1. Descripción de la data.
url <- "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
data <- read.csv(url)
summary(data)
##        X6              X148            X72             X35       
##  Min.   : 0.000   Min.   :  0.0   Min.   :  0.0   Min.   : 0.00  
##  1st Qu.: 1.000   1st Qu.: 99.0   1st Qu.: 62.0   1st Qu.: 0.00  
##  Median : 3.000   Median :117.0   Median : 72.0   Median :23.00  
##  Mean   : 3.842   Mean   :120.9   Mean   : 69.1   Mean   :20.52  
##  3rd Qu.: 6.000   3rd Qu.:140.0   3rd Qu.: 80.0   3rd Qu.:32.00  
##  Max.   :17.000   Max.   :199.0   Max.   :122.0   Max.   :99.00  
##        X0            X33.6           X0.627            X50       
##  Min.   :  0.0   Min.   : 0.00   Min.   :0.0780   Min.   :21.00  
##  1st Qu.:  0.0   1st Qu.:27.30   1st Qu.:0.2435   1st Qu.:24.00  
##  Median : 32.0   Median :32.00   Median :0.3710   Median :29.00  
##  Mean   : 79.9   Mean   :31.99   Mean   :0.4717   Mean   :33.22  
##  3rd Qu.:127.5   3rd Qu.:36.60   3rd Qu.:0.6250   3rd Qu.:41.00  
##  Max.   :846.0   Max.   :67.10   Max.   :2.4200   Max.   :81.00  
##        X1        
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.3481  
##  3rd Qu.:1.0000  
##  Max.   :1.0000
print(data)
##     X6 X148 X72 X35  X0 X33.6 X0.627 X50 X1
## 1    1   85  66  29   0  26.6  0.351  31  0
## 2    8  183  64   0   0  23.3  0.672  32  1
## 3    1   89  66  23  94  28.1  0.167  21  0
## 4    0  137  40  35 168  43.1  2.288  33  1
## 5    5  116  74   0   0  25.6  0.201  30  0
## 6    3   78  50  32  88  31.0  0.248  26  1
## 7   10  115   0   0   0  35.3  0.134  29  0
## 8    2  197  70  45 543  30.5  0.158  53  1
## 9    8  125  96   0   0   0.0  0.232  54  1
## 10   4  110  92   0   0  37.6  0.191  30  0
## 11  10  168  74   0   0  38.0  0.537  34  1
## 12  10  139  80   0   0  27.1  1.441  57  0
## 13   1  189  60  23 846  30.1  0.398  59  1
## 14   5  166  72  19 175  25.8  0.587  51  1
## 15   7  100   0   0   0  30.0  0.484  32  1
## 16   0  118  84  47 230  45.8  0.551  31  1
## 17   7  107  74   0   0  29.6  0.254  31  1
## 18   1  103  30  38  83  43.3  0.183  33  0
## 19   1  115  70  30  96  34.6  0.529  32  1
## 20   3  126  88  41 235  39.3  0.704  27  0
## 21   8   99  84   0   0  35.4  0.388  50  0
## 22   7  196  90   0   0  39.8  0.451  41  1
## 23   9  119  80  35   0  29.0  0.263  29  1
## 24  11  143  94  33 146  36.6  0.254  51  1
## 25  10  125  70  26 115  31.1  0.205  41  1
## 26   7  147  76   0   0  39.4  0.257  43  1
## 27   1   97  66  15 140  23.2  0.487  22  0
## 28  13  145  82  19 110  22.2  0.245  57  0
## 29   5  117  92   0   0  34.1  0.337  38  0
## 30   5  109  75  26   0  36.0  0.546  60  0
## 31   3  158  76  36 245  31.6  0.851  28  1
## 32   3   88  58  11  54  24.8  0.267  22  0
## 33   6   92  92   0   0  19.9  0.188  28  0
## 34  10  122  78  31   0  27.6  0.512  45  0
## 35   4  103  60  33 192  24.0  0.966  33  0
## 36  11  138  76   0   0  33.2  0.420  35  0
## 37   9  102  76  37   0  32.9  0.665  46  1
## 38   2   90  68  42   0  38.2  0.503  27  1
## 39   4  111  72  47 207  37.1  1.390  56  1
## 40   3  180  64  25  70  34.0  0.271  26  0
## 41   7  133  84   0   0  40.2  0.696  37  0
## 42   7  106  92  18   0  22.7  0.235  48  0
## 43   9  171 110  24 240  45.4  0.721  54  1
## 44   7  159  64   0   0  27.4  0.294  40  0
## 45   0  180  66  39   0  42.0  1.893  25  1
## 46   1  146  56   0   0  29.7  0.564  29  0
## 47   2   71  70  27   0  28.0  0.586  22  0
## 48   7  103  66  32   0  39.1  0.344  31  1
## 49   7  105   0   0   0   0.0  0.305  24  0
## 50   1  103  80  11  82  19.4  0.491  22  0
## 51   1  101  50  15  36  24.2  0.526  26  0
## 52   5   88  66  21  23  24.4  0.342  30  0
## 53   8  176  90  34 300  33.7  0.467  58  1
## 54   7  150  66  42 342  34.7  0.718  42  0
## 55   1   73  50  10   0  23.0  0.248  21  0
## 56   7  187  68  39 304  37.7  0.254  41  1
## 57   0  100  88  60 110  46.8  0.962  31  0
## 58   0  146  82   0   0  40.5  1.781  44  0
## 59   0  105  64  41 142  41.5  0.173  22  0
## 60   2   84   0   0   0   0.0  0.304  21  0
## 61   8  133  72   0   0  32.9  0.270  39  1
## 62   5   44  62   0   0  25.0  0.587  36  0
## 63   2  141  58  34 128  25.4  0.699  24  0
## 64   7  114  66   0   0  32.8  0.258  42  1
## 65   5   99  74  27   0  29.0  0.203  32  0
## 66   0  109  88  30   0  32.5  0.855  38  1
## 67   2  109  92   0   0  42.7  0.845  54  0
## 68   1   95  66  13  38  19.6  0.334  25  0
## 69   4  146  85  27 100  28.9  0.189  27  0
## 70   2  100  66  20  90  32.9  0.867  28  1
## 71   5  139  64  35 140  28.6  0.411  26  0
## 72  13  126  90   0   0  43.4  0.583  42  1
## 73   4  129  86  20 270  35.1  0.231  23  0
## 74   1   79  75  30   0  32.0  0.396  22  0
## 75   1    0  48  20   0  24.7  0.140  22  0
## 76   7   62  78   0   0  32.6  0.391  41  0
## 77   5   95  72  33   0  37.7  0.370  27  0
## 78   0  131   0   0   0  43.2  0.270  26  1
## 79   2  112  66  22   0  25.0  0.307  24  0
## 80   3  113  44  13   0  22.4  0.140  22  0
## 81   2   74   0   0   0   0.0  0.102  22  0
## 82   7   83  78  26  71  29.3  0.767  36  0
## 83   0  101  65  28   0  24.6  0.237  22  0
## 84   5  137 108   0   0  48.8  0.227  37  1
## 85   2  110  74  29 125  32.4  0.698  27  0
## 86  13  106  72  54   0  36.6  0.178  45  0
## 87   2  100  68  25  71  38.5  0.324  26  0
## 88  15  136  70  32 110  37.1  0.153  43  1
## 89   1  107  68  19   0  26.5  0.165  24  0
## 90   1   80  55   0   0  19.1  0.258  21  0
## 91   4  123  80  15 176  32.0  0.443  34  0
## 92   7   81  78  40  48  46.7  0.261  42  0
## 93   4  134  72   0   0  