Biostatistics for Health Researchers II: Section C

Author
Affiliation

Bongani Ncube(3002164)

University Of the Witwatersrand (School of Public Health)

Published

June 3, 2025

Keywords

Regression Analysis, Simple Linear, Multicolinearity, Multiple Regression, Cooks distance

Section C

(a) Fit a direct model that resembles the final model on question 4, show the SEM diagram and results table (side by side with those for 4c). Comment on the similarities and differences in your result

  • First we create dummy variable for education since it has more than 2 levels.
import delimited framingham_clean
regress sysbp i.male age i.education i.bpmeds i.prevalenthyp diabp heartrate glucose totchol, allbase


*Creating the dummy variables for education category*
tab education, gen(educationlevels)

*Fitting the model
sem (diabp -> sysbp, ) (educationlevels2 -> sysbp, ) (educationlevels3 -> sysbp, ) (educationlevels4 -> sysbp, ) (glucose -> sysbp, ) (heartrate -> sysbp, ) (bpmeds -> sysbp, ) (prevalenthyp -> sysbp, ) (male -> sysbp, ) (age -> sysbp, ) (totchol-> sysbp, ), covstructure(e._endogenous , unstructured) nocapslatent


*Education level 2 was removed becaused it was insignificant in the model (p-value=0.240 ) from the the final model.

estat mindices
(encoding automatically selected: ISO-8859-1)
(16 vars, 3,656 obs)

      Source |       SS           df       MS      Number of obs   =     3,656
-------------+----------------------------------   F(11, 3644)     =    915.52
       Model |  1309930.59        11  119084.599   Prob > F        =    0.0000
    Residual |  473987.479     3,644  130.073403   R-squared       =    0.7343
-------------+----------------------------------   Adj R-squared   =    0.7335
       Total |  1783918.07     3,655   488.07608   Root MSE        =    11.405

------------------------------------------------------------------------------
       sysbp | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
        male |
          0  |          0  (base)
          1  |  -2.777589   .3886811    -7.15   0.000    -3.539643   -2.015535
             |
         age |   .4207818   .0246387    17.08   0.000     .3724748    .4690888
             |
   education |
          1  |          0  (base)
          2  |  -.5738198   .4641805    -1.24   0.216    -1.483899    .3362595
          3  |  -1.595382   .5545176    -2.88   0.004    -2.682577    -.508186
          4  |  -2.578322   .6360304    -4.05   0.000    -3.825333   -1.331312
             |
      bpmeds |
          0  |          0  (base)
          1  |   7.353518   1.146972     6.41   0.000     5.104746    9.602289
             |
prevalenthyp |
          0  |          0  (base)
          1  |   12.88441    .541129    23.81   0.000     11.82346    13.94535
             |
       diabp |   1.041448   .0203391    51.20   0.000     1.001571    1.081325
   heartrate |   .0506771   .0163341     3.10   0.002     .0186521     .082702
     glucose |   .0446825   .0079963     5.59   0.000     .0290047    .0603602
     totchol |   .0087429   .0045064     1.94   0.052    -.0000924    .0175782
       _cons |   13.33082   2.371297     5.62   0.000     8.681618    17.98002
------------------------------------------------------------------------------


  education |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |      1,526       41.74       41.74
          2 |      1,101       30.11       71.85
          3 |        606       16.58       88.43
          4 |        423       11.57      100.00
------------+-----------------------------------
      Total |      3,656      100.00


Endogenous variables
  Observed: sysbp

Exogenous variables
  Observed: diabp educationlevels2 educationlevels3 educationlevels4 glucose
            heartrate bpmeds prevalenthyp male age totchol

Fitting target model:
Iteration 0:  Log likelihood = -98047.863  
Iteration 1:  Log likelihood = -98047.863  

Structural equation model                                Number of obs = 3,656
Estimation method: ml

