1. 🧱 Weird Wall Builder You are building a wall that uses 4 bricks per square foot. If the wall is 10 feet long and 7 feet high, subtract 3 bricks lost to damage. Then, take the square root of the total to estimate effort required. Use at least +, -, *, sqrt().
# Wall dimensions
length <- 10
height <- 7

# Bricks per square foot
bricks_per_sqft <- 4

# Damaged bricks
damaged <- 3

# Total bricks calculation
area <- length * height
total_bricks <- area * bricks_per_sqft
usable_bricks <- total_bricks - damaged

# Effort estimation using square root
effort <- sqrt(usable_bricks)

# Output the result
print(paste("Effort estimate:", round(effort, 2)))
[1] "Effort estimate: 16.64"
  1. 🧠 Einstein’s Brain Teaser Define mass <- 2, speed <- 3. Calculate: energy = mass * (speed^2) + 10 - 2 / speed, then print the result and its square root.
# Define variables
mass <- 2
speed <- 3

# Calculate energy using the formula
energy <- mass * (speed^2) + 10 - 2 / speed

# Print the energy
print(paste("Energy:", round(energy, 2)))
[1] "Energy: 27.33"
# Print the square root of the energy
print(paste("Square root of energy:", round(sqrt(energy), 2)))
[1] "Square root of energy: 5.23"
  1. 🧃 Juice Mix Madness You mix 250 ml of orange juice, 300 ml of pineapple juice, subtract 75 ml accidentally spilled, divide the total by 2 (you share with a friend), and then raise that result to the power of 0.5. Print the final amount per person.
# Initial juice amounts (in ml)
orange_juice <- 250
pineapple_juice <- 300
spilled <- 75

# Total juice after spill
total_juice <- orange_juice + pineapple_juice - spilled

# Divide between two people
juice_per_person <- total_juice / 2

# Raise to the power of 0.5 (square root)
final_amount <- juice_per_person^0.5

# Print the result
print(paste("Final amount per person (sqrt):", round(final_amount, 2)))
[1] "Final amount per person (sqrt): 15.41"
  1. 🎢 Rollercoaster Force Force is calculated as mass * acceleration. Define mass = 80, acceleration = 9.8. Subtract 25 for wind resistance. Then take the square root of the result and raise it to the power of 1.2. Print all steps.
# Define variables
mass <- 80
acceleration <- 9.8
wind_resistance <- 25

# Step 1: Calculate force
force <- mass * acceleration
print(paste("Initial Force:", round(force, 2)))
[1] "Initial Force: 784"
# Step 2: Subtract wind resistance
adjusted_force <- force - wind_resistance
print(paste("After Wind Resistance:", round(adjusted_force, 2)))
[1] "After Wind Resistance: 759"
# Step 3: Take square root
sqrt_force <- sqrt(adjusted_force)
print(paste("Square Root of Adjusted Force:", round(sqrt_force, 2)))
[1] "Square Root of Adjusted Force: 27.55"
# Step 4: Raise to the power of 1.2
final_result <- sqrt_force^1.2
print(paste("Final Result (Raised to 1.2):", round(final_result, 2)))
[1] "Final Result (Raised to 1.2): 53.47"
  1. 🍕 Pizza Math A pizza has a radius of 7. Area is pi * r^2. Assume pi = 3.14. Multiply by 1.2 for crust thickness, subtract 5% for burned edge (use /), then take the square root of the result to “estimate deliciousness.”
# Define variables
radius <- 7
pi_val <- 3.14

