El presente conjunto de datos, titulado Smokers Health Data, constituye una fuente valiosa para el análisis de los efectos del hábito de fumar sobre diversas variables fisiológicas y condiciones de salud en individuos adultos. Esta base de datos fue recolectada con el propósito de facilitar estudios exploratorios, descriptivos e inferenciales que contribuyan a comprender mejor la relación entre el tabaquismo y múltiples indicadores biomédicos.
La estructura del conjunto de datos contempla una variedad de variables que permiten examinar diferencias entre personas fumadoras y no fumadoras. Entre estas variables se incluyen medidas cuantitativas como la frecuencia cardíaca, el nivel de oxígeno en sangre (SpO2), la presión arterial sistólica y diastólica, la temperatura corporal y la capacidad pulmonar. Además, se registran indicadores clínicos como el índice de masa corporal (IMC), el nivel de colesterol, el nivel de glucosa, y el valor de hemoglobina. De igual forma, se consideran aspectos diagnósticos como la presencia de enfermedades respiratorias o cardiovasculares.
El conjunto de datos Smokers Health Data contiene una amplia gama de variables tanto cuantitativas como cualitativas que permiten analizar los efectos del tabaquismo en la salud. Entre las variables cuantitativas se encuentran la edad, frecuencia cardíaca (heart_rate), nivel de SpO2 (oxígeno en sangre), temperatura corporal, colesterol, nivel de glucosa, IMC (índice de masa corporal), nivel de hemoglobina, y parámetros respiratorios como el flujo respiratorio (respiratory_rate) y capacidad pulmonar (lung_capacity). A su vez, se incluyen variables cualitativas como el sexo del paciente, el estado de fumador actual (current_smoker), la presión arterial categorizada en texto, y la presencia de enfermedades respiratorias y enfermedades cardíacas como variables binarias. Estas variables permiten realizar comparaciones entre individuos fumadores y no fumadores, identificar patrones clínicos asociados al tabaquismo, y desarrollar modelos predictivos para evaluar riesgos en la salud basados en hábitos y signos vitales. La diversidad de las variables recogidas facilita un enfoque integral para el estudio del impacto del tabaco desde perspectivas médicas, preventivas y de análisis de datos.
El análisis que se presenta a continuación tiene como finalidad aplicar distintas pruebas de hipótesis utilizando el lenguaje de programación R en el entorno RStudio, tomando como base el conjunto de datos Smokers Health Data. Esta base contiene información clínica y fisiológica de personas fumadoras y no fumadoras, lo que permite comparar medias y proporciones asociadas a variables de salud como la frecuencia cardíaca y el nivel de colesterol. A través de estas pruebas se busca determinar, con fundamento estadístico, si existen diferencias significativas entre los grupos, apoyando así la toma de decisiones en contextos médicos y de salud pública.
# 1. LIBRERIAS
library(readr)
library(dplyr)
library(ggplot2)
library(stringr)
library(tidyr)
library(BSDA)
# 2. BASE DE DATOS
df <- read_csv("smoking_health_data_final.csv")
df <- as.data.frame(unclass(df),
stringsAsFactors = TRUE)
str(df)
## 'data.frame': 3900 obs. of 7 variables:
## $ age : num 54 45 58 42 42 57 43 42 37 49 ...
## $ sex : Factor w/ 2 levels "female","male": 2 2 2 2 2 2 2 2 2 2 ...
## $ current_smoker: Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ heart_rate : num 95 64 81 90 62 62 75 66 65 93 ...
## $ blood_pressure: Factor w/ 2317 levels "100.5/62","100.5/66",..: 230 642 869 671 572 143 198 723 709 874 ...
## $ cigs_per_day : num NA NA NA NA NA NA NA NA NA NA ...
## $ chol : num 219 248 235 225 226 223 222 196 188 256 ...
dim(df)
## [1] 3900 7
names(df)
## [1] "age" "sex" "current_smoker" "heart_rate"
## [5] "blood_pressure" "cigs_per_day" "chol"
View(df)
# 3. LIMPIEZA DE DATOS
df <- df %>% distinct()
colSums(is.na(df))
## age sex current_smoker heart_rate blood_pressure
## 0 0 0 0 0
## cigs_per_day chol
## 14 7
summary(df)
## age sex current_smoker heart_rate blood_pressure
## Min. :32.00 female:2081 no :1968 Min. : 44.00 130/80 : 18
## 1st Qu.:42.00 male :1819 yes:1932 1st Qu.: 68.00 120/80 : 17
## Median :49.00 Median : 75.00 110/70 : 15
## Mean :49.54 Mean : 75.69 125/80 : 15
## 3rd Qu.:56.00 3rd Qu.: 82.00 105/70 : 9
## Max. :70.00 Max. :143.00 107/73 : 9
## (Other):3817
## cigs_per_day chol
## Min. : 0.000 Min. :113.0
## 1st Qu.: 0.000 1st Qu.:206.0
## Median : 0.000 Median :234.0
## Mean : 9.169 Mean :236.6
## 3rd Qu.:20.000 3rd Qu.:263.0
## Max. :70.000 Max. :696.0
## NA's :14 NA's :7
unique(df$sex)