Log likelihood = -98047.863

------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  sysbp      |
       diabp |   1.041448   .0203057    51.29   0.000      1.00165    1.081246
  educatio~2 |  -.5738198   .4634181    -1.24   0.216    -1.482103    .3344629
  educatio~3 |  -1.595382   .5536068    -2.88   0.004    -2.680431   -.5103322
  educatio~4 |  -2.578322   .6349857    -4.06   0.000    -3.822872   -1.333773
     glucose |   .0446825   .0079832     5.60   0.000     .0290357    .0603292
   heartrate |   .0506771   .0163073     3.11   0.002     .0187154    .0826387
      bpmeds |   7.353518   1.145089     6.42   0.000     5.109186     9.59785
  prevalen~p |   12.88441   .5402402    23.85   0.000     11.82555    13.94326
        male |  -2.777589   .3880427    -7.16   0.000    -3.538139   -2.017039
         age |   .4207818   .0245982    17.11   0.000     .3725701    .4689934
     totchol |   .0087429    .004499     1.94   0.052     -.000075    .0175607
       _cons |   13.33082   2.367402     5.63   0.000     8.690795    17.97084
-------------+----------------------------------------------------------------
 var(e.sysbp)|   129.6465   3.032303                      123.8374     135.728
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00                 Prob > chi2 = .

(no modification indices to report, all MI values less than 3.841458820694123)

Model Structural Output

Comments
  • The linear regression model output and the structural Equation model had similarities and few disparities
  • The estimated path coefficients in both model outputs were the same (identical) for all variables including the constant/intercept
  • The Z and t values where however quite different
  • The significance of the variables at 5% were also identical.

(b) Work on improving the direct model by introducing some indirect pathways based on research knowledge of the field or suggested pathways from ’’estat mindices”. Display the final direct and indirect SEM diagram and explain your approach of the indirect pathways and/or correlations introduced. Hint: Do not make the modifications too complex, make a few alterations that help improve the model

import delimited framingham_clean


*Creating the dummy variables for education category since it has more than two levels
tab education, gen(educationlevels)

sem (prevalenthyp -> sysbp, ) (educationlevels3 -> sysbp, ) (educationlevels4 -> sysbp, ) (male -> sysbp, ) (glucose -> sysbp, ) (glucose -> prevalenthyp, ) (heartrate -> sysbp, ) (heartrate -> prevalenthyp, ) (diabp -> sysbp, ) (diabp -> prevalenthyp, ) (age -> sysbp, ) (age -> prevalenthyp, ) (bpmeds -> sysbp, ) (bpmeds -> prevalenthyp, ) (totchol -> sysbp, ), nocapslatent

estat gof, stats(all)  
(encoding automatically selected: ISO-8859-1)
(16 vars, 3,656 obs)


  education |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |      1,526       41.74       41.74
          2 |      1,101       30.11       71.85
          3 |        606       16.58       88.43
          4 |        423       11.57      100.00
------------+-----------------------------------
      Total |      3,656      100.00


Endogenous variables
  Observed: prevalenthyp sysbp

Exogenous variables
  Observed: educationlevels3 educationlevels4 male glucose heartrate diabp
            age bpmeds totchol

Fitting target model:
Iteration 0:  Log likelihood = -96155.335  
Iteration 1:  Log likelihood = -96155.335  

Structural equation model                                Number of obs = 3,656
Estimation method: ml

Log likelihood = -96155.335

------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  prevalen~p |
     glucose |   .0003951   .0002444     1.62   0.106    -.0000839     .000874
   heartrate |   .0017932    .000492     3.64   0.000      .000829    .0027575
       diabp |   .0211249   .0005093    41.48   0.000     .0201267    .0221231
         age |   .0093578   .0006969    13.43   0.000     .0079918    .0107237
      bpmeds |   .3480831   .0344983    10.09   0.000     .2804678    .4156985
       _cons |  -2.082419   .0588731   -35.37   0.000    -2.197809    -1.96703
  -----------+----------------------------------------------------------------
  sysbp      |
  prevalen~p |   12.88386   .5403533    23.84   0.000     11.82479    13.94293
  educatio~3 |  -1.345866   .5157383    -2.61   0.009    -2.356694   -.3350375
  educatio~4 |  -2.329898   .6025839    -3.87   0.000    -3.510941   -1.148855
        male |  -2.754165   .3876626    -7.10   0.000     -3.51397    -1.99436
     glucose |   .0447748   .0079845     5.61   0.000     .0291254    .0604242
   heartrate |   .0505673   .0163105     3.10   0.002     .0185994    .0825353
       diabp |   1.041687    .020309    51.29   0.000     1.001882    1.081492
         age |   .4274418    .024008    17.80   0.000     .3803869    .4744967
      bpmeds |   7.319757   1.145004     6.39   0.000      5.07559    9.563923
     totchol |   .0085681   .0044977     1.91   0.057    -.0002472    .0173835
       _cons |   12.77098   2.324315     5.49   0.000     8.215408    17.32655
-------------+----------------------------------------------------------------
var(e.prev~p)|   .1216345   .0028449                      .1161845    .1273403
 var(e.sysbp)|   129.7008   3.033575                      123.8894    135.7849
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(4) = 4.01            Prob > chi2 = 0.4051


