Cargar librerias necesarias

library(vars)
## Warning: package 'vars' was built under R version 4.3.3
## Loading required package: MASS
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.3.3
## Loading required package: urca
## Warning: package 'urca' was built under R version 4.3.3
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.3.3
library(readxl)
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

#Cargar datos

df <- read.csv2("C:/Users/karsu/OneDrive - dane.gov.co/Desktop/LUIS CARLOS/PROYECTO DE GRADO/DATOS/DATA_SERIE2.csv")
head(df)
##    AÑO MES SECUESTRO EXTORSION
## 1 2015   1        20       652
## 2 2015   2        15       650
## 3 2015   3        18       574
## 4 2015   4         9       595
## 5 2015   5        14       609
## 6 2015   6        17       549
class(df)
## [1] "data.frame"
dim(df)
## [1] 120   4

###Gráfico

par(mfrow=c(2,1))
plot.ts(df$SECUESTRO, main="Secuestro", ylab="",xlab="") ###Secuestro
plot.ts(df$EXTORSION, main="Extorsión", ylab="",xlab="") ##Extorsión

par(mfrow=c(1,1))
### Dar formato de serie de tiempo
##Para secuestro
sec <- ts(df$SECUESTRO, start = 2015, freq= 12)
##Para Extorsión
ext <- ts(df$EXTORSION, start = 2015, freq= 12)

class(sec)
## [1] "ts"
class(ext)
## [1] "ts"
##Convertimos a logaritmos para poder comparar entre unidades
#para secuestro
lsec <- log(sec)
#para extorsión
lext <- log(ext)


##Se gráfican
ts.plot(lsec, lext, col=c("blue","red"))

### las graficas no tiene un componente de estacionaridad.

################Pruebas#############################################
#prueba de raiz unitaria para empleo
#aplicar ADF sin constante ni tendencia
adf_1lsec <- summary(ur.df(lsec,lags = 1))
adf_1lsec ####rechazo H0: por lo tanto la serie es estacionaria
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.89944 -0.24807  0.07132  0.32047  1.41516 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1    -0.006028   0.015347  -0.393    0.695    
## z.diff.lag -0.444259   0.083579  -5.315 5.22e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4384 on 116 degrees of freedom
## Multiple R-squared:  0.2011, Adjusted R-squared:  0.1873 
## F-statistic:  14.6 on 2 and 116 DF,  p-value: 2.219e-06
## 
## 
## Value of test-statistic is: -0.3928 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
#Para aplicar la prueba ADF con constante o deriva
adf_2lsec <- summary(ur.df(lsec,type = "drift",lags = 1))
adf_2lsec
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.92622 -0.20452  0.01719  0.28550  0.83209 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.08036    0.25701   4.204 5.22e-05 ***
## z.lag.1     -0.41240    0.09773  -4.220 4.91e-05 ***
## z.diff.lag  -0.23416    0.09277  -2.524    0.013 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4099 on 115 degrees of freedom
## Multiple R-squared:  0.3074, Adjusted R-squared:  0.2953 
## F-statistic: 25.52 on 2 and 115 DF,  p-value: 6.734e-10
## 
## 
## Value of test-statistic is: -4.2196 8.9229 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.46 -2.88 -2.57
## phi1  6.52  4.63  3.81
#Para aplicar la prueba ADF con tendencia
adf_3lsec <- summary(ur.df(lsec,type = "trend",lags = 1))
adf_3lsec 
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.93041 -0.22209  0.01455  0.28165  0.76139 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.084890   0.254538   4.262 4.19e-05 ***
## z.lag.1     -0.462067   0.100621  -4.592 1.14e-05 ***
## tt           0.002061   0.001142   1.806   0.0736 .  
## z.diff.lag  -0.214880   0.092488  -2.323   0.0219 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.406 on 114 degrees of freedom
## Multiple R-squared:  0.3266, Adjusted R-squared:  0.3089 
## F-statistic: 18.43 on 3 and 114 DF,  p-value: 8.089e-10
## 
## 
## Value of test-statistic is: -4.5922 7.1521 10.7075 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2  6.22  4.75  4.07
## phi3  8.43  6.49  5.47
#prueba de raiz unitaria para extorsión
#aplicar ADF sin constante ni tendencia
adf_1lext <- summary(ur.df(lext,lags = 1))
adf_1lext #### rechazo H0: por lo tanto la serie  es estacionaria
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.84626 -0.10710  0.01548  0.10592  1.82748 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## z.lag.1     0.0002137  0.0041312   0.052    0.959
## z.diff.lag -0.1520081  0.0918887  -1.654    0.101
## 
## Residual standard error: 0.2894 on 116 degrees of freedom
## Multiple R-squared:  0.02305,    Adjusted R-squared:  0.006208 
## F-statistic: 1.369 on 2 and 116 DF,  p-value: 0.2586
## 
## 
## Value of test-statistic is: 0.0517 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
#Para aplicar la prueba ADF con constante o deriva
adf_2lext <- summary(ur.df(lext,type = "drift",lags = 1))
adf_2lext
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.05301 -0.09054  0.01701  0.11895  1.53445 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.22212    0.39505   3.094  0.00248 **
## z.lag.1     -0.18887    0.06125  -3.084  0.00256 **
## z.diff.lag  -0.05215    0.09436  -0.553  0.58158   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2792 on 115 degrees of freedom
## Multiple R-squared:  0.09777,    Adjusted R-squared:  0.08208 
## F-statistic: 6.231 on 2 and 115 DF,  p-value: 0.002696
## 
## 
## Value of test-statistic is: -3.0835 4.7865 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.46 -2.88 -2.57
## phi1  6.52  4.63  3.81
#tau2 serie sin rezago
#phi1 serie con rezago
#Para aplicar la prueba ADF con tendencia
adf_3lext <- summary(ur.df(lext,type = "trend",lags = 1))
adf_3lext
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.13665 -0.09117  0.01782  0.10652  1.28830 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.904771   0.508801   5.709 9.16e-08 ***
## z.lag.1     -0.497490   0.086280  -5.766 7.06e-08 ***
## tt           0.005020   0.001064   4.719 6.80e-06 ***
## z.diff.lag   0.087038   0.091570   0.951    0.344    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2565 on 114 degrees of freedom
## Multiple R-squared:  0.2452, Adjusted R-squared:  0.2253 
## F-statistic: 12.34 on 3 and 114 DF,  p-value: 4.742e-07
## 
## 
## Value of test-statistic is: -5.766 11.2026 16.7654 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2  6.22  4.75  4.07
## phi3  8.43  6.49  5.47
##Cuantas diferencias 