23.8  0.277  60  1
## 94   2  142  82  18  64  24.7  0.761  21  0
## 95   6  144  72  27 228  33.9  0.255  40  0
## 96   2   92  62  28   0  31.6  0.130  24  0
## 97   1   71  48  18  76  20.4  0.323  22  0
## 98   6   93  50  30  64  28.7  0.356  23  0
## 99   1  122  90  51 220  49.7  0.325  31  1
## 100  1  163  72   0   0  39.0  1.222  33  1
## 101  1  151  60   0   0  26.1  0.179  22  0
## 102  0  125  96   0   0  22.5  0.262  21  0
## 103  1   81  72  18  40  26.6  0.283  24  0
## 104  2   85  65   0   0  39.6  0.930  27  0
## 105  1  126  56  29 152  28.7  0.801  21  0
## 106  1   96 122   0   0  22.4  0.207  27  0
## 107  4  144  58  28 140  29.5  0.287  37  0
## 108  3   83  58  31  18  34.3  0.336  25  0
## 109  0   95  85  25  36  37.4  0.247  24  1
## 110  3  171  72  33 135  33.3  0.199  24  1
## 111  8  155  62  26 495  34.0  0.543  46  1
## 112  1   89  76  34  37  31.2  0.192  23  0
## 113  4   76  62   0   0  34.0  0.391  25  0
## 114  7  160  54  32 175  30.5  0.588  39  1
## 115  4  146  92   0   0  31.2  0.539  61  1
## 116  5  124  74   0   0  34.0  0.220  38  1
## 117  5   78  48   0   0  33.7  0.654  25  0
## 118  4   97  60  23   0  28.2  0.443  22  0
## 119  4   99  76  15  51  23.2  0.223  21  0
## 120  0  162  76  56 100  53.2  0.759  25  1
## 121  6  111  64  39   0  34.2  0.260  24  0
## 122  2  107  74  30 100  33.6  0.404  23  0
## 123  5  132  80   0   0  26.8  0.186  69  0
## 124  0  113  76   0   0  33.3  0.278  23  1
## 125  1   88  30  42  99  55.0  0.496  26  1
## 126  3  120  70  30 135  42.9  0.452  30  0
## 127  1  118  58  36  94  33.3  0.261  23  0
## 128  1  117  88  24 145  34.5  0.403  40  1
## 129  0  105  84   0   0  27.9  0.741  62  1
## 130  4  173  70  14 168  29.7  0.361  33  1
## 131  9  122  56   0   0  33.3  1.114  33  1
## 132  3  170  64  37 225  34.5  0.356  30  1
## 133  8   84  74  31   0  38.3  0.457  39  0
## 134  2   96  68  13  49  21.1  0.647  26  0
## 135  2  125  60  20 140  33.8  0.088  31  0
## 136  0  100  70  26  50  30.8  0.597  21  0
## 137  0   93  60  25  92  28.7  0.532  22  0
## 138  0  129  80   0   0  31.2  0.703  29  0
## 139  5  105  72  29 325  36.9  0.159  28  0
## 140  3  128  78   0   0  21.1  0.268  55  0
## 141  5  106  82  30   0  39.5  0.286  38  0
## 142  2  108  52  26  63  32.5  0.318  22  0
## 143 10  108  66   0   0  32.4  0.272  42  1
## 144  4  154  62  31 284  32.8  0.237  23  0
## 145  0  102  75  23   0   0.0  0.572  21  0
## 146  9   57  80  37   0  32.8  0.096  41  0
## 147  2  106  64  35 119  30.5  1.400  34  0
## 148  5  147  78   0   0  33.7  0.218  65  0
## 149  2   90  70  17   0  27.3  0.085  22  0
## 150  1  136  74  50 204  37.4  0.399  24  0
## 151  4  114  65   0   0  21.9  0.432  37  0
## 152  9  156  86  28 155  34.3  1.189  42  1
## 153  1  153  82  42 485  40.6  0.687  23  0
## 154  8  188  78   0   0  47.9  0.137  43  1
## 155  7  152  88  44   0  50.0  0.337  36  1
## 156  2   99  52  15  94  24.6  0.637  21  0
## 157  1  109  56  21 135  25.2  0.833  23  0
## 158  2   88  74  19  53  29.0  0.229  22  0
## 159 17  163  72  41 114  40.9  0.817  47  1
## 160  4  151  90  38   0  29.7  0.294  36  0
## 161  7  102  74  40 105  37.2  0.204  45  0
## 162  0  114  80  34 285  44.2  0.167  27  0
## 163  2  100  64  23   0  29.7  0.368  21  0
## 164  0  131  88   0   0  31.6  0.743  32  1
## 165  6  104  74  18 156  29.9  0.722  41  1
## 166  3  148  66  25   0  32.5  0.256  22  0
## 167  4  120  68   0   0  29.6  0.709  34  0
## 168  4  110  66   0   0  31.9  0.471  29  0
## 169  3  111  90  12  78  28.4  0.495  29  0
## 170  6  102  82   0   0  30.8  0.180  36  1
## 171  6  134  70  23 130  35.4  0.542  29  1
## 172  2   87   0  23   0  28.9  0.773  25  0
## 173  1   79  60  42  48  43.5  0.678  23  0
## 174  2   75  64  24  55  29.7  0.370  33  0
## 175  8  179  72  42 130  32.7  0.719  36  1
## 176  6   85  78   0   0  31.2  0.382  42  0
## 177  0  129 110  46 130  67.1  0.319  26  1
## 178  5  143  78   0   0  45.0  0.190  47  0
## 179  5  130  82   0   0  39.1  0.956  37  1
## 180  6   87  80   0   0  23.2  0.084  32  0
## 181  0  119  64  18  92  34.9  0.725  23  0
## 182  1    0  74  20  23  27.7  0.299  21  0
## 183  5   73  60   0   0  26.8  0.268  27  0
## 184  4  141  74   0   0  27.6  0.244  40  0
## 185  7  194  68  28   0  35.9  0.745  41  1
## 186  8  181  68  36 495  30.1  0.615  60  1
## 187  1  128  98  41  58  32.0  1.321  33  1
## 188  8  109  76  39 114  27.9  0.640  31  1
## 189  5  139  80  35 160  31.6  0.361  25  1
## 190  3  111  62   0   0  22.6  0.142  21  0
## 191  9  123  70  44  94  33.1  0.374  40  0
## 192  7  159  66   0   0  30.4  0.383  36  1
## 193 11  135   0   0   0  52.3  0.578  40  1
## 194  8   85  55  20   0  24.4  0.136  42  0
## 195  5  158  84  41 210  39.4  0.395  29  1
## 196  1  105  58   0   0  24.3  0.187  21  0
## 197  3  107  62  13  48  22.9  0.678  23  1
## 198  4  109  64  44  99  34.8  0.905  26  1
## 199  4  148  60  27 318  30.9  0.150  29  1
## 200  0  113  80  16   0  31.0  0.874  21  0
## 201  1  138  82   0   0  40.1  0.236  28  0
## 202  0  108  68  20   0  27.3  0.787  32  0
## 203  2   99  70  16  44  20.4  0.235  27  0
## 204  6  103  72  32 190  37.7  0.324  55  0
## 205  5  111  72  28   0  23.9  0.407  27  0
## 206  8  196  76  29 280  37.5  0.605  57  1
## 207  5  162 104   0   0  37.7  0.151  52  1
## 208  1   96  64  27  87  33.2  0.289  21  0
## 209  7  184  84  33   0  35.5  0.355  41  1
## 210  2   81  60  22   0  27.7  0.290  25  0
## 211  0  147  85  54   0  42.8  0.375  24  0
## 212  7  179  95  31   0  34.2  0.164  60  0
## 213  0  