## [1] male female
## Levels: female male
unique(df$current_smoker)
## [1] yes no
## Levels: no yes
unique(df$blood_pressure)
## [1] 110/72 121/72 127.5/76 122.5/80 119/80 107.5/72.5
## [7] 109.5/69 123/73 123.5/77 127.5/81.5 132.5/85.5 121/82
## [13] 130/86 145.5/99 131/52 126/52 102/56 106/58
## [19] 112/60 90/60 100/60 112.5/60 102.5/60 102/60
## [25] 120/60 111/60 110/60 98/60 97.5/60 115/60
## [31] 116/62 96/62 112/62 108/62 94/62 100.5/62
## [37] 130/62 103/62 99/62 98/64 96/64 102/64
## [43] 159/64 108/64 114/64 111/68 128/68 113/68
## [49] 103/68 115.5/68 130/68 120/68 114/68 110/68
## [55] 127/68 116/68 102/68 108.5/68 108/68 123/72
## [61] 116/72 109.5/72 130/72 108/72 102/72 114/72
## [67] 117.5/72 124/72 128/72 96/72 104/72 118/72
## [73] 119/72 118.5/72 120/72 127/72 124.5/72 125/72
## [79] 138/72 197/72 100/72 111/72 111.5/72 112/72
## [85] 142/72 133/76 136.5/76 131.5/76 117/76 112/76
## [91] 129/76 128/76 127/76 122/76 137/76 138/76
## [97] 125/76 144/76 119/76 136/76 120/76 126/76
## [103] 107/76 126.5/76 146/76 143/76 115/76 116/76
## [109] 104/76 100/76 120.5/76 131/76 154/80 139/80
## [115] 112.5/80 117.5/80 143/80 129/80 130/80 125/80
## [121] 120/80 113/80 107.5/80 114/80 127.5/80 116/80
## [127] 144/80 126/80 133/80 131/80 121/80 140/80
## [133] 115/80 122/80 135.5/80 135/80 111/80 112/80
## [139] 146.5/80 150/80 175/80 100/80 132.5/80 145.5/80
## [145] 146/80 137/80 133.5/80 123/80 132/80 118/80
## [151] 113.5/80 127/80 124.5/80 158/80 142.5/80 124/80
## [157] 138/80 120.5/80 134/80 153/80 136/80 141/80
## [163] 155/80 136/84 141/84 137/84 144/84 132/84
## [169] 155/84 134/84 140.5/84 118/84 105/84 123.5/84
## [175] 133/84 131.5/84 126/84 140/84 150/84 130/84
## [181] 119/84 114/84 115/84 126.5/84 142/84 165/84
## [187] 128/84 131/84 113/84 129/84 139/84 124/84
## [193] 122.5/84 110/84 116/84 125/84 149.5/84 125.5/84
## [199] 131/88 124/88 139/88 130/88 187/88 144/88
## [205] 146/88 137/88 150/88 126/88 132/88 138/88
## [211] 133/88 135/88 140/88 151/88 134/88 118.5/88
## [217] 121/88 136/88 125/88 145/88 152/88 149/88
## [223] 165/88 148.5/88 142/88 161.5/88 128/88 173/88
## [229] 190/88 154.5/88 126.5/88 206/92 147/92 139/92
## [235] 136/92 160/92 130/92 134/92 138/92 125/92
## [241] 142/92 137.5/92 141/92 136.5/92 150/92 145/92
## [247] 148/92 170/92 146/92 132/92 123/92 132.5/92
## [253] 131/92 133/92 127.5/92 147.5/92 154/92 124/92
## [259] 152/92 133.5/92 168/92 176.5/92 167/92 160.5/96
## [265] 149/96 138/96 147/96 177/96 160/96 156/96
## [271] 142/96 173/96 220/96 132/96 139/96 204/96
## [277] 167/96 154/96 143/96 149/100 156/100 145/100
## [283] 160/100 148/100 174/100 179/100 235/100 190/100
## [289] 140/100 147.5/100 148.5/100 151/100 167/100 153/100
## [295] 164/100 135/100 160.5/100 212/104 206/104 158/104
## [301] 143/104 193/104 170/104 162/108 140/108 183/108
## [307] 180/108 198/108 152.5/108 174/112 206/116 160/120
## [313] 196/120 171/120 210/120 244/124 232/136 98/64.5
## [319] 107.5/64.5 111/68.5 127/68.5 117.5/72.5 108/72.5 115/72.5
## [325] 109/72.5 112.5/72.5 133/72.5 105/72.5 103/72.5 110/72.5
## [331] 145/72.5 124/72.5 102.5/72.5 125/72.5 120/72.5 123/76.5
## [337] 107/76.5 113/76.5 118/76.5 135/76.5 124/76.5 153/80.5
## [343] 122/80.5 118.5/80.5 120.5/80.5 123.5/80.5 136/80.5 128/84.5
## [349] 124.5/84.5 137.5/84.5 125/84.5 138/88.5 178/88.5 141.5/88.5
## [355] 116/88.5 137.5/88.5 122/88.5 127/88.5 124.5/92.5 145/92.5
## [361] 162.5/92.5 123/92.5 148/92.5 155/92.5 129.5/92.5 137/92.5
## [367] 128/92.5 134.5/92.5 152.5/92.5 144/96.5 150/96.5 152/96.5
## [373] 145/100.5 161/100.5 155.5/100.5 170.5/100.5 172.5/100.5 157.5/104.5
## [379] 205.5/104.5 169.5/104.5 141.5/108.5 181/112.5 172.5/112.5 163/112.5
## [385] 172.5/116.5 191/124.5 110/62.5 117.5/65 100/65 102/65
## [391] 110/65 104/65 113/65 107.5/65 105/65 108/65
## [397] 115/65 119/65 112/65 115/69 105/69 124/69
## [403] 110/69 118.5/69 102/69 123/69 92/69 113/69
## [409] 110.5/69 156/69 116/69 108/69 107/69 111/73
## [415] 112/73 120/73 103/73 118/73 107/73 100/73
## [421] 122/73 113.5/73 110/73 119/73 126/73 104/73
## [427] 109/73 129/73 108/73 108.5/73 128.5/73 117/73
## [433] 102/73 106/73 115/73 145/77 128/77 118/77
## [439] 130/77 114/77 165/77 110/77 146/77 127/77
## [445] 115/77 150/77 124/77 113/77 111.5/77 116/77
## [451] 109/77 112/77 133/77 121/77 107/77 122.5/77
## [457] 117/77 113.5/77 108/77 131.5/77 106/77 114.5/77
## [463] 105/77 129/77 136/77 121/81 131/81 123/81
## [469] 108/81 127/81 134/81 150/81 158.5/81 122/81