ndiffs(lsec )
## [1] 1
ndiffs(lext)
## [1] 1
#para que las variables sean estacionarias se procede a generar las
#primera diferencias en las variables.


#para generar la primera diferencia del logaritmo de secuestro
dlsec <- diff(lsec)
#generar la primera diferencia del logaritmo de extorsión
dlext <- diff(lext)


### graficamos las variables en diferencias

ts.plot(dlsec,dlext,col=c("blue","red"))

###Causalidad de granger 
## la cusalidad del empleo hacia el desempelo

grangertest(dlext~dlsec, order=1) #
## Granger causality test
## 
## Model 1: dlext ~ Lags(dlext, 1:1) + Lags(dlsec, 1:1)
## Model 2: dlext ~ Lags(dlext, 1:1)
##   Res.Df Df      F Pr(>F)
## 1    115                 
## 2    116 -1 0.0576 0.8108
#P-valor=0.8108,Acepto Ho, por lo tanto no existe causalidad la extorsión no afecta el secuestro
grangertest(dlsec~dlext, order=1)
## Granger causality test
## 
## Model 1: dlsec ~ Lags(dlsec, 1:1) + Lags(dlext, 1:1)
## Model 2: dlsec ~ Lags(dlsec, 1:1)
##   Res.Df Df      F Pr(>F)
## 1    115                 
## 2    116 -1 0.2182 0.6413
#P-valor=0.6413,Acepto Ho, por lo tanto no existe causalidad.