140  65  26 130  42.6  0.431  24  1
## 214  9  112  82  32 175  34.2  0.260  36  1
## 215 12  151  70  40 271  41.8  0.742  38  1
## 216  5  109  62  41 129  35.8  0.514  25  1
## 217  6  125  68  30 120  30.0  0.464  32  0
## 218  5   85  74  22   0  29.0  1.224  32  1
## 219  5  112  66   0   0  37.8  0.261  41  1
## 220  0  177  60  29 478  34.6  1.072  21  1
## 221  2  158  90   0   0  31.6  0.805  66  1
## 222  7  119   0   0   0  25.2  0.209  37  0
## 223  7  142  60  33 190  28.8  0.687  61  0
## 224  1  100  66  15  56  23.6  0.666  26  0
## 225  1   87  78  27  32  34.6  0.101  22  0
## 226  0  101  76   0   0  35.7  0.198  26  0
## 227  3  162  52  38   0  37.2  0.652  24  1
## 228  4  197  70  39 744  36.7  2.329  31  0
## 229  0  117  80  31  53  45.2  0.089  24  0
## 230  4  142  86   0   0  44.0  0.645  22  1
## 231  6  134  80  37 370  46.2  0.238  46  1
## 232  1   79  80  25  37  25.4  0.583  22  0
## 233  4  122  68   0   0  35.0  0.394  29  0
## 234  3   74  68  28  45  29.7  0.293  23  0
## 235  4  171  72   0   0  43.6  0.479  26  1
## 236  7  181  84  21 192  35.9  0.586  51  1
## 237  0  179  90  27   0  44.1  0.686  23  1
## 238  9  164  84  21   0  30.8  0.831  32  1
## 239  0  104  76   0   0  18.4  0.582  27  0
## 240  1   91  64  24   0  29.2  0.192  21  0
## 241  4   91  70  32  88  33.1  0.446  22  0
## 242  3  139  54   0   0  25.6  0.402  22  1
## 243  6  119  50  22 176  27.1  1.318  33  1
## 244  2  146  76  35 194  38.2  0.329  29  0
## 245  9  184  85  15   0  30.0  1.213  49  1
## 246 10  122  68   0   0  31.2  0.258  41  0
## 247  0  165  90  33 680  52.3  0.427  23  0
## 248  9  124  70  33 402  35.4  0.282  34  0
## 249  1  111  86  19   0  30.1  0.143  23  0
## 250  9  106  52   0   0  31.2  0.380  42  0
## 251  2  129  84   0   0  28.0  0.284  27  0
## 252  2   90  80  14  55  24.4  0.249  24  0
## 253  0   86  68  32   0  35.8  0.238  25  0
## 254 12   92  62   7 258  27.6  0.926  44  1
## 255  1  113  64  35   0  33.6  0.543  21  1
## 256  3  111  56  39   0  30.1  0.557  30  0
## 257  2  114  68  22   0  28.7  0.092  25  0
## 258  1  193  50  16 375  25.9  0.655  24  0
## 259 11  155  76  28 150  33.3  1.353  51  1
## 260  3  191  68  15 130  30.9  0.299  34  0
## 261  3  141   0   0   0  30.0  0.761  27  1
## 262  4   95  70  32   0  32.1  0.612  24  0
## 263  3  142  80  15   0  32.4  0.200  63  0
## 264  4  123  62   0   0  32.0  0.226  35  1
## 265  5   96  74  18  67  33.6  0.997  43  0
## 266  0  138   0   0   0  36.3  0.933  25  1
## 267  2  128  64  42   0  40.0  1.101  24  0
## 268  0  102  52   0   0  25.1  0.078  21  0
## 269  2  146   0   0   0  27.5  0.240  28  1
## 270 10  101  86  37   0  45.6  1.136  38  1
## 271  2  108  62  32  56  25.2  0.128  21  0
## 272  3  122  78   0   0  23.0  0.254  40  0
## 273  1   71  78  50  45  33.2  0.422  21  0
## 274 13  106  70   0   0  34.2  0.251  52  0
## 275  2  100  70  52  57  40.5  0.677  25  0
## 276  7  106  60  24   0  26.5  0.296  29  1
## 277  0  104  64  23 116  27.8  0.454  23  0
## 278  5  114  74   0   0  24.9  0.744  57  0
## 279  2  108  62  10 278  25.3  0.881  22  0
## 280  0  146  70   0   0  37.9  0.334  28  1
## 281 10  129  76  28 122  35.9  0.280  39  0
## 282  7  133  88  15 155  32.4  0.262  37  0
## 283  7  161  86   0   0  30.4  0.165  47  1
## 284  2  108  80   0   0  27.0  0.259  52  1
## 285  7  136  74  26 135  26.0  0.647  51  0
## 286  5  155  84  44 545  38.7  0.619  34  0
## 287  1  119  86  39 220  45.6  0.808  29  1
## 288  4   96  56  17  49  20.8  0.340  26  0
## 289  5  108  72  43  75  36.1  0.263  33  0
## 290  0   78  88  29  40  36.9  0.434  21  0
## 291  0  107  62  30  74  36.6  0.757  25  1
## 292  2  128  78  37 182  43.3  1.224  31  1
## 293  1  128  48  45 194  40.5  0.613  24  1
## 294  0  161  50   0   0  21.9  0.254  65  0
## 295  6  151  62  31 120  35.5  0.692  28  0
## 296  2  146  70  38 360  28.0  0.337  29  1
## 297  0  126  84  29 215  30.7  0.520  24  0
## 298 14  100  78  25 184  36.6  0.412  46  1
## 299  8  112  72   0   0  23.6  0.840  58  0
## 300  0  167   0   0   0  32.3  0.839  30  1
## 301  2  144  58  33 135  31.6  0.422  25  1
## 302  5   77  82  41  42  35.8  0.156  35  0
## 303  5  115  98   0   0  52.9  0.209  28  1
## 304  3  150  76   0   0  21.0  0.207  37  0
## 305  2  120  76  37 105  39.7  0.215  29  0
## 306 10  161  68  23 132  25.5  0.326  47  1
## 307  0  137  68  14 148  24.8  0.143  21  0
## 308  0  128  68  19 180  30.5  1.391  25  1
## 309  2  124  68  28 205  32.9  0.875  30  1
## 310  6   80  66  30   0  26.2  0.313  41  0
## 311  0  106  70  37 148  39.4  0.605  22  0
## 312  2  155  74  17  96  26.6  0.433  27  1
## 313  3  113  50  10  85  29.5  0.626  25  0
## 314  7  109  80  31   0  35.9  1.127  43  1
## 315  2  112  68  22  94  34.1  0.315  26  0
## 316  3   99  80  11  64  19.3  0.284  30  0
## 317  3  182  74   0   0  30.5  0.345  29  1
## 318  3  115  66  39 140  38.1  0.150  28  0
## 319  6  194  78   0   0  23.5  0.129  59  1
## 320  4  129  60  12 231  27.5  0.527  31  0
## 321  3  112  74  30   0  31.6  0.197  25  1
## 322  0  124  70  20   0  27.4  0.254  36  1
## 323 13  152  90  33  29  26.8  0.731  43  1
## 324  2  112  75  32   0  35.7  0.148  21  0
## 325  1  157  72  21 168  25.6  0.123  24  0
## 326  1  122  64  32 156  35.1  0.692  30  1
## 327 10  179  70   0   0  35.1  0.200  37  0
## 328  2  102  86  36 120  45.5  0.127  23  1
## 329  6  105  70  32  68  30.8  0.122  37  0
## 330  8  118  72  19   0  23.1  1.476  46  0
## 331  2   87  58  16  52  32.7  0.166  25  0
## 332  1  180   0   0   0  43.3  0.282  41  