[1] "/home/sergiouribe/Insync/sergio.uribe@gmail.com/Google Drive/Research Drive/2025_Sindija_Baltic Survey of Empathy Levels Jefferson scale/analysis_jefferson"
2025-Jefferson_test-retest
Packages
Docs
Data
Filter those with test retest
1 2
14 14
# A tibble: 0 × 2
# ℹ 2 variables: Respondent <dbl>, n <int>
Prepare the dataset
Check the correlation
Pearson's product-moment correlation
data: test_retest_wide$Time1 and test_retest_wide$Time2
t = 21.474, df = 278, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7412695 0.8302116
sample estimates:
cor
0.789858
Now a plot
Now intraclass correlation
Call: psych::ICC(x = select(test_retest_wide, Time1, Time2), alpha = 0.05,
lmer = TRUE, check.keys = FALSE)
Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.79 8.5 279 280 1.9e-61 0.74 0.83
Single_random_raters ICC2 0.79 8.5 279 279 1.8e-61 0.74 0.83
Single_fixed_raters ICC3 0.79 8.5 279 279 1.8e-61 0.74 0.83
Average_raters_absolute ICC1k 0.88 8.5 279 280 1.9e-61 0.85 0.91
Average_random_raters ICC2k 0.88 8.5 279 279 1.8e-61 0.85 0.91
Average_fixed_raters ICC3k 0.88 8.5 279 279 1.8e-61 0.85 0.91
Number of subjects = 280 Number of Judges = 2
See the help file for a discussion of the other 4 McGraw and Wong estimates,
ICC2 |
0.7976927 |
So, according to Koo and Li (2016), this is a good intraclass correlation.
Test-retest reliability by item was good, ICC = 0.80 (95%IC 0.75 to 0.84
Plot
NULL
Correcting for multiple measurements
Calculate Total Scores and ICC
Total Scores for Each Respondent | ||
---|---|---|
Test (Time1) and Retest (Time2) | ||
Respondent | Time1 | Time2 |
2 | 96.0 | 96.0 |
3 | 83.0 | 79.0 |
4 | 101.0 | 101.0 |
5 | 70.0 | 62.0 |
7 | 92.0 | 93.0 |
8 | 68.0 | 72.0 |
10 | 79.0 | 81.0 |
13 | 91.0 | 79.0 |
15 | 98.0 | 80.0 |
16 | 94.0 | 100.0 |
17 | 110.0 | 111.0 |
18 | 101.0 | 106.0 |
21 | 102.0 | 101.0 |
23 | 103.0 | 96.0 |
Call: psych::ICC(x = select(test_retest_totals, Time1, Time2), alpha = 0.05,
lmer = TRUE, check.keys = FALSE)
Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.87 14 13 14 7.9e-06 0.65 0.95
Single_random_raters ICC2 0.87 14 13 13 1.2e-05 0.65 0.95
Single_fixed_raters ICC3 0.87 14 13 13 1.2e-05 0.64 0.96
Average_raters_absolute ICC1k 0.93 14 13 14 7.9e-06 0.78 0.98
Average_random_raters ICC2k 0.93 14 13 13 1.2e-05 0.79 0.98
Average_fixed_raters ICC3k 0.93 14 13 13 1.2e-05 0.78 0.98
Number of subjects = 14 Number of Judges = 2
See the help file for a discussion of the other 4 McGraw and Wong estimates,
Item-Level ICC (Optional)
Item-level ICC (based on 280 individual item responses): 0.789 (95% CI: 0.741 to 0.83 )
Total score ICC (based on 14 respondents): 0.867 (95% CI: 0.646 to 0.955 )
Summary
Test-retest reliability by item was good, ICC =
Item-level ICC (based on 280 individual item responses): 0.789 (95% CI: 0.741 to 0.83 )
Test-retest reliability by respondent (n = 14) was good, ICC =
0.867 (95% CI: 0.646 to 0.955 )
For the Methods section:
Test-retest reliability was assessed in a subsample of 14 respondents who completed the Jefferson Scale of Empathy twice. Intraclass correlation coefficients (ICC) were calculated using a two-way mixed-effects model (absolute agreement, single measures) for both item-level and total scores.