#para la creacion del var se procede a crear un nuevo objeto con las
#variables estacionarias y transformadas en series de tiempo.
can_var1 <- data.frame(dlsec,dlext)
VARselect(can_var1,lag.max = 12)
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      9      2      2      9 
## 
## $criteria
##                  1            2            3            4            5
## AIC(n) -4.60968058 -4.747417545 -4.733014570 -4.807272226 -4.794972322
## HQ(n)  -4.54892193 -4.646153127 -4.591244385 -4.624996274 -4.572190603
## SC(n)  -4.45980233 -4.497620457 -4.383298648 -4.357637469 -4.245418730
## FPE(n)  0.00995529  0.008675248  0.008803197  0.008176628  0.008283295
##                  6            7            8            9           10
## AIC(n) -4.79740758 -4.795273119 -4.887507863 -4.954224904 -4.923406150
## HQ(n)  -4.53412009 -4.491479866 -4.543208843 -4.569420117 -4.498095596
## SC(n)  -4.14793515 -4.045881857 -4.038197766 -4.004995972 -3.874258384
## FPE(n)  0.00827104  0.008299535  0.007581243  0.007107426  0.007349765
##                 11           12
## AIC(n) -4.94472758 -4.909759315
## HQ(n)  -4.47891125 -4.403437227
## SC(n)  -3.79566097 -3.660773878
## FPE(n)  0.00721852  0.007505093
#se deben usar 2 o 9 rezagos
#p=2 o 9