1
## 333 12  106  80   0   0  23.6  0.137  44  0
## 334  1   95  60  18  58  23.9  0.260  22  0
## 335  0  165  76  43 255  47.9  0.259  26  0
## 336  0  117   0   0   0  33.8  0.932  44  0
## 337  5  115  76   0   0  31.2  0.343  44  1
## 338  9  152  78  34 171  34.2  0.893  33  1
## 339  7  178  84   0   0  39.9  0.331  41  1
## 340  1  130  70  13 105  25.9  0.472  22  0
## 341  1   95  74  21  73  25.9  0.673  36  0
## 342  1    0  68  35   0  32.0  0.389  22  0
## 343  5  122  86   0   0  34.7  0.290  33  0
## 344  8   95  72   0   0  36.8  0.485  57  0
## 345  8  126  88  36 108  38.5  0.349  49  0
## 346  1  139  46  19  83  28.7  0.654  22  0
## 347  3  116   0   0   0  23.5  0.187  23  0
## 348  3   99  62  19  74  21.8  0.279  26  0
## 349  5    0  80  32   0  41.0  0.346  37  1
## 350  4   92  80   0   0  42.2  0.237  29  0
## 351  4  137  84   0   0  31.2  0.252  30  0
## 352  3   61  82  28   0  34.4  0.243  46  0
## 353  1   90  62  12  43  27.2  0.580  24  0
## 354  3   90  78   0   0  42.7  0.559  21  0
## 355  9  165  88   0   0  30.4  0.302  49  1
## 356  1  125  50  40 167  33.3  0.962  28  1
## 357 13  129   0  30   0  39.9  0.569  44  1
## 358 12   88  74  40  54  35.3  0.378  48  0
## 359  1  196  76  36 249  36.5  0.875  29  1
## 360  5  189  64  33 325  31.2  0.583  29  1
## 361  5  158  70   0   0  29.8  0.207  63  0
## 362  5  103 108  37   0  39.2  0.305  65  0
## 363  4  146  78   0   0  38.5  0.520  67  1
## 364  4  147  74  25 293  34.9  0.385  30  0
## 365  5   99  54  28  83  34.0  0.499  30  0
## 366  6  124  72   0   0  27.6  0.368  29  1
## 367  0  101  64  17   0  21.0  0.252  21  0
## 368  3   81  86  16  66  27.5  0.306  22  0
## 369  1  133 102  28 140  32.8  0.234  45  1
## 370  3  173  82  48 465  38.4  2.137  25  1
## 371  0  118  64  23  89   0.0  1.731  21  0
## 372  0   84  64  22  66  35.8  0.545  21  0
## 373  2  105  58  40  94  34.9  0.225  25  0
## 374  2  122  52  43 158  36.2  0.816  28  0
## 375 12  140  82  43 325  39.2  0.528  58  1
## 376  0   98  82  15  84  25.2  0.299  22  0
## 377  1   87  60  37  75  37.2  0.509  22  0
## 378  4  156  75   0   0  48.3  0.238  32  1
## 379  0   93 100  39  72  43.4  1.021  35  0
## 380  1  107  72  30  82  30.8  0.821  24  0
## 381  0  105  68  22   0  20.0  0.236  22  0
## 382  1  109  60   8 182  25.4  0.947  21  0
## 383  1   90  62  18  59  25.1  1.268  25  0
## 384  1  125  70  24 110  24.3  0.221  25  0
## 385  1  119  54  13  50  22.3  0.205  24  0
## 386  5  116  74  29   0  32.3  0.660  35  1
## 387  8  105 100  36   0  43.3  0.239  45  1
## 388  5  144  82  26 285  32.0  0.452  58  1
## 389  3  100  68  23  81  31.6  0.949  28  0
## 390  1  100  66  29 196  32.0  0.444  42  0
## 391  5  166  76   0   0  45.7  0.340  27  1
## 392  1  131  64  14 415  23.7  0.389  21  0
## 393  4  116  72  12  87  22.1  0.463  37  0
## 394  4  158  78   0   0  32.9  0.803  31  1
## 395  2  127  58  24 275  27.7  1.600  25  0
## 396  3   96  56  34 115  24.7  0.944  39  0
## 397  0  131  66  40   0  34.3  0.196  22  1
## 398  3   82  70   0   0  21.1  0.389  25  0
## 399  3  193  70  31   0  34.9  0.241  25  1
## 400  4   95  64   0   0  32.0  0.161  31  1
## 401  6  137  61   0   0  24.2  0.151  55  0
## 402  5  136  84  41  88  35.0  0.286  35  1
## 403  9   72  78  25   0  31.6  0.280  38  0
## 404  5  168  64   0   0  32.9  0.135  41  1
## 405  2  123  48  32 165  42.1  0.520  26  0
## 406  4  115  72   0   0  28.9  0.376  46  1
## 407  0  101  62   0   0  21.9  0.336  25  0
## 408  8  197  74   0   0  25.9  1.191  39  1
## 409  1  172  68  49 579  42.4  0.702  28  1
## 410  6  102  90  39   0  35.7  0.674  28  0
## 411  1  112  72  30 176  34.4  0.528  25  0
## 412  1  143  84  23 310  42.4  1.076  22  0
## 413  1  143  74  22  61  26.2  0.256  21  0
## 414  0  138  60  35 167  34.6  0.534  21  1
## 415  3  173  84  33 474  35.7  0.258  22  1
## 416  1   97  68  21   0  27.2  1.095  22  0
## 417  4  144  82  32   0  38.5  0.554  37  1
## 418  1   83  68   0   0  18.2  0.624  27  0
## 419  3  129  64  29 115  26.4  0.219  28  1
## 420  1  119  88  41 170  45.3  0.507  26  0
## 421  2   94  68  18  76  26.0  0.561  21  0
## 422  0  102  64  46  78  40.6  0.496  21  0
## 423  2  115  64  22   0  30.8  0.421  21  0
## 424  8  151  78  32 210  42.9  0.516  36  1
## 425  4  184  78  39 277  37.0  0.264  31  1
## 426  0   94   0   0   0   0.0  0.256  25  0
## 427  1  181  64  30 180  34.1  0.328  38  1
## 428  0  135  94  46 145  40.6  0.284  26  0
## 429  1   95  82  25 180  35.0  0.233  43  1
## 430  2   99   0   0   0  22.2  0.108  23  0
## 431  3   89  74  16  85  30.4  0.551  38  0
## 432  1   80  74  11  60  30.0  0.527  22  0
## 433  2  139  75   0   0  25.6  0.167  29  0
## 434  1   90  68   8   0  24.5  1.138  36  0
## 435  0  141   0   0   0  42.4  0.205  29  1
## 436 12  140  85  33   0  37.4  0.244  41  0
## 437  5  147  75   0   0  29.9  0.434  28  0
## 438  1   97  70  15   0  18.2  0.147  21  0
## 439  6  107  88   0   0  36.8  0.727  31  0
## 440  0  189 104  25   0  34.3  0.435  41  1
## 441  2   83  66  23  50  32.2  0.497  22  0
## 442  4  117  64  27 120  33.2  0.230  24  0
## 443  8  108  70   0   0  30.5  0.955  33  1
## 444  4  117  62  12   0  29.7  0.380  30  1
## 445  0  180  78  63  14  59.4  2.420  25  1
## 446  1  100  72  12  70  25.3  0.658  28  0
## 447  0   95  80  45  92  36.5  0.330  26  0
## 448  0  104  64  37  64  33.6  0.510  22  1
## 449  0  120  74  18  63  30.5  0.285  26  0
## 450  1   82  64  13  95  21.2  0.415  23  0
## 451  2  134  70   0   0  28.9  0.542  23  1
## 452  0   91  68  32 210  