1 Packages
library(car)
library(emmeans)
library(dplyr)
library(tidyr)
library(tidyverse)
library(tibble)
library(multcompView)
library(multcomp)
library(stats)
library(patchwork)
#PCA
library(FactoMineR)
library(factoextra)
library(missMDA)
library(ggplot2)
2 DATABASE
dados=read.csv("C:/Users/Samsung/OneDrive/Documentos/1 - PósDoc/2 - FAPESP - Silvipastoril/Responsabilidades/Dados PG disciplina/data.csv")
dados$Inoculo=as.factor(dados$Inoculo)
dados$Trat=as.factor(dados$Trat)
str(dados)
'data.frame': 294 obs. of 8 variables:
$ Inoculo: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ Trat : Factor w/ 7 levels "Amostra 01","Amostra 02",..: 1 1 1 2 2 2 3 3 3 4 ...
$ Rep : int 1 2 3 1 2 3 1 2 3 1 ...
$ Tempo : int 2 2 2 2 2 2 2 2 2 2 ...
$ GP : num 11 11.9 12.3 15.1 16.1 ...
$ CH4.DMO: num 0.393 0.407 0.416 0.271 0.271 ...
$ DMO_48 : num 292 296 297 787 782 ...
$ N_NH3 : num 59.2 54.7 53.5 20.9 59 ...
View(dados)
dados <- dados %>%
arrange(Inoculo, Trat, Rep, Tempo) %>%
group_by(Inoculo, Trat, Rep) %>%
mutate(GP = cumsum(GP)) %>%
ungroup()
dados
3 Plot PG
#Plot
gp=ggplot(dados, aes(x=Tempo, y=GP, shape=Trat))+
geom_line(stat="summary",fun="mean")+
geom_point(aes(shape = Trat), size = 3, stat="summary",fun="mean")+
scale_shape_manual(values = c(0,1,2,15,16,17,21), name= "Treatments",labels = c("Pasture","Forage palm","Blackberry biomass","TMR diet 1","TMR diet 2","Fly meal","S. tubulosa fruit"))+
scale_y_continuous(name=expression(paste("Gas production (mL ",g^-1,"DM)")), breaks=seq(0,260,10))+
scale_x_continuous(name="Fermentation time (h)", breaks=seq(0,48,4))
gp

gp=gp+theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
panel.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent", size=0.5, linetype="solid",colour ="black"),legend.position = c(0.15, 0.80),legend.key.size = unit(0.42, 'cm'))
gp

4 Plot DMO
DMO.summary <- dados %>%
group_by(Trat) %>%
summarise(
sd = sd(DMO_48, na.rm = TRUE),
DMO = mean(DMO_48,na.rm = TRUE))
DMO.summary
#Anova e Tukey
mod.dmo = lmer(DMO_48 ~ Trat + (1|Inoculo),data =dados)
boundary (singular) fit: see help('isSingular')
print(anova(mod.dmo))
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Trat 944435 157406 6 35 76.977 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias = emmeans(mod.dmo, ~ Trat)
print(summary(medias))
Trat emmean SE df lower.CL upper.CL
Amostra 01 322 18.5 23.8 284 360
Amostra 02 791 18.5 23.8 753 829
Amostra 03 719 18.5 23.8 681 757
Amostra 04 674 18.5 23.8 636 712
Amostra 05 502 18.5 23.8 464 540
Amostra 06 558 18.5 23.8 520 597
Amostra 07 717 18.5 23.8 679 755
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
tukey_glht = glht(mod.dmo, linfct = mcp(Trat = "Tukey"))
print(summary(tukey_glht))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lmer(formula = DMO_48 ~ Trat + (1 | Inoculo), data = dados)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Amostra 02 - Amostra 01 == 0 468.837 26.108 17.958 <0.001 ***
Amostra 03 - Amostra 01 == 0 397.158 26.108 15.212 <0.001 ***
Amostra 04 - Amostra 01 == 0 351.727 26.108 13.472 <0.001 ***
Amostra 05 - Amostra 01 == 0 179.617 26.108 6.880 <0.001 ***
Amostra 06 - Amostra 01 == 0 236.296 26.108 9.051 <0.001 ***
Amostra 07 - Amostra 01 == 0 394.700 26.108 15.118 <0.001 ***
Amostra 03 - Amostra 02 == 0 -71.679 26.108 -2.746 0.0872 .
Amostra 04 - Amostra 02 == 0 -117.110 26.108 -4.486 <0.001 ***
Amostra 05 - Amostra 02 == 0 -289.220 26.108 -11.078 <0.001 ***
Amostra 06 - Amostra 02 == 0 -232.541 26.108 -8.907 <0.001 ***
Amostra 07 - Amostra 02 == 0 -74.137 26.108 -2.840 0.0677 .