# Step 1: Calculate area
area <- pi_val * radius^2
print(paste("Base Area:", round(area, 2)))
[1] "Base Area: 153.86"
# Step 2: Multiply by 1.2 for crust thickness
crust_adjusted <- area * 1.2
print(paste("After Crust Thickness:", round(crust_adjusted, 2)))
[1] "After Crust Thickness: 184.63"
# Step 3: Subtract 5% for burned edge
burned_edge_adjusted <- crust_adjusted / 1.05
print(paste("After Burned Edge Adjustment:", round(burned_edge_adjusted, 2)))
[1] "After Burned Edge Adjustment: 175.84"
# Step 4: Take square root to estimate deliciousness
deliciousness <- sqrt(burned_edge_adjusted)
print(paste("Estimated Deliciousness:", round(deliciousness, 2)))
[1] "Estimated Deliciousness: 13.26"
LS0tCnRpdGxlOiAiQWxleGFuZGVyIFJvbWVybyBBc3NpZ25tZW50cyBTZXQgMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKMS4g8J+nsSBXZWlyZCBXYWxsIEJ1aWxkZXIKWW91IGFyZSBidWlsZGluZyBhIHdhbGwgdGhhdCB1c2VzIDQgYnJpY2tzIHBlciBzcXVhcmUgZm9vdC4gSWYgdGhlIHdhbGwgaXMgMTAgZmVldCBsb25nIGFuZCA3IGZlZXQgaGlnaCwgc3VidHJhY3QgMyBicmlja3MgbG9zdCB0byBkYW1hZ2UuIFRoZW4sIHRha2UgdGhlIHNxdWFyZSByb290IG9mIHRoZSB0b3RhbCB0byBlc3RpbWF0ZSBlZmZvcnQgcmVxdWlyZWQuClVzZSBhdCBsZWFzdCArLCAtLCAqLCBzcXJ0KCkuCmBgYHtyfQojIFdhbGwgZGltZW5zaW9ucwpsZW5ndGggPC0gMTAKaGVpZ2h0IDwtIDcKCiMgQnJpY2tzIHBlciBzcXVhcmUgZm9vdApicmlja3NfcGVyX3NxZnQgPC0gNAoKIyBEYW1hZ2VkIGJyaWNrcwpkYW1hZ2VkIDwtIDMKCiMgVG90YWwgYnJpY2tzIGNhbGN1bGF0aW9uCmFyZWEgPC0gbGVuZ3RoICogaGVpZ2h0CnRvdGFsX2JyaWNrcyA8LSBhcmVhICogYnJpY2tzX3Blcl9zcWZ0CnVzYWJsZV9icmlja3MgPC0gdG90YWxfYnJpY2tzIC0gZGFtYWdlZAoKIyBFZmZvcnQgZXN0aW1hdGlvbiB1c2luZyBzcXVhcmUgcm9vdAplZmZvcnQgPC0gc3FydCh1c2FibGVfYnJpY2tzKQoKIyBPdXRwdXQgdGhlIHJlc3VsdApwcmludChwYXN0ZSgiRWZmb3J0IGVzdGltYXRlOiIsIHJvdW5kKGVmZm9ydCwgMikpKQpgYGAKMi4g8J+noCBFaW5zdGVpbuKAmXMgQnJhaW4gVGVhc2VyCkRlZmluZSBtYXNzIDwtIDIsIHNwZWVkIDwtIDMuIENhbGN1bGF0ZToKZW5lcmd5ID0gbWFzcyAqIChzcGVlZF4yKSArIDEwIC0gMiAvIHNwZWVkLCB0aGVuIHByaW50IHRoZSByZXN1bHQgYW5kIGl0cyBzcXVhcmUgcm9vdC4KYGBge3J9CiMgRGVmaW5lIHZhcmlhYmxlcwptYXNzIDwtIDIKc3BlZWQgPC0gMwoKIyBDYWxjdWxhdGUgZW5lcmd5IHVzaW5nIHRoZSBmb3JtdWxhCmVuZXJneSA8LSBtYXNzICogKHNwZWVkXjIpICsgMTAgLSAyIC8gc3BlZWQKCiMgUHJpbnQgdGhlIGVuZXJneQpwcmludChwYXN0ZSgiRW5lcmd5OiIsIHJvdW5kKGVuZXJneSwgMikpKQoKIyBQcmludCB0aGUgc3F1YXJlIHJvb3Qgb2YgdGhlIGVuZXJneQpwcmludChwYXN0ZSgiU3F1YXJlIHJvb3Qgb2YgZW5lcmd5OiIsIHJvdW5kKHNxcnQoZW5lcmd5KSwgMikpKQpgYGAKMy4g8J+ngyBKdWljZSBNaXggTWFkbmVzcwpZb3UgbWl4IDI1MCBtbCBvZiBvcmFuZ2UganVpY2UsIDMwMCBtbCBvZiBwaW5lYXBwbGUganVpY2UsIHN1YnRyYWN0IDc1IG1sIGFjY2lkZW50YWxseSBzcGlsbGVkLCBkaXZpZGUgdGhlIHRvdGFsIGJ5IDIgKHlvdSBzaGFyZSB3aXRoIGEgZnJpZW5kKSwgYW5kIHRoZW4gcmFpc2UgdGhhdCByZXN1bHQgdG8gdGhlIHBvd2VyIG9mIDAuNS4gUHJpbnQgdGhlIGZpbmFsIGFtb3VudCBwZXIgcGVyc29uLgpgYGB7cn0KIyBJbml0aWFsIGp1aWNlIGFtb3VudHMgKGluIG1sKQpvcmFuZ2VfanVpY2UgPC0gMjUwCnBpbmVhcHBsZV9qdWljZSA8LSAzMDAKc3BpbGxlZCA8LSA3NQoKIyBUb3RhbCBqdWljZSBhZnRlciBzcGlsbAp0b3RhbF9qdWljZSA8LSBvcmFuZ2VfanVpY2UgKyBwaW5lYXBwbGVfanVpY2UgLSBzcGlsbGVkCgojIERpdmlkZSBiZXR3ZWVuIHR3byBwZW9wbGUKanVpY2VfcGVyX3BlcnNvbiA8LSB0b3RhbF9qdWljZSAvIDIKCiMgUmFpc2UgdG8gdGhlIHBvd2VyIG9mIDAuNSAoc3F1YXJlIHJvb3QpCmZpbmFsX2Ftb3VudCA8LSBqdWljZV9wZXJfcGVyc29uXjAuNQoKIyBQcmludCB0aGUgcmVzdWx0CnByaW50KHBhc3RlKCJGaW5hbCBhbW91bnQgcGVyIHBlcnNvbiAoc3FydCk6Iiwgcm91bmQoZmluYWxfYW1vdW50LCAyKSkpCmBgYAo0LiDwn46iIFJvbGxlcmNvYXN0ZXIgRm9yY2UKRm9yY2UgaXMgY2FsY3VsYXRlZCBhcyBtYXNzICogYWNjZWxlcmF0aW9uLiBEZWZpbmUgbWFzcyA9IDgwLCBhY2NlbGVyYXRpb24gPSA5LjguIFN1YnRyYWN0IDI1IGZvciB3aW5kIHJlc2lzdGFuY2UuIFRoZW4gdGFrZSB0aGUgc3F1YXJlIHJvb3Qgb2YgdGhlIHJlc3VsdCBhbmQgcmFpc2UgaXQgdG8gdGhlIHBvd2VyIG9mIDEuMi4gUHJpbnQgYWxsIHN0ZXBzLgpgYGB7cn0KIyBEZWZpbmUgdmFyaWFibGVzCm1hc3MgPC0gODAKYWNjZWxlcmF0aW9uIDwtIDkuOAp3aW5kX3Jlc2lzdGFuY2UgPC0gMjUKCiMgU3RlcCAxOiBDYWxjdWxhdGUgZm9yY2UKZm9yY2UgPC0gbWFzcyAqIGFjY2VsZXJhdGlvbgpwcmludChwYXN0ZSgiSW5pdGlhbCBGb3JjZToiLCByb3VuZChmb3JjZSwgMikpKQoKIyBTdGVwIDI6IFN1YnRyYWN0IHdpbmQgcmVzaXN0YW5jZQphZGp1c3RlZF9mb3JjZSA8LSBmb3JjZSAtIHdpbmRfcmVzaXN0YW5jZQpwcmludChwYXN0ZSgiQWZ0ZXIgV2luZCBSZXNpc3RhbmNlOiIsIHJvdW5kKGFkanVzdGVkX2ZvcmNlLCAyKSkpCgojIFN0ZXAgMzogVGFrZSBzcXVhcmUgcm9vdApzcXJ0X2ZvcmNlIDwtIHNxcnQoYWRqdXN0ZWRfZm9yY2UpCnByaW50KHBhc3RlKCJTcXVhcmUgUm9vdCBvZiBBZGp1c3RlZCBGb3JjZToiLCByb3VuZChzcXJ0X2ZvcmNlLCAyKSkpCgojIFN0ZXAgNDogUmFpc2UgdG8gdGhlIHBvd2VyIG9mIDEuMgpmaW5hbF9yZXN1bHQgPC0gc3FydF9mb3JjZV4xLjIKcHJpbnQocGFzdGUoIkZpbmFsIFJlc3VsdCAoUmFpc2VkIHRvIDEuMik6Iiwgcm91bmQoZmluYWxfcmVzdWx0LCAyKSkpCmBgYAo1LiDwn42VIFBpenphIE1hdGgKQSBwaXp6YSBoYXMgYSByYWRpdXMgb2YgNy4gQXJlYSBpcyBwaSAqIHJeMi4gQXNzdW1lIHBpID0gMy4xNC4gTXVsdGlwbHkgYnkgMS4yIGZvciBjcnVzdCB0aGlja25lc3MsIHN1YnRyYWN0IDUlIGZvciBidXJuZWQgZWRnZSAodXNlIC8pLCB0aGVuIHRha2UgdGhlIHNxdWFyZSByb290IG9mIHRoZSByZXN1bHQgdG8g4oCcZXN0aW1hdGUgZGVsaWNpb3VzbmVzcy7igJ0KYGBge3J9CiMgRGVmaW5lIHZhcmlhYmxlcwpyYWRpdXMgPC0gNwpwaV92YWwgPC0gMy4xNAoKIyBTdGVwIDE6IENhbGN1bGF0ZSBhcmVhCmFyZWEgPC0gcGlfdmFsICogcmFkaXVzXjIKcHJpbnQocGFzdGUoIkJhc2UgQXJlYToiLCByb3VuZChhcmVhLCAyKSkpCgojIFN0ZXAgMjogTXVsdGlwbHkgYnkgMS4yIGZvciBjcnVzdCB0aGlja25lc3MKY3J1c3RfYWRqdXN0ZWQgPC0gYXJlYSAqIDEuMgpwcmludChwYXN0ZSgiQWZ0ZXIgQ3J1c3QgVGhpY2tuZXNzOiIsIHJvdW5kKGNydXN0X2FkanVzdGVkLCAyKSkpCgojIFN0ZXAgMzogU3VidHJhY3QgNSUgZm9yIGJ1cm5lZCBlZGdlCmJ1cm5lZF9lZGdlX2FkanVzdGVkIDwtIGNydXN0X2FkanVzdGVkIC8gMS4wNQpwcmludChwYXN0ZSgiQWZ0ZXIgQnVybmVkIEVkZ2UgQWRqdXN0bWVudDoiLCByb3VuZChidXJuZWRfZWRnZV9hZGp1c3RlZCwgMikpKQoKIyBTdGVwIDQ6IFRha2Ugc3F1YXJlIHJvb3QgdG8gZXN0aW1hdGUgZGVsaWNpb3VzbmVzcwpkZWxpY2lvdXNuZXNzIDwtIHNxcnQoYnVybmVkX2VkZ2VfYWRqdXN0ZWQpCnByaW50KHBhc3RlKCJFc3RpbWF0ZWQgRGVsaWNpb3VzbmVzczoiLCByb3VuZChkZWxpY2lvdXNuZXNzLCAyKSkpCmBgYAoK