39.9  0.381  25  0
## 453  2  119   0   0   0  19.6  0.832  72  0
## 454  2  100  54  28 105  37.8  0.498  24  0
## 455 14  175  62  30   0  33.6  0.212  38  1
## 456  1  135  54   0   0  26.7  0.687  62  0
## 457  5   86  68  28  71  30.2  0.364  24  0
## 458 10  148  84  48 237  37.6  1.001  51  1
## 459  9  134  74  33  60  25.9  0.460  81  0
## 460  9  120  72  22  56  20.8  0.733  48  0
## 461  1   71  62   0   0  21.8  0.416  26  0
## 462  8   74  70  40  49  35.3  0.705  39  0
## 463  5   88  78  30   0  27.6  0.258  37  0
## 464 10  115  98   0   0  24.0  1.022  34  0
## 465  0  124  56  13 105  21.8  0.452  21  0
## 466  0   74  52  10  36  27.8  0.269  22  0
## 467  0   97  64  36 100  36.8  0.600  25  0
## 468  8  120   0   0   0  30.0  0.183  38  1
## 469  6  154  78  41 140  46.1  0.571  27  0
## 470  1  144  82  40   0  41.3  0.607  28  0
## 471  0  137  70  38   0  33.2  0.170  22  0
## 472  0  119  66  27   0  38.8  0.259  22  0
## 473  7  136  90   0   0  29.9  0.210  50  0
## 474  4  114  64   0   0  28.9  0.126  24  0
## 475  0  137  84  27   0  27.3  0.231  59  0
## 476  2  105  80  45 191  33.7  0.711  29  1
## 477  7  114  76  17 110  23.8  0.466  31  0
## 478  8  126  74  38  75  25.9  0.162  39  0
## 479  4  132  86  31   0  28.0  0.419  63  0
## 480  3  158  70  30 328  35.5  0.344  35  1
## 481  0  123  88  37   0  35.2  0.197  29  0
## 482  4   85  58  22  49  27.8  0.306  28  0
## 483  0   84  82  31 125  38.2  0.233  23  0
## 484  0  145   0   0   0  44.2  0.630  31  1
## 485  0  135  68  42 250  42.3  0.365  24  1
## 486  1  139  62  41 480  40.7  0.536  21  0
## 487  0  173  78  32 265  46.5  1.159  58  0
## 488  4   99  72  17   0  25.6  0.294  28  0
## 489  8  194  80   0   0  26.1  0.551  67  0
## 490  2   83  65  28  66  36.8  0.629  24  0
## 491  2   89  90  30   0  33.5  0.292  42  0
## 492  4   99  68  38   0  32.8  0.145  33  0
## 493  4  125  70  18 122  28.9  1.144  45  1
## 494  3   80   0   0   0   0.0  0.174  22  0
## 495  6  166  74   0   0  26.6  0.304  66  0
## 496  5  110  68   0   0  26.0  0.292  30  0
## 497  2   81  72  15  76  30.1  0.547  25  0
## 498  7  195  70  33 145  25.1  0.163  55  1
## 499  6  154  74  32 193  29.3  0.839  39  0
## 500  2  117  90  19  71  25.2  0.313  21  0
## 501  3   84  72  32   0  37.2  0.267  28  0
## 502  6    0  68  41   0  39.0  0.727  41  1
## 503  7   94  64  25  79  33.3  0.738  41  0
## 504  3   96  78  39   0  37.3  0.238  40  0
## 505 10   75  82   0   0  33.3  0.263  38  0
## 506  0  180  90  26  90  36.5  0.314  35  1
## 507  1  130  60  23 170  28.6  0.692  21  0
## 508  2   84  50  23  76  30.4  0.968  21  0
## 509  8  120  78   0   0  25.0  0.409  64  0
## 510 12   84  72  31   0  29.7  0.297  46  1
## 511  0  139  62  17 210  22.1  0.207  21  0
## 512  9   91  68   0   0  24.2  0.200  58  0
## 513  2   91  62   0   0  27.3  0.525  22  0
## 514  3   99  54  19  86  25.6  0.154  24  0
## 515  3  163  70  18 105  31.6  0.268  28  1
## 516  9  145  88  34 165  30.3  0.771  53  1
## 517  7  125  86   0   0  37.6  0.304  51  0
## 518 13   76  60   0   0  32.8  0.180  41  0
## 519  6  129  90   7 326  19.6  0.582  60  0
## 520  2   68  70  32  66  25.0  0.187  25  0
## 521  3  124  80  33 130  33.2  0.305  26  0
## 522  6  114   0   0   0   0.0  0.189  26  0
## 523  9  130  70   0   0  34.2  0.652  45  1
## 524  3  125  58   0   0  31.6  0.151  24  0
## 525  3   87  60  18   0  21.8  0.444  21  0
## 526  1   97  64  19  82  18.2  0.299  21  0
## 527  3  116  74  15 105  26.3  0.107  24  0
## 528  0  117  66  31 188  30.8  0.493  22  0
## 529  0  111  65   0   0  24.6  0.660  31  0
## 530  2  122  60  18 106  29.8  0.717  22  0
## 531  0  107  76   0   0  45.3  0.686  24  0
## 532  1   86  66  52  65  41.3  0.917  29  0
## 533  6   91   0   0   0  29.8  0.501  31  0
## 534  1   77  56  30  56  33.3  1.251  24  0
## 535  4  132   0   0   0  32.9  0.302  23  1
## 536  0  105  90   0   0  29.6  0.197  46  0
## 537  0   57  60   0   0  21.7  0.735  67  0
## 538  0  127  80  37 210  36.3  0.804  23  0
## 539  3  129  92  49 155  36.4  0.968  32  1
## 540  8  100  74  40 215  39.4  0.661  43  1
## 541  3  128  72  25 190  32.4  0.549  27  1
## 542 10   90  85  32   0  34.9  0.825  56  1
## 543  4   84  90  23  56  39.5  0.159  25  0
## 544  1   88  78  29  76  32.0  0.365  29  0
## 545  8  186  90  35 225  34.5  0.423  37  1
## 546  5  187  76  27 207  43.6  1.034  53  1
## 547  4  131  68  21 166  33.1  0.160  28  0
## 548  1  164  82  43  67  32.8  0.341  50  0
## 549  4  189 110  31   0  28.5  0.680  37  0
## 550  1  116  70  28   0  27.4  0.204  21  0
## 551  3   84  68  30 106  31.9  0.591  25  0
## 552  6  114  88   0   0  27.8  0.247  66  0
## 553  1   88  62  24  44  29.9  0.422  23  0
## 554  1   84  64  23 115  36.9  0.471  28  0
## 555  7  124  70  33 215  25.5  0.161  37  0
## 556  1   97  70  40   0  38.1  0.218  30  0
## 557  8  110  76   0   0  27.8  0.237  58  0
## 558 11  103  68  40   0  46.2  0.126  42  0
## 559 11   85  74   0   0  30.1  0.300  35  0
## 560  6  125  76   0   0  33.8  0.121  54  1
## 561  0  198  66  32 274  41.3  0.502  28  1
## 562  1   87  68  34  77  37.6  0.401  24  0
## 563  6   99  60  19  54  26.9  0.497  32  0
## 564  0   91  80   0   0  32.4  0.601  27  0
## 565  2   95  54  14  88  26.1  0.748  22  0
## 566  1   99  72  30  18  38.6  0.412  21  0
## 567  6   92  62  32 126  32.0  0.085  46  0
## 568  4  154  72  29 126  31.3  0.338  37  0
## 569  0  121  66  30 165  34.3  0.203  33  1
## 570  3   78  70   0   0  32.5  0.270  39  0
## 571  2  130  96   0   0  22.6  0.268  21  0
## 572  3  111  