Amostra 04 - Amostra 03 == 0 -45.431 26.108 -1.740 0.5888
Amostra 05 - Amostra 03 == 0 -217.541 26.108 -8.332 <0.001 ***
Amostra 06 - Amostra 03 == 0 -160.862 26.108 -6.161 <0.001 ***
Amostra 07 - Amostra 03 == 0 -2.458 26.108 -0.094 1.0000
Amostra 05 - Amostra 04 == 0 -172.110 26.108 -6.592 <0.001 ***
Amostra 06 - Amostra 04 == 0 -115.431 26.108 -4.421 <0.001 ***
Amostra 07 - Amostra 04 == 0 42.973 26.108 1.646 0.6523
Amostra 06 - Amostra 05 == 0 56.679 26.108 2.171 0.3115
Amostra 07 - Amostra 05 == 0 215.083 26.108 8.238 <0.001 ***
Amostra 07 - Amostra 06 == 0 158.404 26.108 6.067 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
letras = cld(tukey_glht)
print(letras)
Amostra 01 Amostra 02 Amostra 03 Amostra 04 Amostra 05 Amostra 06 Amostra 07
"a" "b" "bc" "c" "d" "d" "bc"
#Plot
gp2=ggplot(DMO.summary, aes(x=Trat, y=DMO))+
geom_col(aes(fill = Trat), position = "dodge") +
geom_errorbar(aes(ymin=DMO-sd, ymax=DMO+sd), width=.2, position=position_dodge(.9))+
scale_fill_manual(values = c("grey40", "blue3", "brown2","chocolate4","cyan", "yellow3","green4"),name= "Treatments",labels = c("Pasture","Forage palm","Blackberry biomass","TMR diet 1","TMR diet 2","Fly meal","S. tubulosa fruit"))+
scale_y_continuous(name=expression(paste("IVDOM (g k",g^-1,")")), breaks = seq(0,950,50))+
scale_x_discrete(name="Treatments",labels = c("Amostra 01" = "Pasture","Amostra 02" = "Forage palm","Amostra 03" = "Blackberry biomass","Amostra 04" = "TMR diet 1","Amostra 05" = "TMR diet 2","Amostra 06" = "Fly meal","Amostra 07" = "S. tubulosa fruit"))+coord_cartesian(ylim = c(50,950))
gp2

gp2=gp2+theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
panel.background = element_rect(fill = "transparent"),
legend.position = "none",
axis.text.x = element_text(colour = "black",angle = 15, hjust = 1,size = 9))
gp2

5 Combinar graficos
# Combinar os gráficos
combinado <- (gp / gp2) +
plot_annotation(tag_levels = "A") &
theme(plot.tag = element_text(size = 16, face = "bold"))
# Visualizar
combinado
ggsave("grafico_combinado.png", combinado, width = 7, height = 8, dpi = 300)

6 Anova e tukey
names(dados)
[1] "Inoculo" "Trat" "Rep" "Tempo" "GP" "CH4.DMO" "DMO_48" "N_NH3"
str(dados)
tibble [294 × 8] (S3: tbl_df/tbl/data.frame)
$ Inoculo: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ Trat : Factor w/ 7 levels "Amostra 01","Amostra 02",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Rep : int [1:294] 1 1 1 1 1 1 1 2 2 2 ...
$ Tempo : int [1:294] 2 4 8 12 24 36 48 2 4 8 ...
$ GP : num [1:294] 11 20.4 35.6 44.2 71.5 ...
$ CH4.DMO: num [1:294] 0.393 NA NA NA NA ...
$ DMO_48 : num [1:294] 292 NA NA NA NA ...
$ N_NH3 : num [1:294] 59.2 32.1 NA NA NA ...
