Este cuaderno de R tiene como finalidad aprender a obtener estadisticas multianuales de cultivos de nuestro departamento, utilizaremos los datos obtenidos del Ministerio de Agricultura y Desarollo Rural, las Evaluaciones Agropecuarias Municipales (EVA) del 2007 al 2018.
library(tidyverse)
library(dplyr)
library(readr)
library(ggplot2)
list.files("C:/Users/TEMP/Downloads/GB2-20250527T194536Z-1-001/GB2/Projecto 4", pattern=c('csv'))
## [1] "Evaluaciones_Agropecuarias_Municipales_EVA_20250603.csv"
(eva = read_csv("C:/Users/TEMP/Downloads/GB2-20250527T194536Z-1-001/GB2/Projecto 4/Evaluaciones_Agropecuarias_Municipales_EVA_20250603.csv", col_names = TRUE,
show_col_types = FALSE))
names(eva)
## [1] "CÓD. \nDEP."
## [2] "DEPARTAMENTO"
## [3] "CÓD. MUN."
## [4] "MUNICIPIO"
## [5] "GRUPO \nDE CULTIVO"
## [6] "SUBGRUPO \nDE CULTIVO"
## [7] "CULTIVO"
## [8] "DESAGREGACIÓN REGIONAL Y/O SISTEMA PRODUCTIVO"
## [9] "AÑO"
## [10] "PERIODO"
## [11] "Área Sembrada\n(ha)"
## [12] "Área Cosechada\n(ha)"
## [13] "Producción\n(t)"
## [14] "Rendimiento\n(t/ha)"
## [15] "ESTADO FISICO PRODUCCION"
## [16] "NOMBRE \nCIENTIFICO"
## [17] "CICLO DE CULTIVO"
eva %>% dplyr::select('CÓD. MUN.':'ESTADO FISICO PRODUCCION') -> eva.tmp
eva.tmp
eva.tmp %>% dplyr::rename('Cod_Mun' = 'CÓD. MUN.',
'Grupo' = 'GRUPO \nDE CULTIVO',
'Subgrupo' = 'SUBGRUPO \nDE CULTIVO',
'Year' = 'AÑO',
'AreaSembrada' = 'Área Sembrada\n(ha)',
'AreaCosechada' = 'Área Sembrada\n(ha)',
'Produccion' = 'Producción\n(t)', 'Rendimiento' = 'Rendimiento\n(t/ha)',
'Sistema' = 'DESAGREGACIÓN REGIONAL Y/O SISTEMA PRODUCTIVO',
'Estado' = 'ESTADO FISICO PRODUCCION') -> new_eva
new_eva
new_eva %>%
group_by(Grupo) %>%
summarize(total_produccion = sum(Produccion)) %>%
arrange(desc(total_produccion))
new_eva %>%
group_by(Grupo) %>%
summarize(total_produccion = sum(Produccion)) -> PT
PT %>%
filter(total_produccion > 1000000) -> main.groups
(value = sum(main.groups$total_produccion))
## [1] 8685540
main.groups$percent = main.groups$total_produccion/value
library(ggplot2)
bp<- ggplot(main.groups, aes(x="", y=percent, fill=Grupo))+
geom_bar(width = 1, stat = "identity")
pie <- bp + coord_polar("y", start=0)
pie
new_eva %>%
group_by(Grupo, MUNICIPIO) %>%
summarize(total_prod = sum(Produccion, na.rm = TRUE)) %>%
slice(which.max(total_prod)) %>%
arrange(desc(total_prod))
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
new_eva %>%
group_by(Grupo, MUNICIPIO) %>%
summarize(total_prod = sum(Produccion, na.rm = TRUE)) %>%
slice(which.max(total_prod)) -> leaders
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
leaders
leaders %>%
filter(total_prod > 50000) -> main.leaders
p<-ggplot(data=main.leaders, aes(x=MUNICIPIO, y=total_prod)) +
geom_bar(stat="identity")
p
new_eva %>%
filter(MUNICIPIO=="CAMPOALEGRE" & CULTIVO=="ARROZ") %>%
group_by(Year, CULTIVO) %>%
select(MUNICIPIO, CULTIVO, Produccion, Year) -> campoalegre_rice
campoalegre_rice
g <- ggplot(aes(x=Year, y=Produccion/1000), data = campoalegre_rice) + geom_bar(stat='identity') + labs(y='Produccion de Arroz [Ton x 1000]')
g + ggtitle("Evolution of Pineapple Crop Production in Lebrija from 2007 to 2018") + labs(caption= "Based on EVA data (Minagricultura, 2020)")
sessionInfo()
## R version 4.5.0 (2025-04-11 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
##
## Matrix products: default
## LAPACK version 3.12.1
##
## locale:
## [1] LC_COLLATE=Spanish_Colombia.utf8 LC_CTYPE=Spanish_Colombia.utf8
## [3] LC_MONETARY=Spanish_Colombia.utf8 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Colombia.utf8
##
## time zone: America/Bogota
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
## [5] purrr_1.0.4 readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
## [9] ggplot2_3.5.2 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] bit_4.6.0 gtable_0.3.6 jsonlite_2.0.0 crayon_1.5.3
## [5] compiler_4.5.0 tidyselect_1.2.1 parallel_4.5.0 jquerylib_0.1.4
## [9] scales_1.4.0 yaml_2.3.10 fastmap_1.2.0 R6_2.6.1
## [13] labeling_0.4.3 generics_0.1.4 knitr_1.50 bslib_0.9.0
## [17] pillar_1.10.2 RColorBrewer_1.1-3 tzdb_0.5.0 rlang_1.1.6
## [21] cachem_1.1.0 stringi_1.8.7 xfun_0.52 sass_0.4.10
## [25] bit64_4.6.0-1 timechange_0.3.0 cli_3.6.5 withr_3.0.2
## [29] magrittr_2.0.3 digest_0.6.37 grid_4.5.0 vroom_1.6.5
## [33] rstudioapi_0.17.1 hms_1.1.3 lifecycle_1.0.4 vctrs_0.6.5
## [37] evaluate_1.0.3 glue_1.8.0 farver_2.1.2 rmarkdown_2.29
## [41] tools_4.5.0 pkgconfig_2.0.3 htmltools_0.5.8.1