#Jeff Nieman R Homework 4

#Create a new data frame with the Forbes data found in the Vincent Arelbundock list.  The Forbes2000 list looks at
forbesfile <- "https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/HSAUR/Forbes2000.csv"
forbes <- read.table (file = forbesfile, header = TRUE, sep=',') 

#Test data frame
head(forbes, 40)
##     X rank                    name                     country
## 1   1    1               Citigroup               United States
## 2   2    2        General Electric               United States
## 3   3    3     American Intl Group               United States
## 4   4    4              ExxonMobil               United States
## 5   5    5                      BP              United Kingdom
## 6   6    6         Bank of America               United States
## 7   7    7              HSBC Group              United Kingdom
## 8   8    8            Toyota Motor                       Japan
## 9   9    9              Fannie Mae               United States
## 10 10   10         Wal-Mart Stores               United States
## 11 11   11                     UBS                 Switzerland
## 12 12   12               ING Group                 Netherlands
## 13 13   13 Royal Dutch/Shell Group Netherlands/ United Kingdom
## 14 14   14      Berkshire Hathaway               United States
## 15 15   15         JP Morgan Chase               United States
## 16 16   16                     IBM               United States
## 17 17   17                   Total                      France
## 18 18   18             BNP Paribas                      France
## 19 19   19  Royal Bank of Scotland              United Kingdom
## 20 20   20             Freddie Mac               United States
## 21 21   21         DaimlerChrysler                     Germany
## 22 22   22            Altria Group               United States
## 23 23   23           ChevronTexaco               United States
## 24 24   24                  Pfizer               United States
## 25 25   25             Wells Fargo               United States
## 26 26   26          Verizon Commun               United States
## 27 27   27                Barclays              United Kingdom
## 28 28   28          Morgan Stanley               United States
## 29 29   29          General Motors               United States
## 30 30   30        Nippon Tel & Tel                       Japan
## 31 31   31               Microsoft               United States
## 32 32   32                  Nestle                 Switzerland
## 33 33   33      SBC Communications               United States
## 34 34   34     Deutsche Bank Group                     Germany
## 35 35   35           Siemens Group                     Germany
## 36 36   36                    HBOS              United Kingdom
## 37 37   37                     ENI                       Italy
## 38 38   38          ConocoPhillips               United States
## 39 39   39 Banco Santander Central                       Spain
## 40 40   40           Merrill Lynch               United States
##                           category  sales profits  assets marketvalue
## 1                          Banking  94.71   17.85 1264.03      255.30
## 2                    Conglomerates 134.19   15.59  626.93      328.54
## 3                        Insurance  76.66    6.46  647.66      194.87
## 4             Oil & gas operations 222.88   20.96  166.99      277.02
## 5             Oil & gas operations 232.57   10.27  177.57      173.54
## 6                          Banking  49.01   10.81  736.45      117.55
## 7                          Banking  44.33    6.66  757.60      177.96
## 8                Consumer durables 135.82    7.99  171.71      115.40
## 9           Diversified financials  53.13    6.48 1019.17       76.84
## 10                       Retailing 256.33    9.05  104.91      243.74
## 11          Diversified financials  48.95    5.15  853.23       85.07
## 12          Diversified financials  94.72    4.73  752.49       54.59
## 13            Oil & gas operations 133.50    8.40  100.72      163.45
## 14                       Insurance  56.22    6.95  172.24      141.14
## 15                         Banking  44.39    4.47  792.70       81.94
## 16 Technology hardware & equipment  89.13    7.58  104.46      171.54
## 17            Oil & gas operations 131.64    8.84   87.84      116.64
## 18                         Banking  47.74    4.73  745.09       59.29
## 19                         Banking  35.65    4.95  663.45       90.21
## 20          Diversified financials  46.26   10.09  752.25       44.25
## 21               Consumer durables 157.13    5.12  195.58       47.43
## 22            Food drink & tobacco  60.70    9.20   96.18      111.02
## 23            Oil & gas operations 112.94    7.43   82.36       92.49
## 24           Drugs & biotechnology  40.36    6.20  120.06      285.27
## 25                         Banking  31.80    6.20  387.80       97.53
## 26     Telecommunications services  67.75    2.57  165.97      103.97
## 27                         Banking  33.69    4.90  791.54       61.33
## 28          Diversified financials  33.00    3.64  580.63       64.81
## 29               Consumer durables 185.52    3.82  450.00       27.47
## 30     Telecommunications services  92.41    2.17  150.87       73.00
## 31             Software & services  34.27    8.88   85.94      287.02
## 32            Food drink & tobacco  64.56    5.48   62.15      106.55
## 33     Telecommunications services  39.16    5.97  100.17       82.93
## 34          Diversified financials  58.85    1.53  792.49       50.23
## 35                   Conglomerates  86.62    2.81   85.47       75.77
## 36                         Banking  32.68    3.09  571.76       52.87
## 37            Oil & gas operations  53.29    4.82   67.91       76.13
## 38            Oil & gas operations  90.49    4.83   81.95       46.72
## 39                         Banking  28.70    3.28  442.24       56.78
## 40          Diversified financials  26.64    3.47  485.77       57.52
#Add new field "profitability defined by profits/sales
forbes <- transform(forbes, profitability=profits/sales)
head(forbes, 40)