#estimar ambos modelos y luego comparar:
var2 <- VAR(can_var1, p = 2)
var9 <- VAR(can_var1, p = 9)
summary(var2)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: dlsec, dlext 
## Deterministic variables: const 
## Sample size: 117 
## Log Likelihood: -76.404 
## Roots of the characteristic polynomial:
## 0.6307 0.6307 0.1865 0.1865
## Call:
## VAR(y = can_var1, p = 2)
## 
## 
## Estimation results for equation dlsec: 
## ====================================== 
## dlsec = dlsec.l1 + dlext.l1 + dlsec.l2 + dlext.l2 + const 
## 
##           Estimate Std. Error t value Pr(>|t|)    
## dlsec.l1 -0.609218   0.088623  -6.874 3.72e-10 ***
## dlext.l1  0.147852   0.133907   1.104 0.271897    
## dlsec.l2 -0.343508   0.088514  -3.881 0.000176 ***
## dlext.l2  0.322175   0.133761   2.409 0.017646 *  
## const     0.007476   0.038196   0.196 0.845177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.4128 on 112 degrees of freedom
## Multiple R-Squared: 0.3151,  Adjusted R-squared: 0.2906 
## F-statistic: 12.88 on 4 and 112 DF,  p-value: 1.166e-08 
## 
## 
## Estimation results for equation dlext: 
## ====================================== 
## dlext = dlsec.l1 + dlext.l1 + dlsec.l2 + dlext.l2 + const 
## 
##           Estimate Std. Error t value Pr(>|t|)  
## dlsec.l1  0.044008   0.062518   0.704   0.4829  
## dlext.l1 -0.177592   0.094463  -1.880   0.0627 .
## dlsec.l2  0.069862   0.062441   1.119   0.2656  
## dlext.l2 -0.105804   0.094361  -1.121   0.2646  
## const     0.007746   0.026945   0.287   0.7743  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.2912 on 112 degrees of freedom
## Multiple R-Squared: 0.04254, Adjusted R-squared: 0.008349 
## F-statistic: 1.244 on 4 and 112 DF,  p-value: 0.2964 
## 
## 
## 
## Covariance matrix of residuals:
##         dlsec   dlext
## dlsec 0.17043 0.02539
## dlext 0.02539 0.08481
## 
## Correlation matrix of residuals:
##        dlsec  dlext
## dlsec 1.0000 0.2112
## dlext 0.2112 1.0000
summary(var9)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: dlsec, dlext 
## Deterministic variables: const 
## Sample size: 110 
## Log Likelihood: -40.035 
## Roots of the characteristic polynomial:
## 0.9056 0.9056 0.8796 0.8796 0.8483 0.8483 0.8455 0.8455 0.8416 0.8416 0.8402 0.8369 0.8369 0.7772 0.7772 0.7432 0.7432 0.4554
## Call:
## VAR(y = can_var1, p = 9)
## 
## 
## Estimation results for equation dlsec: 
## ====================================== 
## dlsec = dlsec.l1 + dlext.l1 + dlsec.l2 + dlext.l2 + dlsec.l3 + dlext.l3 + dlsec.l4 + dlext.l4 + dlsec.l5 + dlext.l5 + dlsec.l6 + dlext.l6 + dlsec.l7 + dlext.l7 + dlsec.l8 + dlext.l8 + dlsec.l9 + dlext.l9 + const 
## 
##          Estimate Std. Error t value Pr(>|t|)    
## dlsec.l1 -0.76636    0.10613  -7.221 1.52e-10 ***
## dlext.l1  0.09692    0.14506   0.668  0.50573    
## dlsec.l2 -0.67108    0.13654  -4.915 3.91e-06 ***
## dlext.l2  0.44793    0.14980   2.990  0.00358 ** 
## dlsec.l3 -0.49016    0.15769  -3.108  0.00251 ** 
## dlext.l3  0.21880    0.15968   1.370  0.17398    
## dlsec.l4 -0.54415    0.16164  -3.366  0.00112 ** 
## dlext.l4 -0.04441    0.16551  -0.268  0.78904    
## dlsec.l5 -0.34213    0.16709  -2.048  0.04348 *  
## dlext.l5 -0.08644    0.16866  -0.513  0.60952    
## dlsec.l6 -0.32883    0.15926  -2.065  0.04179 *  
## dlext.l6  0.14401    0.16248   0.886  0.37778    
## dlsec.l7 -0.16684    0.15317  -1.089  0.27891    
## dlext.l7  0.02763    0.15807   0.175  0.86164    
## dlsec.l8 -0.08945    0.13288  -0.673  0.50255    
## dlext.l8 -0.20473    0.15181  -1.349  0.18081    
## dlsec.l9  0.10953    0.10372   1.056  0.29378    
## dlext.l9  0.01294    0.14410   0.090  0.92866    
## const     0.01924    0.03738   0.515  0.60791    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.3878 on 91 degrees of freedom
## Multiple R-Squared: 0.4781,  Adjusted R-squared: 0.3749 
## F-statistic: 4.631 on 18 and 91 DF,  p-value: 4.532e-07 
## 
## 
## Estimation results for equation dlext: 
## ====================================== 
## dlext = dlsec.l1 + dlext.l1 + dlsec.l2 + dlext.l2 + dlsec.l3 + dlext.l3 + dlsec.l4 + dlext.l4 + dlsec.l5 + dlext.l5 + dlsec.l6 + dlext.l6 + dlsec.l7 + dlext.l7 + dlsec.l8 + dlext.l8 + dlsec.l9 + dlext.l9 + const 
## 
##          Estimate Std. Error t value Pr(>|t|)    
## dlsec.l1  0.04963    0.07410   0.670 0.504643    
## dlext.l1 -0.35538    0.10128  -3.509 0.000701 ***
## dlsec.l2  0.09160    0.09533   0.961 0.339136    
## dlext.l2 -0.31247    0.10459  -2.988 0.003613 ** 
## dlsec.l3 -0.04179    0.11010  -0.380 0.705174    
## dlext.l3 -0.30930    0.11148  -2.774 0.006711 ** 
## dlsec.l4  0.02228    0.11285   0.197 0.843942    
## dlext.l4 -0.41793    0.11556  -3.617 0.000489 ***
## dlsec.l5 -0.01166    0.11666  -0.100 0.920627    
## dlext.l5 -0.30221    0.11775  -2.566 0.011907 *  
## dlsec.l6 -0.01725    0.11119  -0.155 0.877050    
## dlext.l6 -0.14687    0.11344  -1.295 0.198692    
## dlsec.l7 -0.11499    0.10694  -1.075 0.285079    
## dlext.l7 -0.22449    0.11036  -2.034 0.044845 *  
## dlsec.l8 -0.13604    0.09277  -1.466 0.145997    
## dlext.l8 -0.15029    0.10599  -1.418 0.159606    
## dlsec.l9 -0.09499    0.07242  -1.312 0.192939    
## dlext.l9 -0.19996    0.10061  -1.988 0.049863 *  
## const     0.03403    0.02610   1.304 0.195573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.2708 on 91 degrees of freedom
## Multiple R-Squared: 0.3059,  Adjusted R-squared: 0.1686 
## F-statistic: 2.228 on 18 and 91 DF,  p-value: 0.007038 
## 
## 
## 
## Covariance matrix of residuals:
##         dlsec   dlext
## dlsec 0.15043 0.02565
## dlext 0.02565 0.07333
## 
## Correlation matrix of residuals:
##        dlsec  dlext
## dlsec 1.0000 0.2442
## dlext 0.2442 1.0000
#para obtener el gráfico de la variable observado vs la estimada del modelo VAR 9 se utiliza la siguiente funcion
plot(var9)

