan/Dropbox (MIT)/MIT/Predictive Analytics/code/data/d4_650_v4/fold1/train/fold_1_train.csv")
# dat <- read.csv("C:/Users/Prashan/Dropbox (MIT)/MIT/Predictive Analytics/code/data/NASCAR_5f/fold1/train/fold_1_train.csv")
dat <- read.csv("C:/Users/Prashan/Dropbox (MIT)/MIT/Predictive Analytics/code/data/NASCAR_5f/allf_3c_phoenix2_2014_prototype_sel.csv")
# features <- c(15,45,32) #3:45 #c(12,13) #c(10,30,118,9,28) 3:45 c(4,30,43,7,9,10,25)
features <- 3:45 #c(36,37,38,43,7,9,10,16,20)#c(12,32,45)
complete <- which(rowSums(is.na(dat[, features]))==0)
datc <- dat[complete, ]
x <- as.matrix(datc[, features])
y <- datc[,2]
cl <- factor(y)
nascar_data_with_label=datc[,(-1)]
selected_features<-c()
Variable selection from random forests using OOB error
knit_hooks$set(webgl = hook_webgl)
rf.vs1 <- varSelRF(x, cl, ntree = 200, ntreeIterat = 100,
vars.drop.frac = 0.2)
rf.vs1$selected.vars
## [1] "X128..before.pit...Binned.avg.pre.slope..prev.epoch.avg.rank..new"
## [2] "X26..before.pit..incoming.rank.before.pit.bef.leg"
## [3] "X35..before.pit..75th.percentile.rank.upto.bef.pit"
plot3d(x[,rf.vs1$selected.vars[1]],x[,rf.vs1$selected.vars[2]],x[,rf.vs1$selected.vars[3]],col=y,xlab=rf.vs1$selected.vars[1],ylab=rf.vs1$selected.vars[2],zlab=rf.vs1$selected.vars[3])
plot(rf.vs1)
You must enable Javascript to view this page properly.
CFS filter
knit_hooks$set(webgl = hook_webgl)
subset <- cfs(rank_change_label~., datc[,(-1)])
plot3d(x[,rf.vs1$selected.vars[1]],x[,rf.vs1$selected.vars[2]],x[,rf.vs1$selected.vars[3]],col=y,xlab=rf.vs1$selected.vars[1],ylab=rf.vs1$selected.vars[2],zlab=rf.vs1$selected.vars[3])
subset
## [1] "X76..after.pit..indicator.2.tire.change..ref.19"
## [2] "X86..before.pit..indicator.front..lte.8..of.the.pack.pre.pit"
## [3] "X140..after.pit..Time.in.pits.before.outing"
## [4] "X160..before.pit..sqrt.of.Binned.avg.prev.slope.HI.RES.133"
You must enable Javascript to view this page properly.
Consistency-based filter
knit_hooks$set(webgl = hook_webgl)
subset <- consistency(rank_change_label~., datc[,(-1)])
plot3d(x[,subset[1]],x[,subset[2]],x[,subset[3]],col=y,xlab=subset[1],ylab=subset[2],zlab=subset[4])
subset
## [1] "X26..before.pit..incoming.rank.before.pit.bef.leg"
## [2] "X34..before.pit..25th.percentile.rank.upto.bef.pit"
## [3] "X35..before.pit..75th.percentile.rank.upto.bef.pit"
## [4] "X82..before.pit..starting.position.of.the.car"
selected_features<-c(selected_features,subset)
You must enable Javascript to view this page properly.
RReliefF filter
knit_hooks$set(webgl = hook_webgl)
weights <- relief(rank_change_label~., datc[,(-1)], neighbours.count = 5, sample.size = 20)
subset <- cutoff.k(weights,5)
plot3d(x[,subset[1]],x[,subset[2]],x[,subset[3]],col=y,xlab=subset[1],ylab=subset[2],zlab=subset[3])
subset
## [1] "X82..before.pit..starting.position.of.the.car"
## [2] "X56..before.pit..NBHD.prev.epoch..median.ranks.of.neighborhood."
## [3] "X77..after.pit..indicator.4.tire.change..ref.19"
## [4] "X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127"
## [5] "X164..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137"
selected_features<-c(selected_features,subset)
#RandomForest filter
#1=mean decrease in accuracy, 2=mean decrease in node impurity
# weights <- random.forest.importance(rank_change_label~., datc[,(-1)], importance.type = 2)
# subset <- cutoff.biggest.diff(weights)
# subset
You must enable Javascript to view this page properly.