----------------------------------------------------------------------------
Fit statistic        |      Value   Description
---------------------+------------------------------------------------------
Likelihood ratio     |
          chi2_ms(4) |      4.007   model vs. saturated
            p > chi2 |      0.405
         chi2_bs(19) |   6921.819   baseline vs. saturated
            p > chi2 |      0.000
---------------------+------------------------------------------------------
Population error     |
               RMSEA |      0.001   Root mean squared error of approximation
 90% CI, lower bound |      0.000
         upper bound |      0.025
              pclose |      1.000   Probability RMSEA <= 0.05
---------------------+------------------------------------------------------
Information criteria |
                 AIC | 192348.671   Akaike's information criterion
                 BIC | 192466.549   Bayesian information criterion
---------------------+------------------------------------------------------
Baseline comparison  |
                 CFI |      1.000   Comparative fit index
                 TLI |      1.000   Tucker–Lewis index
---------------------+------------------------------------------------------
Size of residuals    |
                SRMR |      0.003   Standardized root mean squared residual
                  CD |      0.707   Coefficient of determination
----------------------------------------------------------------------------
Comments
  • firstly education level 2 was removed due to not being significant (\(p=0.216>0.05\)).

  • On running the estat mindices command in stata on the initial direct model ,the estat mindices command did not suggest anything for improvement, hence I had to use expert opinion and prior belief to create indirect pathways.

  • The direct relationship between diastolic blood pressure and systolic blood pressure was mantained , this is supported both biologically and statistically since diastolic blood pressure is known to affect systolic blood pressure due to cardiovascular risk factors.

  • Prevalent hypertension(prevalenthyp) was introduced as a key Mediator since individuals with Prevalent hypertension often suffer more from elevated diastolic and systolic blood pressure.

Justification for the appproach

  • The changes result in more parsimonous model as few changes (justified changes were made to avoid overfitting)

Model Structural Output

(c) Perform and comment on all five SEM model goodness of fit procedures and comment on how each performs based on your final SEM model.

Note

The following command was ran into stata to get model goodness of fit indices

estat gof, stats(all) 

Comments

  1. Likelihood Ratio Test
  • (\(p-value=0.405\)), suggests no significant difference between the model and the saturated model. This model reproduces the observed data structure very well. The null hypothesis that the model fits the data is not rejected, therefore this is ideal in SEM.
  1. RMSEA (Root Mean Square Error of Approximation)
  • A value of RMSEA (< 0.05 )indicates close model fit,here our value (\(RMSEA=0.001\)), which is perfect. Also, pclose = 1.000 means there’s a 100% probability that the true RMSEA is less than 0.05 — again showing excellent fit.
  • The 90% upper and lower bound are also within the expected range i.e \(LB<0.05\) and \(UB<0.1\) ,hence also suggesting a good model fit
  1. CFI and TLI (Comparative Fit Index & Tucker-Lewis Index) Both indices are above 0.95 (exactly at 1.00), indicating excellent comparative fit. The model is much better than the baseline model that assumes no relationships among variables.

  2. SRMR (Standardized Root Mean Squared Residual) SRMR < 0.08 is generally considered good. For this model \(SRMR=0.003\), indicates the perfect fit, the model predicted correlations very closely match the observed ones.