##     X rank                    name                     country
## 1   1    1               Citigroup               United States
## 2   2    2        General Electric               United States
## 3   3    3     American Intl Group               United States
## 4   4    4              ExxonMobil               United States
## 5   5    5                      BP              United Kingdom
## 6   6    6         Bank of America               United States
## 7   7    7              HSBC Group              United Kingdom
## 8   8    8            Toyota Motor                       Japan
## 9   9    9              Fannie Mae               United States
## 10 10   10         Wal-Mart Stores               United States
## 11 11   11                     UBS                 Switzerland
## 12 12   12               ING Group                 Netherlands
## 13 13   13 Royal Dutch/Shell Group Netherlands/ United Kingdom
## 14 14   14      Berkshire Hathaway               United States
## 15 15   15         JP Morgan Chase               United States
## 16 16   16                     IBM               United States
## 17 17   17                   Total                      France
## 18 18   18             BNP Paribas                      France
## 19 19   19  Royal Bank of Scotland              United Kingdom
## 20 20   20             Freddie Mac               United States
## 21 21   21         DaimlerChrysler                     Germany
## 22 22   22            Altria Group               United States
## 23 23   23           ChevronTexaco               United States
## 24 24   24                  Pfizer               United States
## 25 25   25             Wells Fargo               United States
## 26 26   26          Verizon Commun               United States
## 27 27   27                Barclays              United Kingdom
## 28 28   28          Morgan Stanley               United States
## 29 29   29          General Motors               United States
## 30 30   30        Nippon Tel & Tel                       Japan
## 31 31   31               Microsoft               United States
## 32 32   32                  Nestle                 Switzerland
## 33 33   33      SBC Communications               United States
## 34 34   34     Deutsche Bank Group                     Germany
## 35 35   35           Siemens Group                     Germany
## 36 36   36                    HBOS              United Kingdom
## 37 37   37                     ENI                       Italy
## 38 38   38          ConocoPhillips               United States
## 39 39   39 Banco Santander Central                       Spain
## 40 40   40           Merrill Lynch               United States
##                           category  sales profits  assets marketvalue
## 1                          Banking  94.71   17.85 1264.03      255.30
## 2                    Conglomerates 134.19   15.59  626.93      328.54
## 3                        Insurance  76.66    6.46  647.66      194.87
## 4             Oil & gas operations 222.88   20.96  166.99      277.02
## 5             Oil & gas operations 232.57   10.27  177.57      173.54
## 6                          Banking  49.01   10.81  736.45      117.55
## 7                          Banking  44.33    6.66  757.60      177.96
## 8                Consumer durables 135.82    7.99  171.71      115.40
## 9           Diversified financials  53.13    6.48 1019.17       76.84
## 10                       Retailing 256.33    9.05  104.91      243.74
## 11          Diversified financials  48.95    5.15  853.23       85.07
## 12          Diversified financials  94.72    4.73  752.49       54.59
## 13            Oil & gas operations 133.50    8.40  100.72      163.45
## 14                       Insurance  56.22    6.95  172.24      141.14
## 15                         Banking  44.39    4.47  792.70       81.94
## 16 Technology hardware & equipment  89.13    7.58  104.46      171.54
## 17            Oil & gas operations 131.64    8.84   87.84      116.64
## 18                         Banking  47.74    4.73  745.09       59.29
## 19                         Banking  35.65    4.95  663.45       90.21
## 20          Diversified financials  46.26   10.09  752.25       44.25
## 21               Consumer durables 157.13    5.12  195.58       47.43
## 22            Food drink & tobacco  60.70    9.20   96.18      111.02
## 23            Oil & gas operations 112.94    7.43   82.36       92.49
## 24           Drugs & biotechnology  40.36    6.20  120.06      285.27
## 25                         Banking  31.80    6.20  387.80       97.53
## 26     Telecommunications services  67.75    2.57  165.97      103.97
## 27                         Banking  33.69    4.90  791.54       61.33
## 28          Diversified financials  33.00    3.64  580.63       64.81
## 29               Consumer durables 185.52    3.82  450.00       27.47
## 30     Telecommunications services  92.41    2.17  150.87       73.00
## 31             Software & services  34.27    8.88   85.94      287.02
## 32            Food drink & tobacco  64.56    5.48   62.15      106.55
## 33     Telecommunications services  39.16    5.97  100.17       82.93
## 34          Diversified financials  58.85    1.53  792.49       50.23
## 35                   Conglomerates  86.62    2.81   85.47       75.77
## 36                         Banking  32.68    3.09  571.76       52.87
## 37            Oil & gas operations  53.29    4.82   67.91       76.13
## 38            Oil & gas operations  90.49    4.83   81.95       46.72
## 39                         Banking  28.70    3.28  442.24       56.78
## 40          Diversified financials  26.64    3.47  485.77       57.52
##    profitability
## 1     0.18847007
## 2     0.11617855
## 3     0.08426820
## 4     0.09404164
## 5     0.04415875
## 6     0.22056723
## 7     0.15023686
## 8     0.05882786
## 9     0.12196499
## 10    0.03530605
## 11    0.10520940
## 12    0.04993666
## 13    0.06292135
## 14    0.12362149
## 15    0.10069836
## 16    0.08504432
## 17    0.06715284
## 18    0.09907834
## 19    0.13884993
## 20    0.21811500
## 21    0.03258448
## 22    0.15156507
## 23    0.06578714
## 24    0.15361744
## 25    0.19496855
## 26    0.03793358
## 27    0.14544375
## 28    0.11030303
## 29    0.02059077
## 30    0.02348231
## 31    0.25911876
## 32    0.08488228
## 33    0.15245148
## 34    0.02599830
## 35    0.03244054
## 36    0.09455324
## 37    0.09044849
## 38    0.05337606
## 39    0.11428571
## 40    0.13025526
#Set up ggplot for the analysis