Cronbach’s Alpha for All 28 Students
Some items ( Q_Norm_6 Q_Norm_7 Q_Norm_17 Q_Norm_18 ) were negatively correlated with the first principal component and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis
Call: psych::alpha(x = cronbach_data)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.74 0.74 0.96 0.12 2.8 0.069 4.5 0.66 0.13
95% confidence boundaries
lower alpha upper
Feldt 0.57 0.74 0.86
Duhachek 0.60 0.74 0.87
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
Q_Norm_1 0.69 0.70 0.95 0.11 2.3 0.082 0.073 0.12
Q_Norm_2 0.74 0.74 0.96 0.13 2.9 0.069 0.073 0.14
Q_Norm_3 0.73 0.73 0.96 0.12 2.7 0.070 0.073 0.13
Q_Norm_4 0.73 0.73 0.95 0.12 2.7 0.071 0.074 0.13
Q_Norm_5 0.73 0.73 0.96 0.12 2.7 0.072 0.071 0.13
Q_Norm_6 0.78 0.78 0.96 0.15 3.4 0.059 0.058 0.15
Q_Norm_7 0.74 0.74 0.96 0.13 2.8 0.068 0.071 0.14
Q_Norm_8 0.74 0.74 0.96 0.13 2.8 0.068 0.069 0.14
Q_Norm_9 0.74 0.74 0.96 0.13 2.9 0.068 0.069 0.14
Q_Norm_10 0.72 0.71 0.96 0.12 2.5 0.073 0.071 0.13
Q_Norm_11 0.71 0.72 0.95 0.12 2.5 0.076 0.069 0.13
Q_Norm_12 0.68 0.70 0.94 0.11 2.3 0.084 0.068 0.12
Q_Norm_13 0.73 0.73 0.95 0.13 2.7 0.070 0.069 0.13
Q_Norm_14 0.71 0.72 0.96 0.12 2.5 0.075 0.070 0.13
Q_Norm_15 0.70 0.70 0.95 0.11 2.4 0.078 0.067 0.13
Q_Norm_16 0.72 0.72 0.96 0.12 2.6 0.074 0.067 0.13
Q_Norm_17 0.75 0.75 0.96 0.13 3.0 0.065 0.071 0.15
Q_Norm_18 0.75 0.75 0.96 0.14 3.0 0.067 0.071 0.14
Q_Norm_19 0.72 0.71 0.95 0.12 2.5 0.074 0.069 0.13
Q_Norm_20 0.71 0.70 0.95 0.11 2.3 0.077 0.065 0.13
Item statistics
n raw.r std.r r.cor r.drop mean sd
Q_Norm_1 28 0.74 0.70 0.709 0.664 3.9 1.96
Q_Norm_2 28 0.17 0.26 0.229 0.126 6.8 0.61
Q_Norm_3 28 0.40 0.40 0.383 0.289 3.8 1.62
Q_Norm_4 28 0.35 0.40 0.390 0.273 5.5 1.17
Q_Norm_5 28 0.46 0.41 0.399 0.316 4.0 2.20
Q_Norm_6 28 -0.21 -0.22 -0.231 -0.330 3.4 1.73
Q_Norm_7 28 0.27 0.30 0.289 0.161 5.4 1.55
Q_Norm_8 28 0.22 0.27 0.259 0.117 5.2 1.42
Q_Norm_9 28 0.27 0.21 0.201 0.145 3.2 1.78
Q_Norm_10 28 0.50 0.55 0.544 0.416 5.9 1.40
Q_Norm_11 28 0.58 0.53 0.535 0.492 3.6 1.69
Q_Norm_12 28 0.78 0.74 0.755 0.711 3.6 1.97
Q_Norm_13 28 0.35 0.35 0.345 0.224 4.1 1.76
Q_Norm_14 28 0.54 0.53 0.524 0.445 4.6 1.62
Q_Norm_15 28 0.65 0.68 0.683 0.563 5.5 1.69
Q_Norm_16 28 0.49 0.50 0.490 0.399 5.1 1.55
Q_Norm_17 28 0.21 0.17 0.147 0.069 3.6 1.91
Q_Norm_18 28 0.16 0.12 0.099 0.045 1.9 1.51
Q_Norm_19 28 0.51 0.56 0.564 0.425 5.9 1.36
Q_Norm_20 28 0.65 0.71 0.712 0.583 5.9 1.35
Non missing response frequency for each item
1 2 3 4 5 6 7 miss
Q_Norm_1 0.07 0.21 0.21 0.18 0.00 0.18 0.14 0
Q_Norm_2 0.00 0.00 0.00 0.04 0.00 0.07 0.89 0
Q_Norm_3 0.11 0.14 0.18 0.21 0.18 0.18 0.00 0
Q_Norm_4 0.00 0.00 0.00 0.29 0.21 0.25 0.25 0
Q_Norm_5 0.18 0.14 0.07 0.18 0.18 0.00 0.25 0
Q_Norm_6 0.14 0.32 0.00 0.25 0.14 0.14 0.00 0
Q_Norm_7 0.04 0.00 0.07 0.18 0.11 0.32 0.29 0
Q_Norm_8 0.00 0.04 0.14 0.07 0.29 0.29 0.18 0
Q_Norm_9 0.18 0.25 0.18 0.11 0.11 0.18 0.00 0
Q_Norm_10 0.00 0.04 0.00 0.18 0.11 0.18 0.50 0
Q_Norm_11 0.04 0.25 0.36 0.07 0.14 0.04 0.11 0
Q_Norm_12 0.14 0.18 0.21 0.18 0.07 0.07 0.14 0
Q_Norm_13 0.04 0.21 0.11 0.29 0.14 0.07 0.14 0
Q_Norm_14 0.00 0.11 0.18 0.21 0.21 0.11 0.18 0
Q_Norm_15 0.00 0.04 0.11 0.21 0.14 0.00 0.50 0
Q_Norm_16 0.00 0.11 0.07 0.07 0.29 0.29 0.18 0
Q_Norm_17 0.14 0.18 0.14 0.29 0.07 0.04 0.14 0
Q_Norm_18 0.64 0.14 0.00 0.07 0.14 0.00 0.00 0
Q_Norm_19 0.00 0.00 0.04 0.21 0.07 0.14 0.54 0
Q_Norm_20 0.00 0.04 0.04 0.04 0.29 0.14 0.46 0
Internal consistency (Cronbach’s alpha) for the 20-item Jefferson Scale in the full sample (n = 28):
Cronbach's alpha = 0.737 (standardized alpha = 0.738)