#Para realizar la prueba de autocorrelacion se utiliza el siguiente comando
seriala <- serial.test(var9, lags.pt = 9, type = "PT.asymptotic")
seriala$serial
## 
##  Portmanteau Test (asymptotic)
## 
## data:  Residuals of VAR object var9
## Chi-squared = 11.203, df = 0, p-value < 2.2e-16
###Rechazo H0: por lo tanto hay problemas de autocorrelacion

#para la prueba de normalidad
normalidad <- normality.test(var9)
normalidad$jb.mul
## $JB
## 
##  JB-Test (multivariate)
## 
## data:  Residuals of VAR object var9
## Chi-squared = 286.89, df = 4, p-value < 2.2e-16
## 
## 
## $Skewness
## 
##  Skewness only (multivariate)
## 
## data:  Residuals of VAR object var9
## Chi-squared = 11.753, df = 2, p-value = 0.002805
## 
## 
## $Kurtosis
## 
##  Kurtosis only (multivariate)
## 
## data:  Residuals of VAR object var9
## Chi-squared = 275.13, df = 2, p-value < 2.2e-16
#Para todas las pruebas Rechazo Ho: por lo tanto no hay normalidad
###Prueba de heterocedasticidad

arch9 <- arch.test(var9,lags.multi = 11)
arch9$arch.mul
## 
##  ARCH (multivariate)
## 
## data:  Residuals of VAR object var9
## Chi-squared = 88.568, df = 99, p-value = 0.7646
#Se acepta Ho: por lo tanto hay heterocedasticidad, entonces la varianza de los residuos no es constante

#Para analizar el impulso respuesta de la variable estudiada y observar su trayectoria
#para el impulso respuesta de secuestro
var1_irflsec <- irf(var9, response = "dlsec", n.ahead = 8, boot = TRUE)
var1_irflsec
## 
## Impulse response coefficients
## $dlsec
##              dlsec
##  [1,]  0.387846661
##  [2,] -0.290820528
##  [3,] -0.008189985
##  [4,]  0.024085820
##  [5,] -0.090572851
##  [6,]  0.051083993
##  [7,] -0.011998880
##  [8,]  0.039488253
##  [9,] -0.003647520
## 
## $dlext
##               dlsec
##  [1,]  0.0000000000
##  [2,]  0.0254504828
##  [3,]  0.0890740482
##  [4,] -0.0743048999
##  [5,] -0.0714698037
##  [6,]  0.0003498942
##  [7,]  0.0440810481
##  [8,] -0.0112935622
##  [9,] -0.0356404841
## 
## 
## Lower Band, CI= 0.95 
## $dlsec
##             dlsec
##  [1,]  0.27310663
##  [2,] -0.35131904
##  [3,] -0.08178435
##  [4,] -0.06502246
##  [5,] -0.15534550
##  [6,] -0.03694238
##  [7,] -0.08792675
##  [8,] -0.04904606
##  [9,] -0.08463397
## 
## $dlext
##             dlsec
##  [1,]  0.00000000
##  [2,] -0.05124209
##  [3,]  0.01346800
##  [4,] -0.16780563
##  [5,] -0.17228083
##  [6,] -0.07971799
##  [7,] -0.06391385
##  [8,] -0.09721355
##  [9,] -0.11775738
## 
## 
## Upper Band, CI= 0.95 
## $dlsec
##              dlsec
##  [1,]  0.439682790
##  [2,] -0.184591868
##  [3,]  0.077683614
##  [4,]  0.108061802
##  [5,]  0.003750505
##  [6,]  0.121636541
##  [7,]  0.088099741
##  [8,]  0.117858301
##  [9,]  0.084439800
## 
## $dlext
##            dlsec
##  [1,] 0.00000000
##  [2,] 0.08001517
##  [3,] 0.17815828
##  [4,] 0.02503072
##  [5,] 0.01627507
##  [6,] 0.11419743
##  [7,] 0.11584587
##  [8,] 0.07938576
##  [9,] 0.06256992
#Para el impulso respuesta de extorsión
var1_irflext <- irf(var9, response = "dlext", n.ahead = 8, boot = TRUE)
var1_irflext
## 
## Impulse response coefficients
## $dlsec
##              dlext
##  [1,]  0.066136091
##  [2,] -0.004253434
##  [3,]  0.001939821
##  [4,] -0.063069693
##  [5,]  0.016721601
##  [6,] -0.017991880
##  [7,]  0.001186548
##  [8,] -0.019503961
##  [9,] -0.007823986
## 
## $dlext
##             dlext
##  [1,]  0.26259033
##  [2,] -0.09332042
##  [3,] -0.04762357
##  [4,] -0.02838191
##  [5,] -0.05250569
##  [6,] -0.01160735
##  [7,]  0.03711171
##  [8,] -0.01023717
##  [9,]  0.01290506
## 
## 
## Lower Band, CI= 0.95 
## $dlsec
##              dlext
##  [1,]  0.008611562
##  [2,] -0.069707841
##  [3,] -0.048500864
##  [4,] -0.103022532
##  [5,] -0.034878292
##  [6,] -0.064689316
##  [7,] -0.055199020
##  [8,] -0.054967187
##  [9,] -0.046408018
## 
## $dlext
##              dlext
##  [1,]  0.162507889
##  [2,] -0.129406335
##  [3,] -0.099851505
##  [4,] -0.090128522
##  [5,] -0.093822231
##  [6,] -0.049025078
##  [7,] -0.007889611
##  [8,] -0.051031856
##  [9,] -0.041846124
## 
## 
## Upper Band, CI= 0.95 
## $dlsec
##             dlext
##  [1,] 0.128411353
##  [2,] 0.048741251
##  [3,] 0.047332127
##  [4,] 0.007057092
##  [5,] 0.061325115
##  [6,] 0.028021193
##  [7,] 0.056531858
##  [8,] 0.031847938
##  [9,] 0.035306585
## 
## $dlext
##              dlext
##  [1,]  0.304869128
##  [2,] -0.040662176
##  [3,]  0.006291310
##  [4,]  0.021926509
##  [5,]  0.004083389
##  [6,]  0.046724472
##  [7,]  0.091712138
##  [8,]  0.043932053
##  [9,]  0.051040666
#Para graficar el impulso respuesta de secuestro
plot(var1_irflsec)