variables <- c("GP","CH4.DMO","DMO_48","N_NH3")
variables
[1] "GP" "CH4.DMO" "DMO_48" "N_NH3"
# Testes de normalidade e homocedasticidade (com lm para simplificação)
testes <- lapply(variables, function(var) {
formula <- as.formula(paste(var, "~ Trat + (1|Inoculo)"))
modelo <- lmer(formula, data = dados)
res <- residuals(modelo)
dados_modelo <- model.frame(modelo)
shapiro_p <- shapiro.test(res)$p.value
levene_p <- leveneTest(res ~ Trat, data = dados_modelo)[1, "Pr(>F)"]
data.frame(Variavel = var,
p_Shapiro = round(shapiro_p, 4),
p_Levene = round(levene_p, 4))
})
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
resultado_testes <- do.call(rbind, testes)
print(resultado_testes)
# Análise do modelo misto (quadro latino) e comparação de médias
for (var in variables) {
cat("\n\n########################### Variável:", var, " ##########################\n")
formula_mista <- as.formula(paste(var, "~ Trat + (1|Inoculo)"))
mod_misto <- lmer(formula_mista, data = dados)
# ANOVA
cat("ANOVA (modelo misto):\n")
print(anova(mod_misto))
# Médias
cat("\nMédias (emmeans):\n")
medias <- emmeans(mod_misto, ~Trat)
print(summary(medias))
# Comparações múltiplas
cat("\nTukey (glht):\n")
tukey_glht <- glht(mod_misto, linfct = mcp(Trat = "Tukey"))
print(summary(tukey_glht))
# Letras compactas
cat("\nLetras do Tukey (glht):\n")
letras <- cld(tukey_glht)
print(letras)
}
########################### Variável: GP ##########################
ANOVA (modelo misto):
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Trat 103028 17171 6 286 5.1384 4.93e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Médias (emmeans):
Trat emmean SE df lower.CL upper.CL
Amostra 01 52.7 13.3 2.63 6.77 98.7
Amostra 02 105.6 13.3 2.63 59.69 151.6
Amostra 03 108.5 13.3 2.63 62.53 154.4
Amostra 04 95.6 13.3 2.63 49.63 141.5
Amostra 05 74.5 13.3 2.63 28.55 120.5
Amostra 06 88.7 13.3 2.63 42.73 134.6
Amostra 07 104.3 13.3 2.63 58.33 150.2
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Tukey (glht):
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lmer(formula = formula_mista, data = dados)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Amostra 02 - Amostra 01 == 0 52.923 12.615 4.195 <0.001 ***
Amostra 03 - Amostra 01 == 0 55.763 12.615 4.420 <0.001 ***
Amostra 04 - Amostra 01 == 0 42.862 12.615 3.398 0.0121 *
Amostra 05 - Amostra 01 == 0 21.787 12.615 1.727 0.5977
Amostra 06 - Amostra 01 == 0 35.961 12.615 2.851 0.0658 .
Amostra 07 - Amostra 01 == 0 51.562 12.615 4.087 <0.001 ***
Amostra 03 - Amostra 02 == 0 2.840 12.615 0.225 1.0000
Amostra 04 - Amostra 02 == 0 -10.061 12.615 -0.798 0.9853
Amostra 05 - Amostra 02 == 0 -31.136 12.615 -2.468 0.1713
Amostra 06 - Amostra 02 == 0 -16.962 12.615 -1.345 0.8307
Amostra 07 - Amostra 02 == 0 -1.361 12.615 -0.108 1.0000
Amostra 04 - Amostra 03 == 0 -12.901 12.615 -1.023 0.9490
Amostra 05 - Amostra 03 == 0 -33.976 12.615 -2.693 0.0998 .
Amostra 06 - Amostra 03 == 0 -19.802 12.615 -1.570 0.7017
Amostra 07 - Amostra 03 == 0 -4.201 12.615 -0.333 0.9999
Amostra 05 - Amostra 04 == 0 -21.075 12.615 -1.671 0.6358
Amostra 06 - Amostra 04 == 0 -6.901 12.615 -0.547 0.9981
Amostra 07 - Amostra 04 == 0 8.700 12.615 0.690 0.9932
Amostra 06 - Amostra 05 == 0 14.174 12.615 1.124 0.9210
Amostra 07 - Amostra 05 == 0 29.775 12.615 2.360 0.2160
Amostra 07 - Amostra 06 == 0 15.601 12.615 1.237 0.8798
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
Letras do Tukey (glht):
Amostra 01 Amostra 02 Amostra 03 Amostra 04 Amostra 05 Amostra 06 Amostra 07
"a" "b" "b" "b" "ab" "ab" "b"
########################### Variável: CH4.DMO ##########################
ANOVA (modelo misto):
