第七章 时间序列可视化课堂练习
1 案例数据
1.1 all_stock_2024:工商银行、招商应用、中信证券和贵州茅台四个股票2024各天交易数据
data
为为日期变量,但该日期变量不规则(不连续),周末和公众假期没有交易数据;编码
和名称
用于识别不同股票,注意不同股票有交易数据日期不一定一致,但本例种各股票均有242个交易日数据;开盘
价到换手率
均为数值变量,开盘
价到成交量
与每股资产有关,不同股票间不可比;交易量的单位为手(百股)、成交额的单位为元,振幅等四个变量均为相对指标。
2 折线图和面积图
2.1 合并折线图
将四只股票的
涨跌幅
做作折线图,将四条折线在同一个图形输出;日期截取
2024-9-1
到2024-10-31
;添加一条纵轴为0的参考线,采用
twodash
的线型;将图标题改为“合并涨跌幅折线图”。
2.2 分面折线图
将四只股票的
收盘
价格做作折线图,将四条折线图分面输出;日期截取一整年;
并使用
ggpol::geom_tshighlight
将2024-9-1
到2024-10-31
时间段高亮显示
2.3 面积图
将四只股票的
收盘
价格做作面积图,将四个面积图分面输出;将成交量的单位改为万手
2.4 图形观察和代码编写的心得体会
- 观察涨跌幅折线图可得,在10月1日前后各个股票受政策影响,涨跌幅变大。观察分面折线图可得,招商银行受行情影响最大,中信证券受两拨行情的影响。观察面积图可得,中信证券经过政策影响后,其波动和成交量变大。
3 流线图和地平线图
3.1 流线图
将四只股票的
交易额
做作流线图,将四个面积图分面输出;将交易额的单位改为亿元
3.2 地平线图
- 采用
ggHoriPlot::geom_horizon
函数,对四只股票的交易额
做作地平线图 - 设置原点为均值
origin='mean'
,输出配色图例
3.3 图形观察和代码编写的心得体会
- 观察流线图可得,在十月份的行情之前,四只股票中交易量最大的是贵州茅台,在十月份行情过后,中信证券的交易量变大,超越贵州茅台成为交易额最大的股票。观察地平图可得,中信证券在经过行情之后,交易额维持着高于平均水平·的情况,政策对其的影响比较持续,对其他几个股票的影响较为短暂。
4 不规则时间序列图
4.1 数据准备
通过
zoo::rollmean
时间收盘价的5天、10天和20天的移动平均将日期变量转化为
id
变量
4.2 平滑曲线图
将四只股票收盘价和3种移动平均的折线图分面输出;
横轴的每隔30天一个刻度,只显示月/日;
4.3 K线图
选择工商银行数据作出,2024年的K线图
scale_x_continuous
将横轴坐标刻度转化回日期型
4.4 图形观察和代码编写的心得体会
- 观察平滑曲线图,在十月份行情过后,中信证券的收盘价呈现持续上升趋势,而贵州茅台呈现一定趋势的下降。观察工商银行k线图可得,在十月份行情前后,该股票受政策影响出现一定的波动,不过政策对其的影响较为短暂。