#Para graficar el impulso respuesta de la extosión
plot(var1_irflext)

### Pronóstico
var1.prd <- predict(var9,n.ahead = 12, ci=0.95) #predicción para los 5 periodos siguientes
var1.prd 
## $dlsec
##               fcst      lower     upper        CI
##  [1,] -0.007431257 -0.7675967 0.7527342 0.7601655
##  [2,] -0.062089645 -1.0135292 0.8893499 0.9514396
##  [3,] -0.010486757 -0.9779441 0.9569706 0.9674574
##  [4,]  0.128682366 -0.8508133 1.1081781 0.9794957
##  [5,] -0.034205878 -1.0394655 0.9710537 1.0052596
##  [6,]  0.020390595 -0.9898430 1.0306242 1.0102336
##  [7,]  0.149461073 -0.8647329 1.1636551 1.0141940
##  [8,] -0.089344895 -1.1067286 0.9280388 1.0173837
##  [9,] -0.070210054 -1.0900141 0.9495940 1.0198040
## [10,]  0.086830041 -0.9443245 1.1179846 1.0311545
## [11,] -0.011345184 -1.0500146 1.0273243 1.0386694
## [12,] -0.020046918 -1.0601990 1.0201051 1.0401520
## 
## $dlext
##                fcst      lower     upper        CI
##  [1,] -0.0203255115 -0.5510657 0.5104147 0.5307402
##  [2,] -0.0637930017 -0.6252276 0.4976416 0.5614346
##  [3,]  0.0202265700 -0.5489269 0.5893801 0.5691535
##  [4,]  0.0199803259 -0.5650929 0.6050535 0.5850732
##  [5,]  0.0422130118 -0.5527450 0.6371710 0.5949580
##  [6,] -0.0174896421 -0.6139258 0.5789466 0.5964362
##  [7,]  0.0003119787 -0.6005477 0.6011716 0.6008596
##  [8,]  0.0956269092 -0.5067818 0.6980356 0.6024087
##  [9,]  0.0622747161 -0.5408597 0.6654091 0.6031344
## [10,] -0.0262752165 -0.6335336 0.5809831 0.6072584
## [11,] -0.0036647204 -0.6214753 0.6141459 0.6178106
## [12,] -0.0360731226 -0.6567399 0.5845936 0.6206667
fanchart(var1.prd)

fanchart(var1.prd, names = "dlsec",
         main = "Fanchart para la var dlsec",
         xlab="horizonte", ylab = "d3im",
         xlim=c(40,100))

fanchart(var1.prd, names = "dlext",
         main = "Fanchart para la var dlext",
         xlab="horizonte", ylab = "d3im",
         xlim=c(40,100))

