Introduction

Question2

Variation

Visualizing distributions

diamonds %>%
    ggplot(aes(x = cut)) +
    geom_bar() 

diamonds %>%
    ggplot(mapping = aes(x = carat)) +
    geom_histogram(binwidth = 0.5)

diamonds %>%
    
    filter(carat < 3) %>%
    
    ggplot(aes(x = carat)) +
    geom_histogram(bindwidth = 0.5)
## Warning in geom_histogram(bindwidth = 0.5): Ignoring unknown parameters:
## `bindwidth`
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

diamonds %>%
    ggplot(aes(x = carat, color = cut)) +
    geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical values

diamonds %>%
    
    # Filter out diamonds > 3 carat
    filter(carat > 3) %>%
    
    # Plot 
    ggplot(aes(x = carat)) +
    geom_histogram(bindwidth = 0.01)
## Warning in geom_histogram(bindwidth = 0.01): Ignoring unknown parameters:
## `bindwidth`
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

faithful %>%
    
    ggplot(aes(x = eruptions)) + 
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Unsual Values

diamonds %>%
    
    ggplot(aes(y)) + 
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

diamonds %>%
    
    ggplot(aes(y)) + 
    geom_histogram() +
    coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Missing Values

diamonds %>%
    
    #filter(y < 3 | y > 20) %>%
    
    mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
               
    # Plot
        ggplot(aes(x = x, y = y)) +
        geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

Covariation

A categorical and continuous variable

diamonds %>%
    
    ggplot(aes(x = cut, y = price)) +
    geom_boxplot()

Two categorical varibales

diamonds %>%
    
    count(color, cut) %>%
    
    ggplot(aes(x = color, y = cut, fill = n)) +
    geom_tile()

Patterns and models

library(modelr)

mod <- lm(log(price) ~ log(carat), data = diamonds)
    
diamonds4 <- diamonds %>%
    modelr::add_residuals(mod) %>%
    mutate(resid = exp(resid))

diamonds4 %>%
    ggplot(aes(carat, resid)) +
    geom_point()

diamonds4 %>%
    ggplot(aes(cut, resid)) + 
    geom_boxplot()