  3. Coefficient of determination

  • value is \(CD=0.707\) and is quite high and significant.
  • The model explains 70.7% of the variance in the outcome variables indicating clinically/behaviorally meaningful predictive accuracy.

(d) Draw-up the table of results from the final SEM model and verify numerically the STATA drawn direct effects, indirect effects and total effects for “diabp” on your outcome variable “sysbp”.

import delimited framingham_clean


*Creating the dummy variables for education category since it has more than two levels
tab education, gen(educationlevels)

sem (prevalenthyp -> sysbp, ) (educationlevels3 -> sysbp, ) (educationlevels4 -> sysbp, ) (male -> sysbp, ) (glucose -> sysbp, ) (glucose -> prevalenthyp, ) (heartrate -> sysbp, ) (heartrate -> prevalenthyp, ) (diabp -> sysbp, ) (diabp -> prevalenthyp, ) (age -> sysbp, ) (age -> prevalenthyp, ) (bpmeds -> sysbp, ) (bpmeds -> prevalenthyp, ) (totchol -> sysbp, ), nocapslatent

estat teffects 
(encoding automatically selected: ISO-8859-1)
(16 vars, 3,656 obs)


  education |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |      1,526       41.74       41.74
          2 |      1,101       30.11       71.85
          3 |        606       16.58       88.43
          4 |        423       11.57      100.00
------------+-----------------------------------
      Total |      3,656      100.00


Endogenous variables
  Observed: prevalenthyp sysbp

Exogenous variables
  Observed: educationlevels3 educationlevels4 male glucose heartrate diabp
            age bpmeds totchol

Fitting target model:
Iteration 0:  Log likelihood = -96155.335  
Iteration 1:  Log likelihood = -96155.335  

Structural equation model                                Number of obs = 3,656
Estimation method: ml

Log likelihood = -96155.335

------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  prevalen~p |
     glucose |   .0003951   .0002444     1.62   0.106    -.0000839     .000874
   heartrate |   .0017932    .000492     3.64   0.000      .000829    .0027575
       diabp |   .0211249   .0005093    41.48   0.000     .0201267    .0221231
         age |   .0093578   .0006969    13.43   0.000     .0079918    .0107237
      bpmeds |   .3480831   .0344983    10.09   0.000     .2804678    .4156985
       _cons |  -2.082419   .0588731   -35.37   0.000    -2.197809    -1.96703
  -----------+----------------------------------------------------------------
  sysbp      |
  prevalen~p |   12.88386   .5403533    23.84   0.000     11.82479    13.94293
  educatio~3 |  -1.345866   .5157383    -2.61   0.009    -2.356694   -.3350375
  educatio~4 |  -2.329898   .6025839    -3.87   0.000    -3.510941   -1.148855
        male |  -2.754165   .3876626    -7.10   0.000     -3.51397    -1.99436
     glucose |   .0447748   .0079845     5.61   0.000     .0291254    .0604242
   heartrate |   .0505673   .0163105     3.10   0.002     .0185994    .0825353
       diabp |   1.041687    .020309    51.29   0.000     1.001882    1.081492
         age |   .4274418    .024008    17.80   0.000     .3803869    .4744967
      bpmeds |   7.319757   1.145004     6.39   0.000      5.07559    9.563923
     totchol |   .0085681   .0044977     1.91   0.057    -.0002472    .0173835
       _cons |   12.77098   2.324315     5.49   0.000     8.215408    17.32655
-------------+----------------------------------------------------------------
var(e.prev~p)|   .1216345   .0028449                      .1161845    .1273403
 var(e.sysbp)|   129.7008   3.033575                      123.8894    135.7849
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(4) = 4.01            Prob > chi2 = 0.4051