require(ggplot2)
## Loading required package: ggplot2
# Create histogram for profits in the Forbes 2000 list

h <- hist(forbes$profits)

print(h)
## $breaks
##  [1] -30 -25 -20 -15 -10  -5   0   5  10  15  20  25
## 
## $counts
##  [1]    1    2    2    2    4  279 1673   26    3    2    1
## 
## $density
##  [1] 0.0001002506 0.0002005013 0.0002005013 0.0002005013 0.0004010025
##  [6] 0.0279699248 0.1677192982 0.0026065163 0.0003007519 0.0002005013
## [11] 0.0001002506
## 
## $mids
##  [1] -27.5 -22.5 -17.5 -12.5  -7.5  -2.5   2.5   7.5  12.5  17.5  22.5
## 
## $xname
## [1] "forbes$profits"
## 
## $equidist
## [1] TRUE
## 
## attr(,"class")
## [1] "histogram"
#Conclusion #1:  - most companies are between $0 and $5B in profits

#Look at profitability
h1 <- hist(forbes$profitability)

print(h1)
## $breaks
##  [1] -4 -2  0  2  4  6  8 10 12 14 16 18 20 22 24 26
## 
## $counts
##  [1]    2  288 1702    2    0    0    0    0    0    0    0    0    0    0
## [15]    1
## 
## $density
##  [1] 0.0005012531 0.0721804511 0.4265664160 0.0005012531 0.0000000000
##  [6] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [11] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0002506266
## 
## $mids
##  [1] -3 -1  1  3  5  7  9 11 13 15 17 19 21 23 25
## 
## $xname
## [1] "forbes$profitability"
## 
## $equidist
## [1] TRUE
## 
## attr(,"class")
## [1] "histogram"
# Create scatter plot for sales vs. profits

p <- plot(sales~profits, data=forbes)

print(p)
## NULL
#Conclusion #2:  - generally profits go up as sales do - but there is no perfect trend.  Need to look at profitability vs. sales

p1<- plot(sales~profitability,data=forbes)

print(p1)
## NULL
#Conclusion #3:  - the companies with the highest sales seem to be in the middle of the profitablity distribution