## [475] 129/81 126/81 123.5/81 127.5/81 145/81 115/81
## [481] 149/81 114/81 117/81 155/81 130/81 132/81
## [487] 119/81 116/81 120/81 124/81 137/81 128/81
## [493] 118/81 143/81 141/81 150/85 138.5/85 155/85
## [499] 160/85 124/85 125/85 142/85 122/85 130/85
## [505] 129/85 153.5/85 127.5/85 119/85 132/85 142.5/85
## [511] 144/85 114/85 140/85 131/85 131.5/85 126/85
## [517] 126.5/85 169/85 145/85 175/85 134/85 149.5/85
## [523] 162/85 202.5/85 135/85 152.5/85 141/85 153/85
## [529] 115.5/85 121/85 143.5/85 122.5/85 161/85 172.5/85
## [535] 149/85 139/85 136.5/85 147/85 141.5/89 157/89
## [541] 173/89 142/89 146/89 143.5/89 130/89 145/89
## [547] 123/89 135/89 134.5/89 125/89 129/89 131.5/89
## [553] 176/89 148/89 171/89 155/89 136.5/89 138/89
## [559] 133/89 150/89 166/89 149/89 153/89 170/89
## [565] 140.5/89 152/89 124/89 158/89 141/89 137.5/89
## [571] 142/93 126.5/93 131/93 140/93 156/93 155/93
## [577] 128/93 183/93 163.5/93 153/93 201/93 139/93
## [583] 148/93 166/93 158/93 141.5/93 150/93 137/93
## [589] 149.5/93 147.5/93 143/93 126/93 134/93 143.5/93
## [595] 133/93 129/93 156.5/93 136/93 135/97 138/97
## [601] 134/97 176/97 160/97 186.5/97 147/97 190/97
## [607] 161/97 150.5/97 157/97 152/97 177/97 171/97
## [613] 182.5/97 191/97 168.5/97 164/97 129/97 168/97
## [619] 151/101 182/101 157/101 158/101 171/101 143/101
## [625] 186/101 150/101 166/101 177/101 181/101 196/101
## [631] 167/101 175/101 170/101 158/105 197.5/105 215/105
## [637] 167/105 138/105 156.5/105 163/105 162.5/105 159/105
## [643] 170/105 141/105 155/105 160/105 156/105 195/105
## [649] 184/109 160/109 160.5/109 143.5/109 158/109 176/109
## [655] 175.5/113 170/113 192.5/113 169/117 182/121 189/121
## [661] 200/125 190/130 248/130 113.5/65.5 98.5/69.5 123/73.5
## [667] 107/73.5 112.5/73.5 120.5/73.5 128.5/73.5 107.5/73.5 130/73.5
## [673] 150/77.5 136.5/77.5 117.5/77.5 130/77.5 127.5/77.5 146.5/77.5
## [679] 120/77.5 133/77.5 122.5/77.5 135/77.5 112.5/77.5 125/77.5
## [685] 143.5/77.5 110/77.5 131.5/77.5 133.5/81.5 116/81.5 139/81.5
## [691] 117/81.5 130/81.5 112/85.5 118.5/85.5 136.5/85.5 148/85.5
## [697] 187.5/85.5 123/85.5 120.5/85.5 127.5/85.5 130/85.5 119/85.5
## [703] 129/85.5 121/85.5 132/85.5 116/85.5 126/85.5 133/85.5
## [709] 125.5/85.5 137.5/89.5 132/89.5 133/89.5 148/89.5 164.5/93.5
## [715] 142.5/93.5 155/93.5 129.5/93.5 152.5/97.5 185.5/97.5 142.5/97.5
## [721] 151/97.5 185/97.5 140/97.5 181/97.5 135/97.5 162/97.5
## [727] 146.5/97.5 137.5/101.5 174/101.5 174.5/101.5 171.5/105.5 165/105.5
## [733] 85.5/51 105/57 95.5/59 173/59 132/59 102/59
## [739] 101/59 99/59 107/61 129/61 115/61 113/61
## [745] 102/61 96/63 97/63 111/63 112/63 193/63
## [751] 112/66 107/66 108/66 100.5/66 116/66 126/66
## [757] 121/66 104/66 110.5/66 103/66 102.5/66 98/66
## [763] 123/66 106/70 124/70 96/70 130/70 129/70
## [769] 109/70 127/70 105/70 120/70 110/70 114/70
## [775] 136/70 126/70 101/70 135/70 107.5/70 115/70
## [781] 122/70 158/70 112.5/70 100/70 121/70 113/70
## [787] 137/70 152/70 108/70 116/70 107/70 103/70
## [793] 111/70 118.5/70 124/74 122/74 135/74 127/74
## [799] 120/74 121.5/74 125/74 119.5/74 155/74 105/74
## [805] 128/74 121/74 113.5/74 110/74 148/74 107.5/74
## [811] 98/74 108/74 114/74 116/74 181/74 104/74
## [817] 105.5/74 150/74 113/74 130/74 134/74 116.5/74
## [823] 139/74 119/74 148/78 109/78 144/78 132/78
## [829] 133/78 118/78 130/78 163/78 127/78 122/78
## [835] 121.5/78 114/78 110/78 149.5/78 129/78 146/78
## [841] 111/78 116/78 124/78 138/78 121/78 123/78
## [847] 141/78 117/78 175/78 120.5/78 115/78 113/78
## [853] 134/78 128/78 112/78 104/78 119/78 176/78
## [859] 138/82 135/82 127/82 106/82 160/82 159/82
## [865] 132/82 126/82 119/82 152.5/82 142/82 168/82
## [871] 122/82 140/82 115/82 124/82 141.5/82 130/82
## [877] 145/82 116/82 123/82 154/82 134/82 112/82
## [883] 108/82 144/82 146.5/82 125/82 120/82 114/82
## [889] 128/82 107/82 122.5/82 130.5/82 133/82 139/82
## [895] 142.5/82 150/82 137/82 105/82 155/82 158/86
## [901] 155/86 121/86 137/86 131/86 134/86 129/86
## [907] 118/86 127/86 125.5/86 132/86 163/86 138/86
## [913] 123/86 150/86 145/86 124/86 126/86 135/86
## [919] 136/86 140/86 122/86 116/86 125/86 130.5/86
## [925] 149/86 105/86 149.5/86 182/86 117/86 146/86
## [931] 119/86 142/86 157/86 180/90 159/90 140.5/90
## [937] 123/90 117/90 142.5/90 129/90 147/90 152.5/90
## [943] 120/90 124/90 149/90 132.5/90 145/90 148.5/90
## [949] 156/90 140/90 184/90 181/90 128/90 135/90
## [955] 144/90 143.5/90 127.5/90 134/90 195/90 125/90
## [961] 158/90 141/90 146/90 130.5/90 