58  31  44  29.5  0.430  22  0
## 573  2   98  60  17 120  34.7  0.198  22  0
## 574  1  143  86  30 330  30.1  0.892  23  0
## 575  1  119  44  47  63  35.5  0.280  25  0
## 576  6  108  44  20 130  24.0  0.813  35  0
## 577  2  118  80   0   0  42.9  0.693  21  1
## 578 10  133  68   0   0  27.0  0.245  36  0
## 579  2  197  70  99   0  34.7  0.575  62  1
## 580  0  151  90  46   0  42.1  0.371  21  1
## 581  6  109  60  27   0  25.0  0.206  27  0
## 582 12  121  78  17   0  26.5  0.259  62  0
## 583  8  100  76   0   0  38.7  0.190  42  0
## 584  8  124  76  24 600  28.7  0.687  52  1
## 585  1   93  56  11   0  22.5  0.417  22  0
## 586  8  143  66   0   0  34.9  0.129  41  1
## 587  6  103  66   0   0  24.3  0.249  29  0
## 588  3  176  86  27 156  33.3  1.154  52  1
## 589  0   73   0   0   0  21.1  0.342  25  0
## 590 11  111  84  40   0  46.8  0.925  45  1
## 591  2  112  78  50 140  39.4  0.175  24  0
## 592  3  132  80   0   0  34.4  0.402  44  1
## 593  2   82  52  22 115  28.5  1.699  25  0
## 594  6  123  72  45 230  33.6  0.733  34  0
## 595  0  188  82  14 185  32.0  0.682  22  1
## 596  0   67  76   0   0  45.3  0.194  46  0
## 597  1   89  24  19  25  27.8  0.559  21  0
## 598  1  173  74   0   0  36.8  0.088  38  1
## 599  1  109  38  18 120  23.1  0.407  26  0
## 600  1  108  88  19   0  27.1  0.400  24  0
## 601  6   96   0   0   0  23.7  0.190  28  0
## 602  1  124  74  36   0  27.8  0.100  30  0
## 603  7  150  78  29 126  35.2  0.692  54  1
## 604  4  183   0   0   0  28.4  0.212  36  1
## 605  1  124  60  32   0  35.8  0.514  21  0
## 606  1  181  78  42 293  40.0  1.258  22  1
## 607  1   92  62  25  41  19.5  0.482  25  0
## 608  0  152  82  39 272  41.5  0.270  27  0
## 609  1  111  62  13 182  24.0  0.138  23  0
## 610  3  106  54  21 158  30.9  0.292  24  0
## 611  3  174  58  22 194  32.9  0.593  36  1
## 612  7  168  88  42 321  38.2  0.787  40  1
## 613  6  105  80  28   0  32.5  0.878  26  0
## 614 11  138  74  26 144  36.1  0.557  50  1
## 615  3  106  72   0   0  25.8  0.207  27  0
## 616  6  117  96   0   0  28.7  0.157  30  0
## 617  2   68  62  13  15  20.1  0.257  23  0
## 618  9  112  82  24   0  28.2  1.282  50  1
## 619  0  119   0   0   0  32.4  0.141  24  1
## 620  2  112  86  42 160  38.4  0.246  28  0
## 621  2   92  76  20   0  24.2  1.698  28  0
## 622  6  183  94   0   0  40.8  1.461  45  0
## 623  0   94  70  27 115  43.5  0.347  21  0
## 624  2  108  64   0   0  30.8  0.158  21  0
## 625  4   90  88  47  54  37.7  0.362  29  0
## 626  0  125  68   0   0  24.7  0.206  21  0
## 627  0  132  78   0   0  32.4  0.393  21  0
## 628  5  128  80   0   0  34.6  0.144  45  0
## 629  4   94  65  22   0  24.7  0.148  21  0
## 630  7  114  64   0   0  27.4  0.732  34  1
## 631  0  102  78  40  90  34.5  0.238  24  0
## 632  2  111  60   0   0  26.2  0.343  23  0
## 633  1  128  82  17 183  27.5  0.115  22  0
## 634 10   92  62   0   0  25.9  0.167  31  0
## 635 13  104  72   0   0  31.2  0.465  38  1
## 636  5  104  74   0   0  28.8  0.153  48  0
## 637  2   94  76  18  66  31.6  0.649  23  0
## 638  7   97  76  32  91  40.9  0.871  32  1
## 639  1  100  74  12  46  19.5  0.149  28  0
## 640  0  102  86  17 105  29.3  0.695  27  0
## 641  4  128  70   0   0  34.3  0.303  24  0
## 642  6  147  80   0   0  29.5  0.178  50  1
## 643  4   90   0   0   0  28.0  0.610  31  0
## 644  3  103  72  30 152  27.6  0.730  27  0
## 645  2  157  74  35 440  39.4  0.134  30  0
## 646  1  167  74  17 144  23.4  0.447  33  1
## 647  0  179  50  36 159  37.8  0.455  22  1
## 648 11  136  84  35 130  28.3  0.260  42  1
## 649  0  107  60  25   0  26.4  0.133  23  0
## 650  1   91  54  25 100  25.2  0.234  23  0
## 651  1  117  60  23 106  33.8  0.466  27  0
## 652  5  123  74  40  77  34.1  0.269  28  0
## 653  2  120  54   0   0  26.8  0.455  27  0
## 654  1  106  70  28 135  34.2  0.142  22  0
## 655  2  155  52  27 540  38.7  0.240  25  1
## 656  2  101  58  35  90  21.8  0.155  22  0
## 657  1  120  80  48 200  38.9  1.162  41  0
## 658 11  127 106   0   0  39.0  0.190  51  0
## 659  3   80  82  31  70  34.2  1.292  27  1
## 660 10  162  84   0   0  27.7  0.182  54  0
## 661  1  199  76  43   0  42.9  1.394  22  1
## 662  8  167 106  46 231  37.6  0.165  43  1
## 663  9  145  80  46 130  37.9  0.637  40  1
## 664  6  115  60  39   0  33.7  0.245  40  1
## 665  1  112  80  45 132  34.8  0.217  24  0
## 666  4  145  82  18   0  32.5  0.235  70  1
## 667 10  111  70  27   0  27.5  0.141  40  1
## 668  6   98  58  33 190  34.0  0.430  43  0
## 669  9  154  78  30 100  30.9  0.164  45  0
## 670  6  165  68  26 168  33.6  0.631  49  0
## 671  1   99  58  10   0  25.4  0.551  21  0
## 672 10   68 106  23  49  35.5  0.285  47  0
## 673  3  123 100  35 240  57.3  0.880  22  0
## 674  8   91  82   0   0  35.6  0.587  68  0
## 675  6  195  70   0   0  30.9  0.328  31  1
## 676  9  156  86   0   0  24.8  0.230  53  1
## 677  0   93  60   0   0  35.3  0.263  25  0
## 678  3  121  52   0   0  36.0  0.127  25  1
## 679  2  101  58  17 265  24.2  0.614  23  0
## 680  2   56  56  28  45  24.2  0.332  22  0
## 681  0  162  76  36   0  49.6  0.364  26  1
## 682  0   95  64  39 105  44.6  0.366  22  0
## 683  4  125  80   0   0  32.3  0.536  27  1
## 684  5  136  82   0   0   0.0  0.640  69  0
## 685  2  129  74  26 205  33.2  0.591  25  0
## 686  3  130  64   0   0  23.1  0.314  22  0
## 687  1  107  50  19   0  28.3  0.181  29  0
## 688  1  140  74  26 180  24.1  0.828  23  0
## 689  1  144  82  46 180  46.1  0.335  46  1
## 690  8  107  80   0   0  24.6  0.856  34  0
## 691 13  158 114   0   0  42.3  0.257  44  