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Trat 0.036715 0.0061192 6 34 10.933 9.119e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Médias (emmeans):
Trat emmean SE df lower.CL upper.CL
Amostra 01 0.342 0.0342 1.15 0.0211 0.662
Amostra 02 0.257 0.0342 1.15 -0.0630 0.578
Amostra 03 0.290 0.0342 1.15 -0.0307 0.610
Amostra 04 0.286 0.0342 1.15 -0.0344 0.606
Amostra 05 0.260 0.0342 1.15 -0.0604 0.580
Amostra 06 0.301 0.0342 1.15 -0.0193 0.622
Amostra 07 0.249 0.0342 1.15 -0.0710 0.570
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Tukey (glht):
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lmer(formula = formula_mista, data = dados)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Amostra 02 - Amostra 01 == 0 -0.084150 0.013659 -6.161 < 0.001 ***
Amostra 03 - Amostra 01 == 0 -0.051833 0.013659 -3.795 0.00289 **
Amostra 04 - Amostra 01 == 0 -0.055550 0.013659 -4.067 0.00102 **
Amostra 05 - Amostra 01 == 0 -0.081567 0.013659 -5.972 < 0.001 ***
Amostra 06 - Amostra 01 == 0 -0.040450 0.013659 -2.961 0.04822 *
Amostra 07 - Amostra 01 == 0 -0.092117 0.013659 -6.744 < 0.001 ***
Amostra 03 - Amostra 02 == 0 0.032317 0.013659 2.366 0.21328
Amostra 04 - Amostra 02 == 0 0.028600 0.013659 2.094 0.35600
Amostra 05 - Amostra 02 == 0 0.002583 0.013659 0.189 1.00000
Amostra 06 - Amostra 02 == 0 0.043700 0.013659 3.199 0.02354 *
Amostra 07 - Amostra 02 == 0 -0.007967 0.013659 -0.583 0.99729
Amostra 04 - Amostra 03 == 0 -0.003717 0.013659 -0.272 0.99997
Amostra 05 - Amostra 03 == 0 -0.029733 0.013659 -2.177 0.30808
Amostra 06 - Amostra 03 == 0 0.011383 0.013659 0.833 0.98151
Amostra 07 - Amostra 03 == 0 -0.040283 0.013659 -2.949 0.04982 *
Amostra 05 - Amostra 04 == 0 -0.026017 0.013659 -1.905 0.47698
Amostra 06 - Amostra 04 == 0 0.015100 0.013659 1.106 0.92668
Amostra 07 - Amostra 04 == 0 -0.036567 0.013659 -2.677 0.10429
Amostra 06 - Amostra 05 == 0 0.041117 0.013659 3.010 0.04157 *
Amostra 07 - Amostra 05 == 0 -0.010550 0.013659 -0.772 0.98756
Amostra 07 - Amostra 06 == 0 -0.051667 0.013659 -3.783 0.00300 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
Letras do Tukey (glht):
Amostra 01 Amostra 02 Amostra 03 Amostra 04 Amostra 05 Amostra 06 Amostra 07
"a" "bc" "bd" "cd" "bc" "d" "c"
########################### Variável: DMO_48 ##########################
boundary (singular) fit: see help('isSingular')
ANOVA (modelo misto):
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Trat 944435 157406 6 35 76.977 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Médias (emmeans):
Trat emmean SE df lower.CL upper.CL
Amostra 01 322 18.5 23.8 284 360
Amostra 02 791 18.5 23.8 753 829
Amostra 03 719 18.5 23.8 681 757
Amostra 04 674 18.5 23.8 636 712
Amostra 05 502 18.5 23.8 464 540
Amostra 06 558 18.5 23.8 520 597
Amostra 07 717 18.5 23.8 679 755
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Tukey (glht):
Warning: Completion with error > abseps
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lmer(formula = formula_mista, data = dados)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Amostra 02 - Amostra 01 == 0 468.837 26.108 17.958 <0.001 ***
Amostra 03 - Amostra 01 == 0 397.158 26.108 15.212 <0.001 ***
Amostra 04 - Amostra 01 == 0 351.727 26.108 13.472 <0.001 ***
Amostra 05 - Amostra 01 == 0 179.617 26.108 6.880 <0.001 ***
Amostra 06 - Amostra 01 == 0 236.296 26.108 9.051 <0.001 ***
Amostra 07 - Amostra 01 == 0 394.700 26.108 15.118 <0.001 ***
Amostra 03 - Amostra 02 == 0 -71.679 26.108 -2.746 0.0871 .
Amostra 04 - Amostra 02 == 0 -117.110 26.108 -4.486 <0.001 ***
Amostra 05 - Amostra 02 == 0 -289.220 26.108 -11.078 <0.001 ***
Amostra 06 - Amostra 02 == 0 -232.541 26.108 -8.907 <0.001 ***
Amostra 07 - Amostra 02 == 0 -74.137 26.108 -2.840 0.0682 .