166/90 160/90
## [967] 165/90 161/90 117.5/90 148/90 142/90 143/90
## [973] 147.5/90 136/90 155/90 133/90 115/90 151/90
## [979] 204/94 175/94 157/94 153/94 145/94 142/94
## [985] 159.5/94 151/94 122/94 132/94 160/94 167/94
## [991] 146/94 136/94 168/94 125/94 150/94 164/94
## [997] 150.5/94 140/94 133/94 214/94 148.5/94 130/94
## [1003] 160/98 153/98 158/98 166/98 177.5/98 168/98
## [1009] 134/98 139/98 144/98 170/98 148/98 206/98
## [1015] 151/98 141.5/98 172.5/98 162/98 130.5/98 154/98
## [1021] 150.5/98 152/98 157/98 141/98 146/98 147/98
## [1027] 155.5/98 150/98 149/98 153.5/102 159/102 170/102
## [1033] 145/102 192/102 173/102 155/102 151/102 163/102
## [1039] 161/102 147/102 152/102 164.5/102 158/102 196/102
## [1045] 164/102 182/106 148/106 184/106 154/106 146/106
## [1051] 165/106 191/106 153/106 180/110 155/110 189/110
## [1057] 174/110 182.5/110 154/110 195/110 177.5/110 167.5/110
## [1063] 188/110 179.5/114 199/114 204/118 170/118 171/118
## [1069] 202/132 200/140 114/66.5 103.5/66.5 112/66.5 124.5/66.5
## [1075] 102/66.5 102.5/66.5 120/66.5 127/66.5 92.5/66.5 114/70.5
## [1081] 120/70.5 108/70.5 108.5/70.5 100/74.5 112/74.5 121.5/74.5
## [1087] 142.5/74.5 118.5/74.5 102/74.5 110/78.5 116/78.5 131.5/78.5
## [1093] 121/78.5 119/78.5 109/78.5 145/82.5 112.5/82.5 137/82.5
## [1099] 122.5/82.5 125.5/82.5 115/82.5 141/82.5 126/82.5 130/82.5
## [1105] 137.5/82.5 122/82.5 143/82.5 132.5/82.5 127.5/82.5 115.5/82.5
## [1111] 146/82.5 138/86.5 118/86.5 127.5/86.5 124/86.5 136.5/86.5
## [1117] 121.5/86.5 147/86.5 129/86.5 130/86.5 128/86.5 134/86.5
## [1123] 213/94.5 143/94.5 146/94.5 123/94.5 160.5/98.5 146/98.5
## [1129] 168.5/98.5 173/98.5 167.5/102.5 153/102.5 158/102.5 180.5/106.5
## [1135] 166.5/106.5 188.5/106.5 151/106.5 184.5/110.5 183/114.5 207/122.5
## [1141] 209/133 213/133 105/59.5 121/61.5 100/61.5 102.5/63.5
## [1147] 114/67 116/67 117/67 105.5/67 132/67 108/67
## [1153] 120/67 97/67 126.5/67 98/67 112/67 111.5/67
## [1159] 138/71 109/71 107/71 110/71 117/71 100/71
## [1165] 111/71 114/71 123/71 112/71 115/71 105/71
## [1171] 131/71 108.5/71 146.5/71 93/71 101/71 155/71
## [1177] 118/71 118.5/71 140/71 116/71 151.5/71 116.5/71
## [1183] 105/75 113.5/75 110/75 122.5/75 120.5/75 127/75
## [1189] 117.5/75 127.5/75 153/75 132/75 123/75 116/75
## [1195] 115/75 108.5/75 114/75 109/75 120/75 130/75
## [1201] 148/75 112.5/75 121/75 124/75 106.5/75 106/75
## [1207] 126/75 128.5/75 136/75 108/75 122/75 101/75
## [1213] 125/75 137/75 139/75 107/75 119/79 115/79
## [1219] 112.5/79 123/79 136.5/79 114/79 138/79 141/79
## [1225] 134/79 124/79 116/79 131/79 118/79 121/79
## [1231] 113/79 127/79 142.5/79 112/79 119.5/79 142/79
## [1237] 128/79 110/79 132.5/79 125/79 151.5/79 123.5/79
## [1243] 144/79 130/79 137/79 126/79 139/79 175/79
## [1249] 111/79 155/79 146.5/79 109/79 129.5/83 129/83
## [1255] 125/83 123/83 112/83 128.5/83 133/83 138/83
## [1261] 114/83 199/83 127/83 122/83 124/83 115/83
## [1267] 140/83 136.5/83 126/83 135/83 123.5/83 130/83
## [1273] 184.5/83 120/83 116/83 134/83 128/83 117/83
## [1279] 121/83 118/83 131.5/83 113/83 127.5/83 110/83
## [1285] 137/83 140.5/83 149/83 157.5/83 133.5/83 154/87
## [1291] 128/87 147/87 136/87 124/87 140/87 142/87
## [1297] 135/87 125/87 131/87 138/87 134/87 123/87
## [1303] 143/87 127.5/87 114/87 137.5/87 171/87 130/87
## [1309] 176/87 133/87 136.5/87 139.5/87 159/87 132.5/87
## [1315] 132/87 163/87 146/87 141/87 160/87 153/87
## [1321] 172/87 144/87 120/87 118.5/87 128/91 127.5/91
## [1327] 141/91 146/91 133/91 145/91 138/91 159.5/91
## [1333] 132/91 144/91 165/91 137/91 142/91 126/91
## [1339] 131.5/91 148/91 156/91 197/91 169/91 137.5/91
## [1345] 151/95 177.5/95 145/95 136.5/95 161.5/95 146/95
## [1351] 141.5/95 159/95 143/95 130/95 137/95 142.5/95
## [1357] 152/95 150.5/95 151.5/95 193/95 144.5/95 156/95
## [1363] 185/95 140/95 135/95 165/95 148/95 187/95
## [1369] 129/95 141/95 190/99 152/99 176/99 131/99
## [1375] 138.5/99 150/99 124.5/99 148/99 165/99 186.5/99
## [1381] 159/99 140/99 174.5/103 163.5/103 170/103 148/103
## [1387] 161/103 158/103 167/107 179/107 166.5/107 181/107
## [1393] 170/107 199.5/107 166/107 189/111 182/111 164/111
## [1399] 177/111 194/111 192.5/115 196/119 178/123 243/142.5
## [1405] 110/67.5 125/67.5 126.5/67.5 120/67.5 107.5/67.5 122/67.5
## [1411] 102/71.5 113/71.5 147/71.5 108.5/71.5 116/71.5 113.5/75.5
## [1417] 132/75.5 112.5/75.5 130/75.5 119/75.5 124/75.5 112/75.5
## [1423] 126.5/75.5 113/75.5 115/79.5 111/79.5 121/79.5 118/79.5
## [1429] 127/79.5 120/79.5 132/83.5 144.5/83.5 127.5/83.5 