Retorno Logarítmico de los pronósticos

# Script para el modelo VAR(9): Pronósticos en valores reales e Intervalos de Confianza

# Paso 1: Obtener los últimos valores conocidos de las series transformadas en logaritmo
last_lsec <- as.numeric(tail(lsec, 1))  # Convertir a numérico: último valor de log(sec)
last_lext <- as.numeric(tail(lext, 1))  # Convertir a numérico: último valor de log(ext)

# Paso 2: Extraer los pronósticos de dlsec y dlext del modelo VAR(9)
pred_var9 <- predict(var9, n.ahead = 12, ci = 0.95)
dlsec_pred_var9 <- pred_var9$fcst$dlsec[, "fcst"]
dlext_pred_var9 <- pred_var9$fcst$dlext[, "fcst"]
dlsec_lower_var9 <- pred_var9$fcst$dlsec[, "lower"]
dlsec_upper_var9 <- pred_var9$fcst$dlsec[, "upper"]
dlext_lower_var9 <- pred_var9$fcst$dlext[, "lower"]
dlext_upper_var9 <- pred_var9$fcst$dlext[, "upper"]

# Paso 3: Revertir la diferenciación para obtener lsec y lext pronosticados
lsec_pred_var9 <- numeric(12)
lext_pred_var9 <- numeric(12)
lsec_lower_var9 <- numeric(12)
lsec_upper_var9 <- numeric(12)
lext_lower_var9 <- numeric(12)
lext_upper_var9 <- numeric(12)

# Primer período
lsec_pred_var9[1] <- last_lsec + dlsec_pred_var9[1]
lext_pred_var9[1] <- last_lext + dlext_pred_var9[1]
lsec_lower_var9[1] <- last_lsec + dlsec_lower_var9[1]
lsec_upper_var9[1] <- last_lsec + dlsec_upper_var9[1]
lext_lower_var9[1] <- last_lext + dlext_lower_var9[1]
lext_upper_var9[1] <- last_lext + dlext_upper_var9[1]

# Acumulación para los períodos siguientes
for (i in 2:12) {
  lsec_pred_var9[i] <- lsec_pred_var9[i-1] + dlsec_pred_var9[i]
  lext_pred_var9[i] <- lext_pred_var9[i-1] + dlext_pred_var9[i]
  lsec_lower_var9[i] <- lsec_lower_var9[i-1] + dlsec_lower_var9[i]
  lsec_upper_var9[i] <- lsec_upper_var9[i-1] + dlsec_upper_var9[i]
  lext_lower_var9[i] <- lext_lower_var9[i-1] + dlext_lower_var9[i]
  lext_upper_var9[i] <- lext_upper_var9[i-1] + dlext_upper_var9[i]
}

# Paso 4: Revertir la transformación logarítmica para obtener sec y ext
sec_pred_var9 <- exp(lsec_pred_var9)
ext_pred_var9 <- exp(lext_pred_var9)
sec_lower_var9 <- exp(lsec_lower_var9)
sec_upper_var9 <- exp(lsec_upper_var9)
ext_lower_var9 <- exp(lext_lower_var9)
ext_upper_var9 <- exp(lext_upper_var9)

# Paso 5: Crear un data frame con los resultados (solo valores reales)
forecast_results_var9 <- data.frame(
  Periodo = 1:12,
  Sec_Pronostico_VAR9 = sec_pred_var9,
  Sec_Limite_Inferior_VAR9 = sec_lower_var9,
  Sec_Limite_Superior_VAR9 = sec_upper_var9,
  Ext_Pronostico_VAR9 = ext_pred_var9,
  Ext_Limite_Inferior_VAR9 = ext_lower_var9,
  Ext_Limite_Superior_VAR9 = ext_upper_var9
)