Amostra 04 - Amostra 03 == 0 -45.431 26.108 -1.740 0.5888
Amostra 05 - Amostra 03 == 0 -217.541 26.108 -8.332 <0.001 ***
Amostra 06 - Amostra 03 == 0 -160.862 26.108 -6.161 <0.001 ***
Amostra 07 - Amostra 03 == 0 -2.458 26.108 -0.094 1.0000
Amostra 05 - Amostra 04 == 0 -172.110 26.108 -6.592 <0.001 ***
Amostra 06 - Amostra 04 == 0 -115.431 26.108 -4.421 <0.001 ***
Amostra 07 - Amostra 04 == 0 42.973 26.108 1.646 0.6522
Amostra 06 - Amostra 05 == 0 56.679 26.108 2.171 0.3113
Amostra 07 - Amostra 05 == 0 215.083 26.108 8.238 <0.001 ***
Amostra 07 - Amostra 06 == 0 158.404 26.108 6.067 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
Letras do Tukey (glht):
Amostra 01 Amostra 02 Amostra 03 Amostra 04 Amostra 05 Amostra 06 Amostra 07
"a" "b" "bc" "c" "d" "d" "bc"
########################### Variável: N_NH3 ##########################
boundary (singular) fit: see help('isSingular')
ANOVA (modelo misto):
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Trat 2523.2 420.53 6 55 2.138 0.06339 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Médias (emmeans):
Trat emmean SE df lower.CL upper.CL
Amostra 01 42.6 4.84 22.3 32.5 52.6
Amostra 02 36.4 4.84 22.3 26.3 46.4
Amostra 03 47.1 4.84 22.3 37.1 57.1
Amostra 04 44.6 4.84 22.3 34.5 54.6
Amostra 05 58.8 4.84 22.3 48.7 68.8
Amostra 06 47.9 4.84 22.3 37.8 57.9
Amostra 07 43.3 5.05 27.2 33.0 53.7
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Tukey (glht):
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lmer(formula = formula_mista, data = dados)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Amostra 02 - Amostra 01 == 0 -6.2050 6.6114 -0.939 0.9663
Amostra 03 - Amostra 01 == 0 4.5144 6.6114 0.683 0.9936
Amostra 04 - Amostra 01 == 0 1.9928 6.6114 0.301 0.9999
Amostra 05 - Amostra 01 == 0 16.1925 6.6114 2.449 0.1784
Amostra 06 - Amostra 01 == 0 5.3078 6.6114 0.803 0.9848
Amostra 07 - Amostra 01 == 0 0.7691 6.8148 0.113 1.0000
Amostra 03 - Amostra 02 == 0 10.7194 6.6114 1.621 0.6682
Amostra 04 - Amostra 02 == 0 8.1978 6.6114 1.240 0.8785
Amostra 05 - Amostra 02 == 0 22.3975 6.6114 3.388 0.0126 *
Amostra 06 - Amostra 02 == 0 11.5128 6.6114 1.741 0.5878
Amostra 07 - Amostra 02 == 0 6.9741 6.8148 1.023 0.9488
Amostra 04 - Amostra 03 == 0 -2.5217 6.6114 -0.381 0.9998
Amostra 05 - Amostra 03 == 0 11.6781 6.6114 1.766 0.5710
Amostra 06 - Amostra 03 == 0 0.7933 6.6114 0.120 1.0000
Amostra 07 - Amostra 03 == 0 -3.7453 6.8148 -0.550 0.9981
Amostra 05 - Amostra 04 == 0 14.1997 6.6114 2.148 0.3246
Amostra 06 - Amostra 04 == 0 3.3150 6.6114 0.501 0.9988
