mylist <- list()
for(hefte in hefter ){
cat("\n\n\\pagebreak\n")
cat("\n\n## Hefte ",hefte , "\n\n")
itemsS <-
grep(paste0("RE51",hefte), colnames(proc), v=T) %>%
grep(pattern="_S", v=T)
itemsR <- grep(paste0("RE51",hefte), colnames(proc), v=T) %>% grep(pattern="_R", v=T)
itemsF <- grep(paste0("RE51",hefte), colnames(proc), v=T) %>% grep(pattern="_F", v=T)
print(itemsS)
cat("\n\n### Missingness ",hefte , "\n\n")
tmp <- select(proc, all_of(c(itemsS,"gender")))
idx <- !apply(is.na(select(tmp, -"gender")), 1, all)
tmp <- tmp[idx, ]
plot(naniar::vis_miss(select(tmp, -"gender"))+ggtitle("_S items"))
tmpS <- tmp[complete.cases(tmp), ]
tmp <- select(proc, all_of(c(itemsR,"gender")))
idx <- !apply(is.na(select(tmp, -"gender")), 1, all)
tmp <- tmp[idx, ]
plot(naniar::vis_miss(select(tmp, -"gender"))+ggtitle("_R items"))
tmpR <- tmp[complete.cases(tmp), ]
tmp <- select(proc, all_of(c(itemsF,"gender")))
idx <- !apply(is.na(select(tmp, -"gender")), 1, all)
tmp <- tmp[idx, ]
plot(naniar::vis_miss(select(tmp, -"gender"))+ggtitle("_F items"))
tmpF <- tmp[complete.cases(tmp), ]
mylist[[length(mylist)+1]] <- list(Z=list(tmpS, tmpR, tmpF))
cat("\n\n### Aggregating over items in ",hefte , "\n\n")
cat("\n _S har ", nrow(tmpS), "komplette observasjoner.\n",
"\n _R har ", nrow(tmpR), "komplette observasjoner.\n",
"\n _F har ", nrow(tmpF), "komplette observasjoner.\n")
tmp <- tmpS
tt <- "_S"
cat("\n\n", tt, "\n")
tmp$mean <- apply(select(tmp, -"gender"), 1, mean)
tmp$median <- apply(select(tmp, -"gender"), 1, median)
cat("\n Mean of mean: ", round(mean(tmp$mean),1), " \n Mean of median: ", round(mean(tmp$median),1), "\n")
ggplot(tmp, aes(mean))+geom_histogram()+ggtitle(tt)
cat("\n\n By gender \n\n")
t_out <- t.test(tmp$mean ~tmp$gender)
a <- c(round(t_out$estimate,2), round(t_out$p.value,2))
names(a)[3] <- "pval"
a %>% kable %>% print
plot(ggplot(tmp, aes(gender, mean, color=gender))+geom_boxplot()+ggtitle(tt))
tmp <- tmpR
tt <- "_R"
cat("\n\n", tt, "\n")
tmp$mean <- apply(select(tmp, -"gender"), 1, mean)
tmp$median <- apply(select(tmp, -"gender"), 1, median)
cat("\n Mean of mean: ", round(mean(tmp$mean),1), " \n Mean of median: ", round(mean(tmp$median),1), "\n")
ggplot(tmp, aes(mean))+geom_histogram()+ggtitle(tt)
cat("\n\n By gender \n\n")
t_out <- t.test(tmp$mean ~tmp$gender)
a <- c(round(t_out$estimate,2), round(t_out$p.value,2))
names(a)[3] <- "pval"
a %>% kable %>% print
plot(ggplot(tmp, aes(gender, mean, color=gender))+geom_boxplot()+ggtitle(tt))
tmp <- tmpF
tt <- "_F"
cat("\n\n", tt, "\n")
tmp$mean <- apply(select(tmp, -"gender"), 1, mean)
tmp$median <- apply(select(tmp, -"gender"), 1, median)
cat("\n Mean of mean: ", round(mean(tmp$mean),1), " \n Mean of median: ", round(mean(tmp$median),1), "\n")
ggplot(tmp, aes(mean))+geom_histogram()+ggtitle(tt)
cat("\n\n By gender \n\n")
t_out <- t.test(tmp$mean ~tmp$gender)
a <- c(round(t_out$estimate,2), round(t_out$p.value,2))
names(a)[3] <- "pval"
a %>% kable %>% print
plot(ggplot(tmp, aes(gender, mean, color=gender))+geom_boxplot()+ggtitle(tt))
}