129/83.5
## [1435] 128/83.5 142.5/83.5 162/87.5 122/87.5 145/87.5 132.5/87.5
## [1441] 133.5/87.5 138.5/87.5 128.5/87.5 136.5/87.5 144/87.5 135/87.5
## [1447] 152.5/87.5 147.5/87.5 151/87.5 167.5/91.5 127.5/91.5 144.5/91.5
## [1453] 148/91.5 111/95.5 159/95.5 136/95.5 136.5/99.5 155.5/99.5
## [1459] 177/103.5 154.5/103.5 153.5/103.5 149/103.5 175/107.5 185/107.5
## [1465] 185.5/115.5 210/127.5 295/135 210/135 118/68 122/84
## [1471] 172/84 120/84 179/92 200/104 105.5/64.5 174/84.5
## [1477] 122/69 100.5/69 112.5/73 123/77 148/81 111/81
## [1483] 146.5/81 156.5/85 154/97 153/101 197/109 197.5/125
## [1489] 125/73.5 118/77.5 132.5/97.5 113.5/61 112/74 124.5/82
## [1495] 145.5/82 141/86 126.5/90 147/94 148/94 173/106
## [1501] 118.5/82.5 142/82.5 101/67 142/83 134.5/91 116/79.5
## [1507] 113/62 143.5/81 98/53 133/86 177/110 105/68
## [1513] 122/68 133.5/76 118.5/76 126.5/80 117/80 165/80
## [1519] 111/84 136.5/84 159/92 118/92 161/96 168.5/108
## [1525] 177.5/120 137.5/72.5 130/72.5 156.5/92.5 205/92.5 137/85
## [1531] 141/93 140/97 133.5/85.5 103/61 104/61 112/70
## [1537] 111.5/74 158/74 120/78 157.5/78 163/82 182/102
## [1543] 144/110 185/114 197/118 100/66.5 155/82.5 131/86.5
## [1549] 142.5/86.5 108.5/63.5 112.5/67 103/67 128/71 107.5/75
## [1555] 116.5/83 169/111 164/119 122.5/67.5 124/76 121/61
## [1561] 151/74 113/75 135/91 150/91 106/64 100/68
## [1567] 110/80 125.5/80 121/84 123/88 157/96 107/68.5
## [1573] 121.5/72.5 116.5/72.5 123/72.5 112.5/76.5 122/84.5 130/84.5
## [1579] 151.5/96.5 115.5/65 107/65 109/69 107.5/73 139/81
## [1585] 109/81 113/81 129.5/93 120/73.5 137.5/77.5 123/77.5
## [1591] 130.5/85.5 106/78 123.5/78 128.5/82 125.5/82 169/82
## [1597] 170/86 166/102 159/110 106/70.5 102/70.5 134.5/78.5
## [1603] 123/78.5 134/82.5 135/82.5 135/86.5 164/94.5 110/67
## [1609] 139/67 117.5/71 119/75 126.5/79 132.5/91 134/91
## [1615] 149/95 168/103 120/83.5 143/84 165/85 138.5/77.5
## [1621] 118.5/77.5 129/94 163/94 168/102 125/71 134/75
## [1627] 178/91 101/68 202/124 95/65 104/69 176/98
## [1633] 159/91.5 182.5/88 106/65 119.5/69.5 109/61 106/63
## [1639] 122/95 105/60 110/64 126/68 101/72 115/72
## [1645] 114/76 110/76 159/88 144.5/88 117.5/92 140/92
## [1651] 144/92 155/100 113.5/72.5 132/84.5 111/60.5 133/69
## [1657] 113/73 98/73 119/77 136.5/81 105/85 152/93
## [1663] 137/97 108.5/73.5 128/81.5 164/85.5 140/89.5 121.5/57
## [1669] 124/66 90/70 114.5/70 95.5/70 123/74 118/74
## [1675] 113/82 156.5/86 119/90 137.5/94 145.5/94 107/66.5
## [1681] 157/82.5 109.5/67 122/67 102/67 115/67 106/71
## [1687] 97/71 112/75 145/79 115.5/79 157/87 134.5/87
## [1693] 139/91 137/99 165/115 102.5/67.5 141/83.5 93.5/58
## [1699] 99/60 107/68 133/72 108/76 141/76 116.5/80
## [1705] 157/80 171/84 135/84 146/84 152.5/88 182/92
## [1711] 166/96 102.5/64.5 102/64.5 116/72.5 125.5/72.5 120/85
## [1717] 136/85 127/89 174/97 163/101 167/109 174/130
## [1723] 113/69.5 131/73.5 114/73.5 95/59 96/59 96/61
## [1729] 101/63 92.5/70 109/74 118/82 175/82 138/90
## [1735] 186/102 170/110 113.5/66.5 121.5/82.5 105.5/57.5 121/67
## [1741] 96/67 103/71 96.5/71 130/71 143/79 134.5/83
## [1747] 141/83 147.5/95 132/95 136/99 189/103 176.5/115
## [1753] 111/67.5 120.5/67.5 107/67.5 124.5/75.5 136.5/83.5 187/95.5
## [1759] 127/76.5 132.5/55 107/74 108/71 111/64 122.5/76.5
## [1765] 135/75 110/66 145/99 106/48 95/58 83.5/58
## [1771] 106/60 100/64 97/64 107.5/68 117/72 122.5/76
## [1777] 123/76 128/80 114.5/80 129.5/80 143/92 185/100
## [1783] 165/100 147/100 156/104 141/104 152/104 195/108
## [1789] 158/108 112/68.5 101/68.5 113/72.5 140/92.5 158.5/100.5
## [1795] 102.5/65 101/69 120/77 132/77 191/81 137.5/81
## [1801] 107/81 163/85 111/85 166/85 159/89 127/93
## [1807] 163.5/97 179.5/97 158/97 115.5/65.5 115/77.5 141/77.5
## [1813] 121.5/81.5 119.5/85.5 142/85.5 98/57 95/57 111/61
## [1819] 110/61 106/66 142/66 101/66 131/74 126/74
## [1825] 125/78 140/78 149/82 156/86 154/94 141/102
## [1831] 198/106 230/110 94/66.5 107.5/66.5 118/70.5 117/74.5
## [1837] 116/74.5 122/74.5 117/78.5 131.5/82.5 134.5/90.5 181.5/102.5
## [1843] 99/67 145/67 107.5/71 135/79 131/83 137/87
## [1849] 129/87 118/87 150/95 103/67.5 110/71.5 118/75.5
## [1855] 127.5/79.5 137/83.5 117.5/83.5 180/107.5 159/100 177/124
## [1861] 128/89 147.5/97 96/66 142/76 145/74 122/87
## [1867] 111/56 115.5/62 101/62 120/62 128/64 104/64
## [1873] 95.5/64 116/64 117/68 112.5/68 142/68 122/72
## [1879] 109/72 106/72 129/72 107.5/72 135/76 99/76
## [1885] 132/76 111/76 114.5/76 117.5/76 106/80 142/80
## [1891] 134.5/80 138/84 134.5/84 127/84 