Direct effects
------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  prevalen~p |
     glucose |   .0003951   .0002444     1.62   0.106    -.0000839     .000874
   heartrate |   .0017932    .000492     3.64   0.000      .000829    .0027575
       diabp |   .0211249   .0005093    41.48   0.000     .0201267    .0221231
         age |   .0093578   .0006969    13.43   0.000     .0079918    .0107237
      bpmeds |   .3480831   .0344983    10.09   0.000     .2804678    .4156985
  -----------+----------------------------------------------------------------
  sysbp      |
  prevalen~p |   12.88386   .5403533    23.84   0.000     11.82479    13.94293
  educatio~3 |  -1.345866   .5157383    -2.61   0.009    -2.356694   -.3350375
  educatio~4 |  -2.329898   .6025839    -3.87   0.000    -3.510941   -1.148855
        male |  -2.754165   .3876626    -7.10   0.000     -3.51397    -1.99436
     glucose |   .0447748   .0079845     5.61   0.000     .0291254    .0604242
   heartrate |   .0505673   .0163105     3.10   0.002     .0185994    .0825353
       diabp |   1.041687    .020309    51.29   0.000     1.001882    1.081492
         age |   .4274418    .024008    17.80   0.000     .3803869    .4744967
      bpmeds |   7.319757   1.145004     6.39   0.000      5.07559    9.563923
     totchol |   .0085681   .0044977     1.91   0.057    -.0002472    .0173835
------------------------------------------------------------------------------


Indirect effects
------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  prevalen~p |
     glucose |          0  (no path)
   heartrate |          0  (no path)
       diabp |          0  (no path)
         age |          0  (no path)
      bpmeds |          0  (no path)
  -----------+----------------------------------------------------------------
  sysbp      |
  prevalen~p |          0  (no path)
  educatio~3 |          0  (no path)
  educatio~4 |          0  (no path)
        male |          0  (no path)
     glucose |   .0050901   .0031555     1.61   0.107    -.0010945    .0112747
   heartrate |   .0231035   .0064122     3.60   0.000     .0105359    .0356711
       diabp |   .2721698   .0131665    20.67   0.000      .246364    .2979756
         age |   .1205643   .0103049    11.70   0.000     .1003672    .1407615
      bpmeds |   4.484655   .4826297     9.29   0.000     3.538718    5.430591
     totchol |          0  (no path)
------------------------------------------------------------------------------


Total effects
------------------------------------------------------------------------------
             |                 OIM
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
Structural   |
  prevalen~p |
     glucose |   .0003951   .0002444     1.62   0.106    -.0000839     .000874
   heartrate |   .0017932    .000492     3.64   0.000      .000829    .0027575
       diabp |   .0211249   .0005093    41.48   0.000     .0201267    .0221231
         age |   .0093578   .0006969    13.43   0.000     .0079918    .0107237
      bpmeds |   .3480831   .0344983    10.09   0.000     .2804678    .4156985
  -----------+----------------------------------------------------------------
  sysbp      |
  prevalen~p |   12.88386   .5403533    23.84   0.000     11.82479    13.94293
  educatio~3 |  -1.345866   .5157383    -2.61   0.009    -2.356694   -.3350375
  educatio~4 |  -2.329898   .6025839    -3.87   0.000    -3.510941   -1.148855
        male |  -2.754165   .3876626    -7.10   0.000     -3.51397    -1.99436
     glucose |   .0498649   .0085801     5.81   0.000     .0330483    .0666815
   heartrate |   .0736708   .0174753     4.22   0.000     .0394199    .1079218
       diabp |   1.313857   .0180371    72.84   0.000     1.278505    1.349209
         age |   .5480061   .0251491    21.79   0.000     .4987148    .5972975
      bpmeds |   11.80441   1.214032     9.72   0.000     9.424953    14.18387
     totchol |   .0085681   .0044977     1.91   0.057    -.0002472    .0173835
------------------------------------------------------------------------------
Solution
Efffect of Diabp on Sysbp
PrevalentHyp Sysbp (Outcome)
diapb
Direct Effect 0.021 1.0
Indirect via PrevalentHyp 13X 0.021=0.273
Total Effect 0.021 1.273

Direct Effect contribution

\(\frac{1}{1.273}*100=78.6\%\)

Indirect Effect contribution

\(\frac{0.273}{1.273}*100=21.45\%\)

e)Interpret your final SEM model and comment on whether SEM helped improve the direct model from 4c)