Cutoffs
knit_hooks$set(webgl = hook_webgl)
weights <- information.gain(rank_change_label~., nascar_data_with_label)
subset <- cutoff.biggest.diff(weights)
plot3d(x[,subset[1]],x[,subset[2]],x[,subset[3]],col=y,xlab=subset[1],ylab=subset[2],zlab=subset[3])
subset
## [1] "X26..before.pit..incoming.rank.before.pit.bef.leg"
## [2] "X82..before.pit..starting.position.of.the.car"
## [3] "X34..before.pit..25th.percentile.rank.upto.bef.pit"
## [4] "X35..before.pit..75th.percentile.rank.upto.bef.pit"
## [5] "X157..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.127"
## [6] "X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127"
selected_features<-c(selected_features,subset)
unique(selected_features)
## [1] "X26..before.pit..incoming.rank.before.pit.bef.leg"
## [2] "X34..before.pit..25th.percentile.rank.upto.bef.pit"
## [3] "X35..before.pit..75th.percentile.rank.upto.bef.pit"
## [4] "X82..before.pit..starting.position.of.the.car"
## [5] "X56..before.pit..NBHD.prev.epoch..median.ranks.of.neighborhood."
## [6] "X77..after.pit..indicator.4.tire.change..ref.19"
## [7] "X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127"
## [8] "X164..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137"
## [9] "X157..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.127"
You must enable Javascript to view this page properly.
lasso with a multinomial loss
train <- sample(nrow(x), round(nrow(x) * 0.7))
cvfit <- cv.glmnet(x[train, ], y[train], family="multinomial",maxit=1000000)
## Warning: from glmnet Fortran code (error code -93); Convergence for 93th
## lambda value not reached after maxit=1000000 iterations; solutions for
## larger lambdas returned
## Warning: from glmnet Fortran code (error code -69); Convergence for 69th
## lambda value not reached after maxit=1000000 iterations; solutions for
## larger lambdas returned
## Warning: from glmnet Fortran code (error code -83); Convergence for 83th
## lambda value not reached after maxit=1000000 iterations; solutions for
## larger lambdas returned
## Warning: from glmnet Fortran code (error code -76); Convergence for 76th
## lambda value not reached after maxit=1000000 iterations; solutions for
## larger lambdas returned
plot(cvfit) # let's look at the cross validated error to choose lambda
The curve shows the cross-validated performance of the lasso as a function of the tuning parameter. The second vertical line indicates the value of \(\lambda\) we select based on cross validation. Let us look at the coefficients of the fitted model:
# coef(cvfit, s="lambda.1se")
The coefficient values are intuitive: having a higher level of iron or a lower level of fat are predictive of being a cereal; snacks are pretty similar to the baseline in all respects; and sweets are lower in protein and carbs, but higher in sugar and cholesterol. Finally, observe that water is not a useful feature for distinguishing any of these three classes.
We move on to examine the out-of-sample predictive performance of this model:
yhat <- predict(cvfit, newx=x[-train, ], s="lambda.1se", type="class")
mean(y[-train] != yhat) # classification error
## [1] 0.4693878
table(y[-train], yhat) # confusion matrix
## yhat
## 1
## 1 26
## 2 10
## 3 13
Every row corresponds to the true label of a food in the test set and every column corresponds to a predicted label. We see that Snacks are the most difficult to classify of the three food groups (which makes intuitive sense).
Let us look at the data a bit. We plot all pairs of features against each other, coloring Cereals black, Snacks red, and Sweets green:
pairs(x, pch="o", col=y, lower.panel=NULL)
pairs(x[,unique(selected_features)], pch="o", col=y, lower.panel=NULL)
We can simplify this picture by plotting the data against just the first two principal components:
pca <- prcomp(x, scale=TRUE)
plot(pca$x, col=y, pch=20)
Using only the selected subset of unique features
pca <- prcomp(x[,unique(selected_features)], scale=TRUE)
plot(pca$x, col=y, pch=20)
The first two principal component directions represent the following linear combinations of nutrients:
pca$rotation[,1:2]
## PC1
## X26..before.pit..incoming.rank.before.pit.bef.leg 0.3755722
## X34..before.pit..25th.percentile.rank.upto.bef.pit 0.3820641
## X35..before.pit..75th.percentile.rank.upto.bef.pit 0.3815973
## X82..before.pit..starting.position.of.the.car 0.3689582
## X56..before.pit..NBHD.prev.epoch..median.ranks.of.neighborhood. 0.1347513
## X77..after.pit..indicator.4.tire.change..ref.19 0.1415740
## X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127 0.3477646
## X164..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137 0.3719024
## X157..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.127 0.3657501
## PC2
## X26..before.pit..incoming.rank.before.pit.bef.leg -0.03529719
## X34..before.pit..25th.percentile.rank.upto.bef.pit -0.03555913
## X35..before.pit..75th.percentile.rank.upto.bef.pit -0.10853490
## X82..before.pit..starting.position.of.the.car -0.07354516
## X56..before.pit..NBHD.prev.epoch..median.ranks.of.neighborhood. -0.80747889
## X77..after.pit..indicator.4.tire.change..ref.19 0.51912023
## X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127 0.21456605
## X164..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137 0.05246777
## X157..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.127 0.10000754
What is going on with that tight cluster of cereals (black points) with a high value of the first PC?