151.5/88 147/88
## [1897] 129/88 158/88 143/88 147.5/88 129.5/88 129/92
## [1903] 131.5/92 156/92 151/92 146.5/92 151/96 165/96
## [1909] 158/96 144/96 134/96 179/96 170/100 154/100
## [1915] 180/100 154.5/104 148/108 160/108 142/108 165/108
## [1921] 217/112 165/112 200/120 188/128 103/64.5 122/72.5
## [1927] 127.5/72.5 111.5/72.5 114/72.5 96.5/72.5 121.5/76.5 122/76.5
## [1933] 125.5/80.5 155/80.5 118.5/84.5 147.5/92.5 140.5/92.5 160/92.5
## [1939] 136.5/92.5 167.5/92.5 167/96.5 215/129 119/62.5 112.5/62.5
## [1945] 97.5/62.5 93/62.5 97/65 98/65 104.5/65 112/69
## [1951] 93.5/69 128/69 121.5/69 119/69 102.5/69 132.5/69
## [1957] 121.5/73 140/73 118.5/73 149/73 101/73 119.5/73
## [1963] 105/73 126/77 164/81 118.5/81 116.5/81 128/85
## [1969] 132.5/85 112.5/85 118/85 138/85 123/85 151/85
## [1975] 139.5/89 131/89 147/89 164/89 120/89 125/93
## [1981] 154.5/93 187/97 180/101 161/105 192/105 172/105
## [1987] 152.5/105 150/105 148/109 159/109 193/109 196/109
## [1993] 164/113 210/130 108/65.5 117.5/73.5 119/73.5 112/73.5
## [1999] 119/77.5 116.5/77.5 116/77.5 141/81.5 131/81.5 135/85.5
## [2005] 136/85.5 134/85.5 134/89.5 167/89.5 133.5/89.5 162.5/93.5
## [2011] 159.5/93.5 160/97.5 147.5/97.5 95/55 83.5/55 104/57
## [2017] 105/59 101/61 112/61 100/63 130.5/63 136/66
## [2023] 107.5/66 119/66 113.5/70 127.5/70 118/70 123/70
## [2029] 85/70 147/74 117/74 115/74 112.5/74 129/74
## [2035] 152/74 126/78 136.5/78 131/82 129/82 116.5/82
## [2041] 131.5/82 126.5/82 141/82 139/86 127.5/86 128/86
## [2047] 147/86 120/86 118/90 150/90 154/90 139/90
## [2053] 135.5/90 138.5/90 132/90 131/90 179/94 128/94
## [2059] 158/94 131/94 138/94 156/98 143/98 138/98
## [2065] 164/98 163.5/102 150/106 151.5/110 215/110 162/110
## [2071] 180/114 175/114 220/118 113/66.5 109/66.5 128.5/74.5
## [2077] 110/74.5 122.5/78.5 140/82.5 129.5/82.5 119/82.5 117.5/82.5
## [2083] 159.5/82.5 158/86.5 125/86.5 133/86.5 135/94.5 165/94.5
## [2089] 160.5/106.5 200/122.5 97.5/57.5 106/59.5 102/59.5 115/63.5
## [2095] 112/63.5 111/67 96.5/67 101.5/67 126/67 166/71
## [2101] 102.5/71 126/71 112.5/71 123.5/75 117/75 141/75
## [2107] 143/75 120/79 106/79 132/79 121.5/79 129/79
## [2113] 146.5/83 119/83 116/87 129.5/87 189/87 145/87
## [2119] 163.5/87 119.5/87 122.5/87 113/87 141.5/91 175/95
## [2125] 160/95 141/99 157/99 162/99 155/99 160/99
## [2131] 154/99 152/103 178/103 151.5/103 164/107 198/107
## [2137] 158.5/107 117.5/67.5 105/67.5 130/71.5 122.5/75.5 130/83.5
## [2143] 119/83.5 127.5/87.5 145.5/87.5 137.5/87.5 129/91.5 150/95.5
## [2149] 164/88 179/93 117/84 161.5/96 103/76.5 126/88.5
## [2155] 121/73 154/93 173/117 192.5/125 99.5/66 117/70
## [2161] 142/74 103/78 165/86 137/90 145.5/87 126.5/91.5
## [2167] 111/62 97/62 126/72 113.5/72 118/76 128.5/80
## [2173] 152.5/80 148/84 169/96 133/96 136/96 168/100
## [2179] 129.5/100 146/104 171/112 196/116 112.5/64.5 122.5/68.5
## [2185] 111/72.5 129/76.5 125/80.5 123.5/84.5 141/84.5 137/96.5
## [2191] 114.5/62.5 96.5/62.5 125/65 127/69 121/69 116/73
## [2197] 114/73 152/73 132.5/73 131.5/81 126.5/81 117.5/85
## [2203] 127/85 134/89 127.5/89 136.5/97 163/97 147/101
## [2209] 157.5/105 162/109 176/113 122/81.5 114/85.5 131/85.5
## [2215] 138.5/85.5 126/89.5 146/93.5 133.5/97.5 180/109.5 118/66
## [2221] 111.5/70 111/74 146/82 144/86 133.5/86 137.5/90
## [2227] 127/90 174/90 184/102 178/106 190/110 122/66.5
## [2233] 117.5/70.5 126.5/78.5 113/82.5 104/79 139/83 126/87
## [2239] 152/87 130/91 149/91 167.5/95 172/95 162/107
## [2245] 159/115 141/115 106/67.5 162.5/99.5 120.5/84 154/84
## [2251] 144.5/88.5 117/65 122.5/66.5 120/82.5 144/99 182.5/103
## [2257] 142/54 103.5/60 137.5/80 157/88 148/96 141/100
## [2263] 162.5/104 100/72.5 145.5/92.5 167.5/104.5 142.5/104.5 112/62.5
## [2269] 147/65 122.5/73 136/73 148/85 151/89 146.5/97
## [2275] 165/105 137/89.5 119.5/70 148/70 118.5/82 152/82
## [2281] 130/90 124.5/86.5 119/67 150.5/87 162/91 154/91
## [2287] 171/95 147/103 154/95.5 135/92 142.5/100 177.5/100
## [2293] 126.5/92.5 124/73 137.5/85 135/93 115/85.5 132.5/66
## [2299] 108/78 172/82 152/90 199/106 182/110 207.5/118
## [2305] 127/82.5 134/90.5 139.5/75 116.5/87 138/99 162.5/87.5
## [2311] 112.5/65 125.5/94 136/81 150/97 153.5/105 104/73.5
## [2317] 134/95
## 2317 Levels: 100.5/62 100.5/66 100.5/69 100/60 100/61.5 100/63 100/64 ... 99/76
age_sex <- df %>% arrange(age, sex)
Se desea comprobar si la frecuencia cardíaca promedio de los individuos en la muestra es igual a 75 latidos por minuto, valor que podría considerarse una referencia general para adultos sanos en reposo.