Comments

Final SEM Model

  • The final model has :
  1. Endogenous variables Observed: prevalenthyp and sysbp

here we observe interrelationships

  1. Exogenous variables Observed: educationlevels3 educationlevels4 male glucose heartrate diabp age bpmeds totchol

Summary of results

Direct effects on systolic blood pressure

  • Prevalent hyperytension has a major effect on systolic blood pressure such that those who experience this have 12.88 more systolic blood pressure as compared to their counterparts adjusting for other variables(\(\beta \approx 12.88,p=0.000\))
  • diastolic blood pressure has a positive significant total effect on systolic blood pressure (\(p<0.001\)) such that a unit increase in diastolic blood pressure results in 1.273 increase in systolic blood pressure adjusting for the mediatory effect of prevalent hypertension and also controlling for other variables. about \(21.45\%\) of this efffect is indirect due to prevalent hypertension and the remainder \(78.6\%\) is due to direct effect of diastolic blood pressure on systolic blood pressure

Model improvement

  • The \(SEM\) helped to improve since:
  1. Root mean Square error or association(\(RMSEA=0.001<0.05\)) whict indicates a better fit.
  2. CF1 and TLI =1 showing a perfect fit
  3. Overally the chisquared test \(p=0.407\) improved from \(0.00\) indicating that the model is now not significantly worse than a saturated model hence our final model greatly improved

General additional effects shown on the table below:

Structural Equation Model Results with Clinical Interpretation
Outcome Predictor β SE p Clinical Interpretation
Binary Outcome: Hypertension Status
Prevalent Hypertension Glucose 0.0004 0.0002 0.106 NS: No significant association with hypertension risk
Prevalent Hypertension Heart Rate 0.0018 0.0005 <0.001 Sig: Each 1 bpm increase → 0.18% higher hypertension odds
Prevalent Hypertension Diastolic BP 0.0211 0.0005 <0.001 STRONG: Each 1 mmHg → 2.1% higher hypertension odds (key predictor)
Prevalent Hypertension Age 0.0094 0.0007 <0.001 Sig: Each year of age → 0.94% higher hypertension odds
Prevalent Hypertension BP Meds 0.3481 0.0345 <0.001 Sig: BP med users have 35% higher hypertension odds (indication bias)
Prevalent Hypertension Constant -2.0824 0.0589 <0.001 Baseline log-odds
Continuous Outcome: Systolic BP (mmHg)
Systolic BP Prevalent Hypertension 12.8839 0.5404 <0.001 STRONG: Hypertensives average 12.9 mmHg higher SBP
Systolic BP Education (Mid) -1.3459 0.5157 0.009 Sig: Mid education → 1.35 mmHg lower SBP vs low education
Systolic BP Education (High) -2.3299 0.6026 <0.001 STRONG: High education → 2.33 mmHg lower SBP vs low education
Systolic BP Male -2.7542 0.3877 <0.001 Sig: Males average 2.75 mmHg lower SBP than females
Systolic BP Glucose 0.0448 0.0080 <0.001 Sig: Each glucose unit → 0.045 mmHg higher SBP
Systolic BP Heart Rate 0.0506 0.0163 0.002 Sig: Each 1 bpm → 0.051 mmHg higher SBP
Systolic BP Diastolic BP 1.0417 0.0203 <0.001 STRONG: Each 1 mmHg diastolic → 1.04 mmHg higher SBP
Systolic BP Age 0.4274 0.0240 <0.001 STRONG: Each year of age → 0.43 mmHg higher SBP
Systolic BP BP Meds 7.3198 1.1450 <0.001 Sig: BP med users average 7.3 mmHg higher SBP (treatment group)
Systolic BP Total Cholesterol 0.0086 0.0045 0.057 Marginal (p=0.057): Cholesterol shows weak positive trend
Systolic BP Constant 12.7710 2.3243 <0.001 Baseline SBP for reference group
Notes: Model fit: χ²(4)=4.01, p=0.405 (Excellent fit); SRMR=0.003; CD=0.707
NS = Not Significant (p>0.05); Sig = Significant (p<0.05); STRONG = p<0.001 with large effect size