cereal <- y == levels(y)[1]
ii <- cereal & (pca$x[, 1]>3)
datc$Shrt_Desc[ii]
## NULL
Notice these cereals all have “W/ H20” mentioned. That is consistent with the fact that PC1 has a large positive value for the Water feature.
And what about that odd-ball cereal in the lower left? That’s .
This doesn’t ring any bells, so let’s look at its composition:
x[cereal & (pca$x[, 2] < -4), ]
## X9..before.pit..indicator.not.first.leg.of.race
## X13..before.pit..average.prev.rank.2
## X20..after.pit..race.variant..age.of.LS.tyre.at.pit
## X21..after.pit..race.variant..age.of.RS.tyre.at.pit
## X26..before.pit..incoming.rank.before.pit.bef.leg
## X28..before.pit..indicator.pit.in.caution..1.true...indicates.traffic.at.the.start.of.outing
## X34..before.pit..25th.percentile.rank.upto.bef.pit
## X35..before.pit..75th.percentile.rank.upto.bef.pit
## X37..before.pit..prev.min.change.in.rank.over.all.epochs
## X40..before.pit..average.prev..rate.of.change.in.rank
## X41..before.pit..immediate.prev.rate.of.change.in.rank
## X43..before.pit..prev.min..change.in.rank.rank.
## X44..before.pit..average.prev..change.in.rank.rank.
## X45..before.pit..immediate.prev..change.in.rank.rank.
## X56..before.pit..NBHD.prev.epoch..median.ranks.of.neighborhood.
## X59..before.pit..NBHD.prev.epoch..number.of.0.pit.types.of.neighborhood
## X60..before.pit..NBHD.prev.epoch..number.of.2.pit.types.of.neighborhood
## X61..before.pit..NBHD.prev.epoch..number.of.4.pit.types.of.neighborhood
## X69..before.pit..NBHD.prev.epoch..Normalized.median.age.of.LS.tyres.at.pit.of.neighborhood..58
## X75..before.pit..race.variant..cumulative.time.in.pits.upto.pit.entry
## X76..after.pit..indicator.2.tire.change..ref.19
## X77..after.pit..indicator.4.tire.change..ref.19
## X82..before.pit..starting.position.of.the.car
## X86..before.pit..indicator.front..lte.8..of.the.pack.pre.pit
## X89..before.pit..Indicator.2.tire.AND.bottom..gte.23..of.pack.at.pit.entry...features.76...feature.87.
## X128..before.pit...Binned.avg.pre.slope..prev.epoch.avg.rank..new
## X133..before.pit..Binned.avg.prev.slope.HI.RES
## X137..before.pit...Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES
## X139..after.pit...Binned.avg.pre.slope..pit.exit.rank.HI.RES
## X140..after.pit..Time.in.pits.before.outing
## X146..before.pit..norm.immediate.prev.slope...immediate.prev.init.rank.2
## X149..before.pit..exp.of.norm.immediate.prev.slope
## X150..before.pit..sqrt.of.immediate.prev.avg.rank
## X151..before.pit..square.of.immediate.prev.avg.rank
## X153..before.pit..sqrt.of.avg.prev.rank.12
## X157..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.127
## X158..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.127
## X160..before.pit..sqrt.of.Binned.avg.prev.slope.HI.RES.133
## X161..before.pit..square.of.Binned.avg.prev.slope.HI.RES.133
## X163..before.pit..sqrt.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137
## X164..before.pit..square.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137
## X165..before.pit..exp.of..Binned.avg.pre.slope..prev.epoch.final.rank.HI.RES.137
## X166..after.pit.total_tire_age.at.pit
That calcium value is quite high, and also 3333 looks like it could be coding a missing value or something (since I think 999 is sometimes used for this), however I can’t find any references to 3333 in the documentation for the data. And plotting the Calcium values, it doesn’t look that crazy, especially after a log transformation:
# boxplot(x[cereal,"Calcium_.mg."], main="Calcium values")
# hist(log(1+x[cereal,"Calcium_.mg."]), main="log(Calcium values)")