library(tseries)
## Warning: package 'tseries' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(TSA)
## Warning: package 'TSA' was built under R version 4.3.3
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 methods overwritten by 'forecast':
##   method       from
##   fitted.Arima TSA 
##   plot.Arima   TSA
set.seed(123)

n <- 200

ar <- 0.7
ma <- -0.5

ts_arima <- arima.sim(model = list(order = c(1,1,1), ar = ar, ma = ma), n = n)

ts.plot(ts_arima, main = "Simulasi Data Arima(1,1,1)")

acf(ts_arima)

pacf(ts_arima)

adf.test(ts_arima)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  ts_arima
## Dickey-Fuller = -2.449, Lag order = 5, p-value = 0.388
## alternative hypothesis: stationary
diff1 <- ts_arima
acf(diff1)

pacf(diff1)

adf.test(diff1)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1
## Dickey-Fuller = -2.449, Lag order = 5, p-value = 0.388
## alternative hypothesis: stationary
auto.arima(diff1)
## Series: diff1 
## ARIMA(2,1,2) 
## 
## Coefficients:
##           ar1     ar2     ma1      ma2
##       -0.1116  0.6336  0.3108  -0.6250
## s.e.   0.2175  0.1701  0.2294   0.2122
## 
## sigma^2 = 0.8631:  log likelihood = -267.28
## AIC=544.57   AICc=544.88   BIC=561.06
data.ts <- ts(diff1)
head(data.ts)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]  0.0000000 -0.4362295 -1.5730181 -2.0528332 -3.3057208 -4.3986311
acf(data.ts)

pacf
## function (x, lag.max, plot, na.action, ...) 
## UseMethod("pacf")
## <bytecode: 0x0000018fa5d926e0>
## <environment: namespace:stats>
eacf(data.ts)
## AR/MA
##   0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x x x x x x x x x x x  x  x  x 
## 1 x o x o o o o o o o o  o  o  o 
## 2 x o x o o o o o o o o  o  o  o 
## 3 x x o o o o o o o o o  o  o  o 
## 4 x x x o o o o o o o o  o  o  o 
## 5 x x x o o o o o o o o  o  o  o 
## 6 x x o o x o o o o o o  o  o  o 
## 7 x x x x x x o o o o o  o  o  o
auto.arima(data.ts)
## Series: data.ts 
## ARIMA(2,1,2) 
## 
## Coefficients:
##           ar1     ar2     ma1      ma2
##       -0.1116  0.6336  0.3108  -0.6250
## s.e.   0.2175  0.1701  0.2294   0.2122
## 
## sigma^2 = 0.8631:  log likelihood = -267.28
## AIC=544.57   AICc=544.88   BIC=561.06
arima(data.ts, order=c(1,1,1),method = "ML")
## 
## Call:
## arima(x = data.ts, order = c(1, 1, 1), method = "ML")
## 
## Coefficients:
##          ar1      ma1
##       0.6864  -0.5620
## s.e.  0.2329   0.2631
## 
## sigma^2 estimated as 0.8813:  log likelihood = -271.18,  aic = 546.35
arima(data.ts, order=c(1,1,3),method = "ML")
## 
## Call:
## arima(x = data.ts, order = c(1, 1, 3), method = "ML")
## 
## Coefficients:
##           ar1     ma1     ma2     ma3
##       -0.7510  0.9192  0.1351  0.1413
## s.e.   0.1286  0.1449  0.0933  0.0817
## 
## sigma^2 estimated as 0.8451:  log likelihood = -267.19,  aic = 542.37
arima(data.ts, order=c(0,1,1),method = "ML")
## 
## Call:
## arima(x = data.ts, order = c(0, 1, 1), method = "ML")
## 
## Coefficients:
##          ma1
##       0.1368
## s.e.  0.0702
## 
## sigma^2 estimated as 0.8895:  log likelihood = -272.09,  aic = 546.18
arima(data.ts, order=c(2,0,2),method = "ML")
## 
## Call:
## arima(x = data.ts, order = c(2, 0, 2), method = "ML")
## 
## Coefficients:
##         ar1     ar2     ma1     ma2   intercept
##       1e-04  0.9999  1.2110  0.2111     -2.5715
## s.e.  0e+00  0.0000  0.0704  0.0703  21921.3054
## 
## sigma^2 estimated as 0.8899:  log likelihood = -273.94,  aic = 557.88