# Create box plot for profits

b <- boxplot(forbes$profits)

print(b)
## $stats
##       [,1]
## [1,] -0.46
## [2,]  0.08
## [3,]  0.20
## [4,]  0.44
## [5,]  0.98
## 
## $n
## [1] 1995
## 
## $conf
##           [,1]
## [1,] 0.1872653
## [2,] 0.2127347
## 
## $out
##   [1]  17.85  15.59   6.46  20.96  10.27  10.81   6.66   7.99   6.48   9.05
##  [11]   5.15   4.73   8.40   6.95   4.47   7.58   8.84   4.73   4.95  10.09
##  [21]   5.12   9.20   7.43   6.20   6.20   2.57   4.90   3.64   3.82   2.17
##  [31]   8.88   5.48   5.97   1.53   2.81   3.09   4.82   4.83   3.28   3.47
##  [41]   4.25   2.65   2.54   5.81   5.95   6.74   2.87   3.98   3.61   3.00
##  [51]   4.19   3.40   1.00   1.61   5.67   2.54   2.81   5.64   2.24   4.04
##  [61]   2.47   2.73   7.33   5.40   2.11   2.24   3.88   1.12   1.64   3.24
##  [71]   2.71   1.40   1.14   2.12   1.19   3.73   2.48   2.28   6.34   1.94
##  [81]   4.52   3.59   1.92   2.69   3.81   1.45   4.35   2.13   1.10   1.89
##  [91]   4.24   3.54   2.36   1.74   1.63   1.36   2.05   1.70   4.35   1.47
## [101]   3.49   1.88   2.29   2.05   1.22   1.58   3.96   2.65   1.89   1.65
## [111]   1.85   2.36   2.90   3.29   1.49   2.44   2.13   1.11   2.17   1.36
## [121]   2.29   3.29   1.56   1.57   1.10   1.34   1.67   1.61   1.70   1.42
## [131]   1.01   1.09   1.83   1.45   1.38   0.99   2.12   1.49   1.79   2.57
## [141]   1.53   1.07   1.86   1.60   2.37   1.05   2.40   2.31   2.56   1.83
## [151]   1.67   1.27   1.19   3.40   1.04   1.40   1.33   1.53   1.77   1.21
## [161]   2.26   1.04   1.83   1.33   1.89   1.64   1.33   1.15   1.31   2.37
## [171]   1.39   1.16   1.20   1.10   2.08   2.04   1.60   1.62   1.14   1.06
## [181]   3.04   1.32   1.06   1.36   4.45   1.12   1.10   2.30   1.06   1.20
## [191]   1.64   1.11   2.49   0.99   1.48   1.39   1.88   1.00   1.05   1.18
## [201]   1.54   2.20   2.62   1.02   1.40   1.73   1.32   1.02   1.56   1.39
## [211]   1.11   1.20   1.42   1.25   1.29  -1.23 -15.51   1.25 -25.83   1.36
## [221]  -2.40 -21.78  -0.79  -3.94  -0.73  -1.37  -0.86 -20.11  -3.96  -5.86
## [231]  -0.81   1.05  -0.91  -0.87  -5.10   1.10  -5.15  -3.37   1.03   1.14
## [241]  -1.16  -1.93   1.02  -1.03   1.14  -1.27  -0.72  -2.19  -4.15  -4.98
## [251]  -7.09   1.15   1.12 -10.02  -0.62  -1.10  -0.81  -1.80  -1.51  -0.93
## [261]  -0.66  -2.02  -4.09 -16.03  -1.45  -1.23  -0.50  -0.62  -3.22  -0.98
## [271]  -0.51  -0.73  -0.57  -1.50 -10.32  -1.79  -0.50  -0.74  -1.65  -1.00
## [281]  -0.77  -0.82  -3.51  -0.74  -0.65   3.27  -0.85  -0.81  -3.78  -2.00
## [291]  -3.57   1.11  -0.54  -0.96  -1.44  -1.21  -1.99   1.24  -0.71  -0.57
## [301]  -0.76  -1.01  -0.77  -1.99  -0.96  -1.22  -2.28  -4.45  -0.47  -1.65
## [311]  -0.48  -0.48  -0.72  -0.47  -0.71  -0.87  -0.91  -0.77  -0.62  -0.87
## [321]  -1.00  -2.83  -0.86  -0.53  -0.47  -0.96  -0.95  -2.50  -1.76  -0.56
## [331]  -0.62  -1.48  -1.52  -1.72  -3.62
## 
## $group
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [246] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [281] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [316] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 
## $names
## [1] "1"
summary(forbes$profits)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
## -25.8300   0.0800   0.2000   0.3811   0.4400  20.9600        5
#Conclusion #4:  - nearly all of the first quartile loses money and all of the bottom 3 quartiles are under $0.44B in profits