Hipótesis:
•Hipótesis nula (H₀): La media poblacional de la frecuencia cardíaca es igual a 75.
•Hipótesis alternativa (H₁): La media poblacional de la frecuencia cardíaca es diferente de 75.
heart_data <- na.omit(df$heart_rate)
t.test(heart_data, mu = 75)
##
## One Sample t-test
##
## data: heart_data
## t = 3.5809, df = 3899, p-value = 0.0003465
## alternative hypothesis: true mean is not equal to 75
## 95 percent confidence interval:
## 75.31176 76.06619
## sample estimates:
## mean of x
## 75.68897
boxplot(heart_data,
horizontal = TRUE,
main = "Boxplot de Frecuencia Cardíaca",
xlab = "Frecuencia cardíaca (lpm)",
col = "lightgreen")
abline(v = 75, col = "red", lwd = 2, lty = 2)
Conclusión: Se tiene una media de 75,68897 en la frecuencia cardiáca de la base de datos, además de tener una confiabilidad mayor al 95% en la totalidad de los datos y un intervalo de confianza entre 75,31176 - 76,06619, donde no se incluye el valor de frecuencia cardiaca de 75 lpm; además el valor p (0,0003465) es menor a 0,05, descartando la Hipotesis nula para esta prueba.
Se quiere evaluar si los niveles medios de colesterol en la muestra superan el valor umbral de 200 mg/dL, punto a partir del cual se considera que existe hipercolesterolemia.
Hipótesis:
• Hipótesis nula (H₀): El nivel medio de colesterol en la población es menor o igual a 200. • Hipótesis alternativa (H₁): El nivel medio de colesterol en la población es mayor a 200.
chol_data <- na.omit(df$chol)
t.test(chol_data, mu = 200, alternative = "greater")
##
## One Sample t-test
##
## data: chol_data
## t = 51.456, df = 3892, p-value < 2.2e-16
## alternative hypothesis: true mean is greater than 200
## 95 percent confidence interval:
## 235.4258 Inf
## sample estimates:
## mean of x
## 236.5959
boxplot(chol_data,
horizontal = TRUE,
main = "Boxplot de niveles de colesterol",
xlab = "Colesterol (mg/dL)",
col = "lightblue",
border = "darkblue")
abline(v = 200, col = "red", lwd = 2, lty = 2)
De igual forma a la frecuencia cardiaca, se tiene un valor de ‘p’ =
2,2x10-6 mucho menor que 0,05 rechazando nuevamente la hipótesis NULA.
El intervalo de confianza empieza en 235,42 mg/dL junto a una media de
236,59 mg/dL, indicando que las personas de este estudio presentan
hipercolesterolemia.
Nueva variable binaria:
\[ \begin{Bmatrix} Z & = 1 si Chol> 240\\ & = 0 si Chol \leqslant 240 \\ \end{Bmatrix} \] Hipótesis:
• H₀: La proporción de personas con colesterol alto es igual al 20% . • H₁: La proporción de personas con colesterol alto es mayor al 20%.
chol_data <- na.omit(df$chol)
Z <- ifelse(chol_data > 240, 1, 0)
n <- length(Z)
x <- sum(Z)
prop.test(x = x, n = n, p = 0.20, alternative = "greater", correct = FALSE)
##
## 1-sample proportions test without continuity correction
##
## data: x out of n, null probability 0.2
## X-squared = 1272.8, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is greater than 0.2
## 95 percent confidence interval:
## 0.4157256 1.0000000
## sample estimates:
## p
## 0.4287182
df$chol_alto <- ifelse(df$chol > 240, 1, 0)
tabla_chol <- table(df$chol_alto)
labels <- c("≤ 240 mg/dL", "> 240 mg/dL")
pie(tabla_chol,
labels = paste(labels, "\n", round(100 * tabla_chol / sum(tabla_chol), 1), "%"),
col = c("#66c2a5", "#fc8d62"),
main = "Proporción de personas con colesterol alto")
Conclusión: Con base a los resultados anteriores, descartamos la
Hipótesis Nula (p= 2,2x10-6) y el porcentaje de proporcion es igual a
42,87%, esto quiere decir que mas del 20% de la muestra tiene colesterol
alto.
Nueva variable binaria:
\[ \begin{Bmatrix} W & = 1 si Heart Rate > 100\\ W & = 0 si Heart Rate \leqslant 100 \\ \end{Bmatrix} \] •H₀: La proporción de personas con taquicardia es igual al 5%. •H₁: La proporción de personas con taquicardia es diferente del 5%.
heart_rate_clean <- na.omit(df$heart_rate)
taquicardia <- ifelse(heart_rate_clean > 100, 1, 0)
x <- sum(taquicardia)
n <- length(taquicardia)
prop.test(x = x, n = n, p = 0.10,
alternative = "greater",
correct = FALSE)
##
## 1-sample proportions test without continuity correction
##
## data: x out of n, null probability 0.1
## X-squared = 251.31, df = 1, p-value = 1
## alternative hypothesis: true p is greater than 0.1
## 95 percent confidence interval:
## 0.02014561 1.00000000
## sample estimates:
## p
## 0.02384615
df$taquicardia <- ifelse(df$heart_rate > 100, 1, 0)
tabla_taq <- table(df$taquicardia)
labels <- c("≤ 100 lpm", "> 100 lpm")
pie(tabla_taq,
labels = paste(labels, "\n", round(100 * tabla_taq / sum(tabla_taq), 1), "%"),
col = c("#8da0cb", "#e78ac3"),
main = "Proporción de personas con taquicardia")
Conclusión: En este caso p adquiere un valor de 1 que es mayor a 0,05 por consiguiente la hipotesis NULA no es rechazada, indicando que mas del 10% no necesariamente sufren de taquicardia.