1
## 692  2  121  70  32  95  39.1  0.886  23  0
## 693  7  129  68  49 125  38.5  0.439  43  1
## 694  2   90  60   0   0  23.5  0.191  25  0
## 695  7  142  90  24 480  30.4  0.128  43  1
## 696  3  169  74  19 125  29.9  0.268  31  1
## 697  0   99   0   0   0  25.0  0.253  22  0
## 698  4  127  88  11 155  34.5  0.598  28  0
## 699  4  118  70   0   0  44.5  0.904  26  0
## 700  2  122  76  27 200  35.9  0.483  26  0
## 701  6  125  78  31   0  27.6  0.565  49  1
## 702  1  168  88  29   0  35.0  0.905  52  1
## 703  2  129   0   0   0  38.5  0.304  41  0
## 704  4  110  76  20 100  28.4  0.118  27  0
## 705  6   80  80  36   0  39.8  0.177  28  0
## 706 10  115   0   0   0   0.0  0.261  30  1
## 707  2  127  46  21 335  34.4  0.176  22  0
## 708  9  164  78   0   0  32.8  0.148  45  1
## 709  2   93  64  32 160  38.0  0.674  23  1
## 710  3  158  64  13 387  31.2  0.295  24  0
## 711  5  126  78  27  22  29.6  0.439  40  0
## 712 10  129  62  36   0  41.2  0.441  38  1
## 713  0  134  58  20 291  26.4  0.352  21  0
## 714  3  102  74   0   0  29.5  0.121  32  0
## 715  7  187  50  33 392  33.9  0.826  34  1
## 716  3  173  78  39 185  33.8  0.970  31  1
## 717 10   94  72  18   0  23.1  0.595  56  0
## 718  1  108  60  46 178  35.5  0.415  24  0
## 719  5   97  76  27   0  35.6  0.378  52  1
## 720  4   83  86  19   0  29.3  0.317  34  0
## 721  1  114  66  36 200  38.1  0.289  21  0
## 722  1  149  68  29 127  29.3  0.349  42  1
## 723  5  117  86  30 105  39.1  0.251  42  0
## 724  1  111  94   0   0  32.8  0.265  45  0
## 725  4  112  78  40   0  39.4  0.236  38  0
## 726  1  116  78  29 180  36.1  0.496  25  0
## 727  0  141  84  26   0  32.4  0.433  22  0
## 728  2  175  88   0   0  22.9  0.326  22  0
## 729  2   92  52   0   0  30.1  0.141  22  0
## 730  3  130  78  23  79  28.4  0.323  34  1
## 731  8  120  86   0   0  28.4  0.259  22  1
## 732  2  174  88  37 120  44.5  0.646  24  1
## 733  2  106  56  27 165  29.0  0.426  22  0
## 734  2  105  75   0   0  23.3  0.560  53  0
## 735  4   95  60  32   0  35.4  0.284  28  0
## 736  0  126  86  27 120  27.4  0.515  21  0
## 737  8   65  72  23   0  32.0  0.600  42  0
## 738  2   99  60  17 160  36.6  0.453  21  0
## 739  1  102  74   0   0  39.5  0.293  42  1
## 740 11  120  80  37 150  42.3  0.785  48  1
## 741  3  102  44  20  94  30.8  0.400  26  0
## 742  1  109  58  18 116  28.5  0.219  22  0
## 743  9  140  94   0   0  32.7  0.734  45  1
## 744 13  153  88  37 140  40.6  1.174  39  0
## 745 12  100  84  33 105  30.0  0.488  46  0
## 746  1  147  94  41   0  49.3  0.358  27  1
## 747  1   81  74  41  57  46.3  1.096  32  0
## 748  3  187  70  22 200  36.4  0.408  36  1
## 749  6  162  62   0   0  24.3  0.178  50  1
## 750  4  136  70   0   0  31.2  1.182  22  1
## 751  1  121  78  39  74  39.0  0.261  28  0
## 752  3  108  62  24   0  26.0  0.223  25  0
## 753  0  181  88  44 510  43.3  0.222  26  1
## 754  8  154  78  32   0  32.4  0.443  45  1
## 755  1  128  88  39 110  36.5  1.057  37  1
## 756  7  137  90  41   0  32.0  0.391  39  0
## 757  0  123  72   0   0  36.3  0.258  52  1
## 758  1  106  76   0   0  37.5  0.197  26  0
## 759  6  190  92   0   0  35.5  0.278  66  1
## 760  2   88  58  26  16  28.4  0.766  22  0
## 761  9  170  74  31   0  44.0  0.403  43  1
## 762  9   89  62   0   0  22.5  0.142  33  0
## 763 10  101  76  48 180  32.9  0.171  63  0
## 764  2  122  70  27   0  36.8  0.340  27  0
## 765  5  121  72  23 112  26.2  0.245  30  0
## 766  1  126  60   0   0  30.1  0.349  47  1
## 767  1   93  70  31   0  30.4  0.315  23  0
  1. Planteo de hipótesis

Se plantea una hipótesis para comparar los niveles de glucosa entre personas con y sin diabetes. Mediante una prueba t de muestras independientes se encontró una diferencia significativa entre ambos grupos (p < 0.05), lo que indica que los niveles promedio de glucosa son distintos según la condición de diabetes.

# Asignar nombres de columnas
colnames(data) <- c("Pregnancies", "Glucose", "BloodPressure", "SkinThickness", 
                    "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Outcome")
# Verificar estructura
str(data)
## 'data.frame':    767 obs. of  9 variables:
##  $ Pregnancies             : int  1 8 1 0 5 3 10 2 8 4 ...
##  $ Glucose                 : int  85 183 89 137 116 78 115 197 125 110 ...
##  $ BloodPressure           : int  66 64 66 40 74 50 0 70 96 92 ...
##  $ SkinThickness           : int  29 0 23 35 0 32 0 45 0 0 ...
##  $ Insulin                 : int  0 0 94 168 0 88 0 543 0 0 ...
##  $ BMI                     : num  26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 37.6 ...
##  $ DiabetesPedigreeFunction: num  0.351 0.672 0.167 2.288 0.201 ...
##  $ Age                     : int  31 32 21 33 30 26 29 53 54 30 ...
##  $ Outcome                 : int  0 1 0 1 0 1 0 1 1 0 ...
# Dividir en dos grupos: con diabetes y sin diabetes
diabetes_yes <- subset(data, Outcome == 1)
diabetes_not <- subset(data, Outcome == 0)
# Prueba de hipótesis: comparar la media de glucosa entre los grupos
test_ <- t.test(diabetes_yes$Glucose, diabetes_not$Glucose, 
                        alternative = "two.sided", conf.level = 0.95)
# Mostrar el resultado del test
print(test_)
## 
##  Welch Two Sample t-test
## 
## data:  diabetes_yes$Glucose and diabetes_not$Glucose
## t = 13.703, df = 458.37, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  26.77046 35.73396
## sample estimates:
## mean of x mean of y 
##  141.2322  109.9800
  1. Validación normalidad

Puesto que los valores de P en ambos casos son mucho menores que 0.05, se rechaza la hipótesis nula de normalidad.