Amostra 07 - Amostra 04 == 0 -1.2236 6.8148 -0.180 1.0000
Amostra 06 - Amostra 05 == 0 -10.8847 6.6114 -1.646 0.6518
Amostra 07 - Amostra 05 == 0 -15.4234 6.8148 -2.263 0.2621
Amostra 07 - Amostra 06 == 0 -4.5386 6.8148 -0.666 0.9944
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
Letras do Tukey (glht):
Amostra 01 Amostra 02 Amostra 03 Amostra 04 Amostra 05 Amostra 06 Amostra 07
"ab" "a" "ab" "ab" "b" "ab" "ab"
LS0tDQp0aXRsZTogIkVzdGF0aXN0aWNhIGRvcyBkYWRvcyBkZSBhdWxhIHByYXRpY2EgZGEgZGlzY2lwbGluYSBDRU41NzQwIg0KYXV0aG9yOiAiVmFnbmVyIE92YW5pIg0KZGF0ZTogIjAzLzA2LzIwMjUiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2RlcHRoOiAyDQogICAgdGhlbWU6IHVuaXRlZA0KLS0tDQoNCioqKg0KKioqDQoNCiMgKioxIFBhY2thZ2VzKioNCg0KYGBge3J9DQpsaWJyYXJ5KGNhcikNCmxpYnJhcnkoZW1tZWFucykNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHRpZHlyKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KHRpYmJsZSkNCmxpYnJhcnkobXVsdGNvbXBWaWV3KQ0KbGlicmFyeShtdWx0Y29tcCkNCmxpYnJhcnkoc3RhdHMpDQpsaWJyYXJ5KHBhdGNod29yaykNCg0KI1BDQQ0KbGlicmFyeShGYWN0b01pbmVSKQ0KbGlicmFyeShmYWN0b2V4dHJhKQ0KbGlicmFyeShtaXNzTURBKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYGBgDQoNCioqKg0KKioqDQoNCiMgKioyIERBVEFCQVNFKioNCg0KYGBge3J9DQpkYWRvcz1yZWFkLmNzdigiQzovVXNlcnMvU2Ftc3VuZy9PbmVEcml2ZS9Eb2N1bWVudG9zLzEgLSBQw7NzRG9jLzIgLSBGQVBFU1AgLSBTaWx2aXBhc3RvcmlsL1Jlc3BvbnNhYmlsaWRhZGVzL0RhZG9zIFBHIGRpc2NpcGxpbmEvZGF0YS5jc3YiKQ0KZGFkb3MkSW5vY3Vsbz1hcy5mYWN0b3IoZGFkb3MkSW5vY3VsbykNCmRhZG9zJFRyYXQ9YXMuZmFjdG9yKGRhZG9zJFRyYXQpDQpzdHIoZGFkb3MpDQpWaWV3KGRhZG9zKQ0KDQpkYWRvcyA8LSBkYWRvcyAlPiUNCiAgYXJyYW5nZShJbm9jdWxvLCBUcmF0LCBSZXAsIFRlbXBvKSAlPiUNCiAgZ3JvdXBfYnkoSW5vY3VsbywgVHJhdCwgUmVwKSAlPiUNCiAgbXV0YXRlKEdQID0gY3Vtc3VtKEdQKSkgJT4lDQogIHVuZ3JvdXAoKQ0KZGFkb3MNCmBgYA0KDQoqKioNCioqKg0KDQojICoqMyBQbG90IFBHKioNCg0KYGBge3J9DQojUGxvdA0KZ3A9Z2dwbG90KGRhZG9zLCBhZXMoeD1UZW1wbywgeT1HUCwgc2hhcGU9VHJhdCkpKw0KICAgIGdlb21fbGluZShzdGF0PSJzdW1tYXJ5IixmdW49Im1lYW4iKSsNCiAgZ2VvbV9wb2ludChhZXMoc2hhcGUgPSBUcmF0KSwgc2l6ZSA9IDMsIHN0YXQ9InN1bW1hcnkiLGZ1bj0ibWVhbiIpKw0KICBzY2FsZV9zaGFwZV9tYW51YWwodmFsdWVzID0gYygwLDEsMiwxNSwxNiwxNywyMSksIG5hbWU9ICJUcmVhdG1lbnRzIixsYWJlbHMgPSBjKCJQYXN0dXJlIiwiRm9yYWdlIHBhbG0iLCJCbGFja2JlcnJ5IGJpb21hc3MiLCJUTVIgZGlldCAxIiwiVE1SIGRpZXQgMiIsIkZseSBtZWFsIiwiUy4gdHVidWxvc2EgZnJ1aXQiKSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIkdhcyBwcm9kdWN0aW9uIChtTCAiLGdeLTEsIkRNKSIpKSwgYnJlYWtzPXNlcSgwLDI2MCwxMCkpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0iRmVybWVudGF0aW9uIHRpbWUgKGgpIiwgYnJlYWtzPXNlcSgwLDQ4LDQpKQ0KZ3ANCmdwPWdwK3RoZW1lKGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvdXIgPSAiYmxhY2siLCBzaXplID0gMC43LCBsaW5ldHlwZSA9ICJzb2xpZCIpLA0KIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KIGxlZ2VuZC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAidHJhbnNwYXJlbnQiLCBzaXplPTAuNSwgbGluZXR5cGU9InNvbGlkIixjb2xvdXIgPSJibGFjayIpLGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC4xNSwgMC44MCksbGVnZW5kLmtleS5zaXplID0gdW5pdCgwLjQyLCAnY20nKSkNCmdwDQpgYGANCg0KKioqDQoqKioNCg0KIyAqKjQgUGxvdCBETU8qKg0KDQpgYGB7cn0NCkRNTy5zdW1tYXJ5IDwtIGRhZG9zICU+JQ0KICBncm91cF9ieShUcmF0KSAlPiUNCiAgc3VtbWFyaXNlKA0KICAgIHNkID0gc2QoRE1PXzQ4LCBuYS5ybSA9IFRSVUUpLA0KICAgIERNTyA9IG1lYW4oRE1PXzQ4LG5hLnJtID0gVFJVRSkpDQpETU8uc3VtbWFyeQ0KDQojQW5vdmEgZSBUdWtleQ0KbW9kLmRtbyA9IGxtZXIoRE1PXzQ4IH4gVHJhdCArICgxfElub2N1bG8pLGRhdGEgPWRhZG9zKQ0KcHJpbnQoYW5vdmEobW9kLmRtbykpDQptZWRpYXMgPSBlbW1lYW5zKG1vZC5kbW8sIH4gVHJhdCkNCnByaW50KHN1bW1hcnkobWVkaWFzKSkNCnR1a2V5X2dsaHQgPSBnbGh0KG1vZC5kbW8sIGxpbmZjdCA9IG1jcChUcmF0ID0gIlR1a2V5IikpDQpwcmludChzdW1tYXJ5KHR1a2V5X2dsaHQpKQ0KbGV0cmFzID0gY2xkKHR1a2V5X2dsaHQpDQpwcmludChsZXRyYXMpDQoNCiNQbG90DQpncDI9Z2dwbG90KERNTy5zdW1tYXJ5LCBhZXMoeD1UcmF0LCB5PURNTykpKw0KICBnZW9tX2NvbChhZXMoZmlsbCA9IFRyYXQpLCBwb3NpdGlvbiA9ICJkb2RnZSIpICsgDQogIGdlb21fZXJyb3JiYXIoYWVzKHltaW49RE1PLXNkLCB5bWF4PURNTytzZCksIHdpZHRoPS4yLCBwb3NpdGlvbj1wb3NpdGlvbl9kb2RnZSguOSkpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCJncmV5NDAiLCAiYmx1ZTMiLCAiYnJvd24yIiwiY2hvY29sYXRlNCIsImN5YW4iLCAieWVsbG93MyIsImdyZWVuNCIpLG5hbWU9ICJUcmVhdG1lbnRzIixsYWJlbHMgPSBjKCJQYXN0dXJlIiwiRm9yYWdlIHBhbG0iLCJCbGFja2JlcnJ5IGJpb21hc3MiLCJUTVIgZGlldCAxIiwiVE1SIGRpZXQgMiIsIkZseSBtZWFsIiwiUy4gdHVidWxvc2EgZnJ1aXQiKSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIklWRE9NIChnIGsiLGdeLTEsIikiKSksIGJyZWFrcyA9IHNlcSgwLDk1MCw1MCkpKw0KICBzY2FsZV94X2Rpc2NyZXRlKG5hbWU9IlRyZWF0bWVudHMiLGxhYmVscyA9IGMoIkFtb3N0cmEgMDEiID0gIlBhc3R1cmUiLCJBbW9zdHJhIDAyIiA9ICJGb3JhZ2UgcGFsbSIsIkFtb3N0cmEgMDMiID0gIkJsYWNrYmVycnkgYmlvbWFzcyIsIkFtb3N0cmEgMDQiID0gIlRNUiBkaWV0IDEiLCJBbW9zdHJhIDA1IiA9ICJUTVIgZGlldCAyIiwiQW1vc3RyYSAwNiIgPSAiRmx5IG1lYWwiLCJBbW9zdHJhIDA3IiA9ICJTLiB0dWJ1bG9zYSBmcnVpdCIpKStjb29yZF9jYXJ0ZXNpYW4oeWxpbSA9IGMoNTAsOTUwKSkNCmdwMg0KZ3AyPWdwMit0aGVtZShheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3VyID0gImJsYWNrIiwgc2l6ZSA9IDAuNywgbGluZXR5cGUgPSAic29saWQiKSwNCiAgcGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gInRyYW5zcGFyZW50IiksDQogIGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwNCiAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoY29sb3VyID0gImJsYWNrIixhbmdsZSA9IDE1LCBoanVzdCA9IDEsc2l6ZSA9IDkpKQ0KZ3AyDQpgYGANCg0KKioqDQoqKioNCg0KIyAqKjUgQ29tYmluYXIgZ3JhZmljb3MqKg0KDQpgYGB7cn0NCiMgQ29tYmluYXIgb3MgZ3LDoWZpY29zDQpjb21iaW5hZG8gPC0gKGdwIC8gZ3AyKSArDQogIHBsb3RfYW5ub3RhdGlvbih0YWdfbGV2ZWxzID0gIkEiKSAmIA0KICB0aGVtZShwbG90LnRhZyA9IGVsZW1lbnRfdGV4dChzaXplID0gMTYsIGZhY2UgPSAiYm9sZCIpKQ0KDQojIFZpc3VhbGl6YXINCmNvbWJpbmFkbw0KZ2dzYXZlKCJncmFmaWNvX2NvbWJpbmFkby5wbmciLCBjb21iaW5hZG8sIHdpZHRoID0gNywgaGVpZ2h0ID0gOCwgZHBpID0gMzAwKQ0KYGBgDQoNCioqKg0KKioqDQoNCiMgKio2IEFub3ZhIGUgdHVrZXkqKg0KDQpgYGB7cn0NCm5hbWVzKGRhZG9zKSANCnN0cihkYWRvcykNCg0KdmFyaWFibGVzIDwtIGMoIkdQIiwiQ0g0LkRNTyIsIkRNT180OCIsIk5fTkgzIikNCnZhcmlhYmxlcw0KDQojIFRlc3RlcyBkZSBub3JtYWxpZGFkZSBlIGhvbW9jZWRhc3RpY2lkYWRlIChjb20gbG0gcGFyYSBzaW1wbGlmaWNhw6fDo28pDQp0ZXN0ZXMgPC0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIGZvcm11bGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IFRyYXQgKyAoMXxJbm9jdWxvKSIpKQ0KICBtb2RlbG8gPC0gbG1lcihmb3JtdWxhLCBkYXRhID0gZGFkb3MpICANCiAgcmVzIDwtIHJlc2lkdWFscyhtb2RlbG8pDQogIGRhZG9zX21vZGVsbyA8LSBtb2RlbC5mcmFtZShtb2RlbG8pIA0KICBzaGFwaXJvX3AgPC0gc2hhcGlyby50ZXN0KHJlcykkcC52YWx1ZQ0KICBsZXZlbmVfcCA8LSBsZXZlbmVUZXN0KHJlcyB+IFRyYXQsIGRhdGEgPSBkYWRvc19tb2RlbG8pWzEsICJQcig+RikiXQ0KICBkYXRhLmZyYW1lKFZhcmlhdmVsID0gdmFyLA0KICAgICAgICAgICAgIHBfU2hhcGlybyA9IHJvdW5kKHNoYXBpcm9fcCwgNCksDQogICAgICAgICAgICAgcF9MZXZlbmUgPSByb3VuZChsZXZlbmVfcCwgNCkpDQp9KQ0KDQpyZXN1bHRhZG9fdGVzdGVzIDwtIGRvLmNhbGwocmJpbmQsIHRlc3RlcykNCnByaW50KHJlc3VsdGFkb190ZXN0ZXMpDQoNCiMgQW7DoWxpc2UgZG8gbW9kZWxvIG1pc3RvIChxdWFkcm8gbGF0aW5vKSBlIGNvbXBhcmHDp8OjbyBkZSBtw6lkaWFzDQpmb3IgKHZhciBpbiB2YXJpYWJsZXMpIHsNCiAgY2F0KCJcblxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIFZhcmnDoXZlbDoiLCB2YXIsICIgIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcbiIpDQogIGZvcm11bGFfbWlzdGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IFRyYXQgKyAoMXxJbm9jdWxvKSIpKQ0KICBtb2RfbWlzdG8gPC0gbG1lcihmb3JtdWxhX21pc3RhLCBkYXRhID0gZGFkb3MpDQogICMgQU5PVkENCiAgY2F0KCJBTk9WQSAobW9kZWxvIG1pc3RvKTpcbiIpDQogIHByaW50KGFub3ZhKG1vZF9taXN0bykpDQogICMgTcOpZGlhcw0KICBjYXQoIlxuTcOpZGlhcyAoZW1tZWFucyk6XG4iKQ0KICBtZWRpYXMgPC0gZW1tZWFucyhtb2RfbWlzdG8sIH5UcmF0KQ0KICBwcmludChzdW1tYXJ5KG1lZGlhcykpDQogICMgQ29tcGFyYcOnw7VlcyBtw7psdGlwbGFzIA0KICBjYXQoIlxuVHVrZXkgKGdsaHQpOlxuIikNCiAgdHVrZXlfZ2xodCA8LSBnbGh0KG1vZF9taXN0bywgbGluZmN0ID0gbWNwKFRyYXQgPSAiVHVrZXkiKSkNCiAgcHJpbnQoc3VtbWFyeSh0dWtleV9nbGh0KSkNCiAgIyBMZXRyYXMgY29tcGFjdGFzDQogIGNhdCgiXG5MZXRyYXMgZG8gVHVrZXkgKGdsaHQpOlxuIikNCiAgbGV0cmFzIDwtIGNsZCh0dWtleV9nbGh0KQ0KICBwcmludChsZXRyYXMpDQp9DQpgYGANCg0K