En el estudio sobre la salud cardiovascular de adultos, se recopilaron datos fisiológicos de un grupo de individuos clasificados como fumadores y no fumadores. Entre las variables medidas se encuentra el nivel de colesterol en sangre (mg/dL), un indicador importante de riesgo cardiovascular. Con el objetivo de evaluar si existe una diferencia significativa en los niveles promedio de colesterol entre fumadores y no fumadores, se solicita realizar una prueba de hipótesis para comparar las medias de colesterol entre ambos grupos. Asuma independencia entre las muestras y considere una significancia del 5%.
Hipótesis:
• H₀: No hay diferencia en los niveles medios de colesterol entre fumadores y no fumadores. • H₁: Existe una diferencia significativa entre los niveles medios de colesterol.
df_limpio <- df[!is.na(df$chol) & !is.na(df$current_smoker), ]
df_limpio$current_smoker <- as.factor(df_limpio$current_smoker)
t.test(chol ~ current_smoker, data = df_limpio, var.equal = FALSE)
##
## Welch Two Sample t-test
##
## data: chol by current_smoker
## t = 2.9119, df = 3884.8, p-value = 0.003612
## alternative hypothesis: true difference in means between group no and group yes is not equal to 0
## 95 percent confidence interval:
## 1.352281 6.925837
## sample estimates:
## mean in group no mean in group yes
## 238.6458 234.5067
ggplot(df_limpio, aes(x = current_smoker, y = chol, fill = current_smoker)) +
geom_boxplot() +
labs(title = "Niveles de colesterol: Fumadores vs. No Fumadores",
x = "¿Fumador?", y = "Colesterol (mg/dL)") +
scale_fill_manual(values = c("skyblue", "salmon")) +
theme_minimal()
Conclusión: Con base al valor de ‘p’ se rechaza la hipótesis nula,
concluyendo que sí existe una diferencia estadísticamente significativa
entre los niveles promedio de colesterol de fumadores y no
fumadores.
Hipótesis:
•H₀: No hay diferencia en la frecuencia cardíaca promedio entre fumadores y no fumadores. •H₁: La frecuencia cardíaca promedio de los fumadores es mayor que la de los no fumadores.
df_hr <- df[!is.na(df$heart_rate) & !is.na(df$current_smoker), ]
df_hr$current_smoker <- as.factor(df_hr$current_smoker)
t.test(heart_rate ~ current_smoker, data = df_hr, var.equal = FALSE)
##
## Welch Two Sample t-test
##
## data: heart_rate by current_smoker
## t = -3.5809, df = 3896.4, p-value = 0.0003466
## alternative hypothesis: true difference in means between group no and group yes is not equal to 0
## 95 percent confidence interval:
## -2.1284527 -0.6223489
## sample estimates:
## mean in group no mean in group yes
## 75.00762 76.38302
ggplot(df_hr, aes(x = current_smoker, y = heart_rate, fill = current_smoker)) +
geom_boxplot() +
labs(title = "Frecuencia cardíaca: Fumadores vs. No Fumadores",
x = "¿Fumador?", y = "Frecuencia cardíaca (lpm)") +
scale_fill_manual(values = c("lightgreen", "tomato")) +
theme_minimal()
Conclusion: El valor p obtenido fue 0.00035, menor al nivel de significancia del 5%.Por lo tanto, se rechaza la hipótesis nula (H₀) y se concluye que existe una diferencia significativa en la frecuencia cardíaca promedio entre fumadores y no fumadores.
En el estudio se analiza si existe una diferencia significativa en la proporción de personas con colesterol alto (definido como un nivel superior a 240 mg/dL) entre fumadores y no fumadores. Para ello, se utilizaron los datos recolectados en una base que incluye variables clínicas y hábitos personales. Con base en esta información, formule y realice una prueba de hipótesis que permita determinar si la proporción de individuos con colesterol elevado difiere entre quienes fuman y quienes no lo hacen. Utilice un nivel de significancia del 5%. Se define colesterol alto como un valor de colesterol > 240 mg/dL. Se crea una variable binaria:
\[ \begin{Bmatrix} Z & = 1 si Chol> 240 (Colesterol alto)\\ & = 0 si Chol \leqslant 240 (Colesterol Normal\\ \end{Bmatrix} \] •H₀: La proporción de personas con colesterol alto es la misma en fumadores y no fumadores. •H₁: La proporción de personas con colesterol alto es diferente entre fumadores y no fumadores.
df_limpio <- df[!is.na(df$chol) & !is.na(df$current_smoker), ]
df_limpio$chol_alto <- ifelse(df_limpio$chol > 240, 1, 0)
tabla <- table(df_limpio$current_smoker, df_limpio$chol_alto)
tabla
##
## 0 1
## no 1086 879
## yes 1138 790
prop.test(x = c(tabla["no", "1"], tabla["yes", "1"]),
n = c(sum(tabla["no", ]), sum(tabla["yes", ])),
alternative = "two.sided",
correct = FALSE)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(tabla["no", "1"], tabla["yes", "1"]) out of c(sum(tabla["no", ]), sum(tabla["yes", ]))
## X-squared = 5.6106, df = 1, p-value = 0.01785
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.006509575 0.068644839
## sample estimates:
## prop 1 prop 2
## 0.4473282 0.4097510
props <- data.frame(
grupo = c("No fumadores", "Fumadores"),
proporción = c(tabla["no", "1"] / sum(tabla["no", ]),
tabla["yes", "1"] / sum(tabla["yes", ]))
)
ggplot(props, aes(x = grupo, y = proporción, fill = grupo)) +
geom_bar(stat = "identity") +
ylim(0, 1) +
labs(title = "Proporción de colesterol alto según hábito de fumar",
y = "Proporción de colesterol alto",
x = "Grupo") +
theme_minimal() +
theme(legend.position = "none")