Por tanto, la variable GLUCOSE no sigue una distribución normal en ninguno de los dos grupos.

datos_glucosa <- data[, c("Glucose", "Outcome")]
# Crear los dos grupos
grupo_0 <- datos_glucosa$Glucose[datos_glucosa$Outcome == 0]
grupo_1 <- datos_glucosa$Glucose[datos_glucosa$Outcome == 1]
# Prueba de Shapiro-Wilk
cat("\nNormalidad para el grupo SIN diabetes (Outcome = 0):\n")
## 
## Normalidad para el grupo SIN diabetes (Outcome = 0):
print(shapiro.test(grupo_0))
## 
##  Shapiro-Wilk normality test
## 
## data:  grupo_0
## W = 0.96795, p-value = 5.447e-09
cat("\nNormalidad para el grupo CON diabetes (Outcome = 1):\n")
## 
## Normalidad para el grupo CON diabetes (Outcome = 1):
print(shapiro.test(grupo_1))
## 
##  Shapiro-Wilk normality test
## 
## data:  grupo_1
## W = 0.95852, p-value = 6.323e-07
  1. Correlación

En los dos grupos (con y sin diabetes), se observa una correlación positiva moderada entre Glucose y Insulin, lo cual sugiere que a mayor nivel de glucosa, tiende a haber mayor nivel de insulina. Sin embargo, esta relación es más fuerte en el grupo con diabetes. Además, variables como BMI y SkinThickness también presentan correlaciones moderadas, especialmente en el grupo con diabetes. Estas asociaciones pueden indicar patrones metabólicos alterados en personas con diabetes.

# Seleccionar variables numéricas
variables <- c("Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", 
               "DiabetesPedigreeFunction", "Age")

# Correlación para grupo sin diabetes (Outcome = 0)
cat("\n--- Correlación (Pearson) para grupo SIN diabetes (Outcome = 0) ---\n")
## 
## --- Correlación (Pearson) para grupo SIN diabetes (Outcome = 0) ---
grupo_0 <- data[data$Outcome == 0, variables]
cor_0 <- cor(grupo_0, use = "complete.obs", method = "pearson")
print(cor_0)
##                             Glucose BloodPressure SkinThickness     Insulin
## Glucose                  1.00000000    0.19279456    0.01601513  0.35295698
## BloodPressure            0.19279456    1.00000000    0.18707162  0.07462648
## SkinThickness            0.01601513    0.18707162    1.00000000  0.41278982
## Insulin                  0.35295698    0.07462648    0.41278982  1.00000000
## BMI                      0.13174900    0.36317809    0.43860594  0.25420153
## DiabetesPedigreeFunction 0.09554795    0.02729154    0.09518116  0.22738532
## Age                      0.22801775    0.21469388   -0.16378832 -0.14923353
##                                 BMI DiabetesPedigreeFunction         Age
## Glucose                  0.13174900               0.09554795  0.22801775
## BloodPressure            0.36317809               0.02729154  0.21469388
## SkinThickness            0.43860594               0.09518116 -0.16378832
## Insulin                  0.25420153               0.22738532 -0.14923353
## BMI                      1.00000000               0.07066436  0.03606979
## DiabetesPedigreeFunction 0.07066436               1.00000000  0.04166504
## Age                      0.03606979               0.04166504  1.00000000
# Correlación para grupo con diabetes (Outcome = 1)
cat("\n--- Correlación (Pearson) para grupo CON diabetes (Outcome = 1) ---\n")
## 
## --- Correlación (Pearson) para grupo CON diabetes (Outcome = 1) ---
grupo_1 <- data[data$Outcome == 1, variables]
cor_1 <- cor(grupo_1, use = "complete.obs", method = "pearson")
print(cor_1)
##                             Glucose BloodPressure SkinThickness    Insulin
## Glucose                  1.00000000    0.06866161    0.03708161 0.26222185
## BloodPressure            0.06866161    1.00000000    0.22532254 0.08960419
## SkinThickness            0.03708161    0.22532254    1.00000000 0.45943977
## Insulin                  0.26222185    0.08960419    0.45943977 1.00000000
## BMI                      0.05059491    0.13400675    0.31297470 0.05459284
## DiabetesPedigreeFunction 0.02631528    0.03448306    0.27363213 0.10223248
## Age                      0.09789354    0.26313184   -0.09557467 0.02724892
##                                  BMI DiabetesPedigreeFunction         Age
## Glucose                   0.05059491               0.02631528  0.09789354
## BloodPressure             0.13400675               0.03448306  0.26313184
## SkinThickness             0.31297470               0.27363213 -0.09557467
## Insulin                   0.05459284               0.10223248  0.02724892
## BMI                       1.00000000               0.13694708 -0.18757696
## DiabetesPedigreeFunction  0.13694708               1.00000000 -0.08927011
## Age                      -0.18757696              -0.08927011  1.00000000
  1. Prueba estadística

Dado que los datos no cumplían con los supuestos de normalidad en ninguno de los grupos, se decidió utilizar la prueba no paramétrica de Wilcoxon para comparar las diferencias entre ambos grupos de manera más adecuada. Los resultados mostraron una diferencia altamente significativa en los niveles de glucosa entre los grupos, lo que indica que esta variable varía notablemente según o con respecto al Outcome.

# Aplicar la prueba estadística correctamente
for (var in variables) {
  cat("\n=== Análisis de variable:", var, "===\n")

  grupo_0 <- data[data$Outcome == 0, var]
  grupo_1 <- data[data$Outcome == 1, var]

  # Validar normalidad con Shapiro-Wilk
  p_norm_0 <- shapiro.test(grupo_0)$p.value
  p_norm_1 <- shapiro.test(grupo_1)$p.value

  cat(sprintf("p normalidad (Outcome=0): %.4f | p normalidad (Outcome=1): %.4f\n", p_norm_0, p_norm_1))

  # Elegir prueba según normalidad
  if (p_norm_0 > 0.05 & p_norm_1 > 0.05) {
    cat("=> Usando t-test (ambos normales)\n")
    prueba <- t.test(grupo_0, grupo_1, var.equal = FALSE)
  } else {
    cat("=> Usando Wilcoxon test (alguno NO normal)\n")
    prueba <- wilcox.test(grupo_0, grupo_1)
  }

  # Mostrar resultados
  print(prueba)}
## 
## === Análisis de variable: Glucose ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 28353, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: BloodPressure ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 55195, p-value = 7.568e-05
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: SkinThickness ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 59734, p-value = 0.015
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: Insulin ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 61545, p-value = 0.05837
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: BMI ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 41701, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: DiabetesPedigreeFunction ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 52670, p-value = 1.459e-06
## alternative hypothesis: true location shift is not equal to 0
## 
## 
## === Análisis de variable: Age ===
## p normalidad (Outcome=0): 0.0000 | p normalidad (Outcome=1): 0.0000
## => Usando Wilcoxon test (alguno NO normal)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  grupo_0 and grupo_1
## W = 41906, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0