b1 <- boxplot(forbes$sales)

print(b1)
## $stats
##        [,1]
## [1,]  0.010
## [2,]  2.015
## [3,]  4.365
## [4,]  9.555
## [5,] 20.650
## 
## $n
## [1] 2000
## 
## $conf
##          [,1]
## [1,] 4.098613
## [2,] 4.631387
## 
## $out
##   [1]  94.71 134.19  76.66 222.88 232.57  49.01  44.33 135.82  53.13 256.33
##  [11]  48.95  94.72 133.50  56.22  44.39  89.13 131.64  47.74  35.65  46.26
##  [21] 157.13  60.70 112.94  40.36  31.80  67.75  33.69  33.00 185.52  92.41
##  [31]  34.27  64.56  39.16  58.85  86.62  32.68  53.29  90.49  28.70  26.64
##  [41]  24.47  38.08  73.06  46.99  50.22  40.01  24.48  23.64  67.44  24.17
##  [51]  57.77  21.04  90.10  35.52  29.53  22.84  24.10  30.14  35.79  62.90
##  [61]  25.85  32.15  30.78  26.77  38.99  50.70  31.77  41.23  91.33  41.62
##  [71]  45.85  52.23 164.20  37.57  25.18  34.16  39.16  63.23  37.05  22.58
##  [81]  28.44  96.94  45.68  29.58  32.81  31.03  52.51  32.63  38.17  46.65
##  [91]  21.03  26.97  38.22  50.49  21.66  29.14  33.84  41.44  68.23  34.53
## [101]  35.02  41.48  30.42  27.73  22.61  27.06  26.20  22.76  23.10  24.76
## [111]  37.22  21.71  61.30  21.50  30.03 112.76  22.12  24.16  31.82  28.57
## [121]  30.64  23.53  23.94  41.12  21.81  40.57  53.23  24.28  33.74  26.35
## [131]  69.30  42.17  23.56  36.68  54.12  23.37  43.87 111.98  35.97  22.98
## [141]  25.26  23.05  27.54  21.20  28.32  31.73  66.45  26.59  23.85  35.90
## [151]  26.14  27.54  21.94  23.09  78.08  22.77  47.85  34.51  32.34  26.44
## [161]  25.00  96.88  47.99  34.26  56.40  50.58  38.01  57.99  57.90  29.17
## [171]  37.95  52.46  24.40  47.46  29.84  32.99  62.62  88.51  48.41  40.52
## [181]  32.05  27.53  33.42  36.10  25.25  31.41  74.39  21.58  32.87  22.43
## [191]  39.06  70.57  39.72  23.26  58.22  22.17  30.79  25.77  23.66  35.55
## [201]  21.48  36.59  28.10  21.33  21.80  23.26  54.72  29.89  34.77  21.74
## [211]  25.80  22.57
## 
## $group
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1
## 
## $names
## [1] "1"
summary(forbes$sales)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.010   2.018   4.365   9.697   9.548 256.300
#Conclusion #5: - the spread of sales in the fourth quartile is massive - strong contrast to first 3

#Build layered plot.  Wanted to create a way to look at 3 variables together.
g<-ggplot(forbes, aes(x=sales, y=profits))
g+geom_point(aes(color=assets))
## Warning: Removed 5 rows containing missing values (geom_point).

#Conclusion  #6: - no great surprise but the lower sales lower profit companies tend to have fewer assets

# Add colors and test a few possibilities that are discrete non-numerical values
g+geom_point(aes(color=category))
## Warning: Removed 5 rows containing missing values (geom_point).

g<-ggplot(forbes, aes(x=sales, y=profitability))
g+geom_point(aes(color=category))
## Warning: Removed 5 rows containing missing values (geom_point).

g<-ggplot(forbes, aes(x=sales, y=profits))
g+geom_point(aes(color=country))
## Warning: Removed 5 rows containing missing values (geom_point).

g<-ggplot(forbes, aes(x=sales, y=profitability))
g+geom_point(aes(color=country))
## Warning: Removed 5 rows containing missing values (geom_point).

g<-ggplot(forbes, aes(x=country, y=profitability))
g+geom_point(aes(color=assets))
## Warning: Removed 5 rows containing missing values (geom_point).

#Conclusion #7 - JApan and the UK seem to have a disproportionate amount if unprofitable companies on the list