# Paso 6: Imprimir resultados
cat("Pronósticos para VAR(9) en valores reales con Intervalos de Confianza:\n")
## Pronósticos para VAR(9) en valores reales con Intervalos de Confianza:
print(forecast_results_var9)
##    Periodo Sec_Pronostico_VAR9 Sec_Limite_Inferior_VAR9
## 1        1            26.80010             1.253143e+01
## 2        2            25.18670             4.548106e+00
## 3        3            24.92395             1.710468e+00
## 4        4            28.34673             7.304850e-01
## 5        5            27.39350             2.583314e-01
## 6        6            27.95780             9.600500e-02
## 7        7            32.46483             4.043385e-02
## 8        8            29.69006             1.336900e-02
## 9        9            27.67702             4.494816e-03
## 10      10            30.18764             1.748224e-03
## 11      11            29.84709             6.117605e-04
## 12      12            29.25470             2.119058e-04
##    Sec_Limite_Superior_VAR9 Ext_Pronostico_VAR9 Ext_Limite_Inferior_VAR9
## 1                   57.3155            1234.648               726.182422
## 2                  139.4800            1158.346               388.608982
## 3                  363.1775            1182.014               224.448598
## 4                 1100.0046            1205.869               127.555792
## 5                 2904.8105            1257.862                73.391552
## 6                 8141.6458            1236.053                39.721118
## 7                26066.4082            1236.439                21.787476
## 8                65936.1085            1360.514                13.125456
## 9               170422.4210            1447.933                 7.642264
## 10              521268.2314            1410.384                 4.055850
## 11             1456204.9837            1405.225                 2.178606
## 12             4038764.5666            1355.437                 1.129692
##    Ext_Limite_Superior_VAR9
## 1                  2099.137
## 2                  3452.740
## 3                  6224.842
## 4                 11399.866
## 5                 21558.554
## 6                 38463.865
## 7                 70167.894
## 8                141023.485
## 9                274331.041
## 10               490447.722
## 11               906385.367
## 12              1626292.531

Ahora realizamos los pronosticos para el modelo VAR 2

#para obtener el gráfico de la variable observado vs la estimada del modelo VAR 2 se utiliza la siguiente funcion
plot(var2)

#Para realizar la prueba de autocorrelacion se utiliza el siguiente comando
seriala <- serial.test(var2, lags.pt = 2, type = "PT.asymptotic")
seriala$serial
## 
##  Portmanteau Test (asymptotic)
## 
## data:  Residuals of VAR object var2
## Chi-squared = 2.8135, df = 0, p-value < 2.2e-16
###Rechazo H0: por lo tanto hay problemas de autocorrelacion

#para la prueba de normalidad
normalidad <- normality.test(var2)
normalidad$jb.mul
## $JB
## 
##  JB-Test (multivariate)
## 
## data:  Residuals of VAR object var2
## Chi-squared = 733.63, df = 4, p-value < 2.2e-16
## 
## 
## $Skewness
## 
##  Skewness only (multivariate)
## 
## data:  Residuals of VAR object var2
## Chi-squared = 83.882, df = 2, p-value < 2.2e-16
## 
## 
## $Kurtosis
## 
##  Kurtosis only (multivariate)
## 
## data:  Residuals of VAR object var2
## Chi-squared = 649.75, df = 2, p-value < 2.2e-16
#Para todas las pruebas Rechazo Ho: por lo tanto no hay normalidad
###Prueba de heterocedasticidad

arch2 <- arch.test(var2,lags.multi = 11)
arch2$arch.mul
## 
##  ARCH (multivariate)
## 
## data:  Residuals of VAR object var2
## Chi-squared = 98.405, df = 99, p-value = 0.498
#Se acepta Ho: por lo tanto hay heterocedasticidad, entonces la varianza de los residuos no es constante

#Para analizar el impulso respuesta de la variable estudiada y observar su trayectoria
#para el impulso respuesta de secuestro
var1_irflsec <- irf(var2, response = "dlsec", n.ahead = 8, boot = TRUE)
var1_irflsec
## 
## Impulse response coefficients
## $dlsec
##               dlsec
##  [1,]  0.4128321710
##  [2,] -0.2424108783
##  [3,]  0.0267567980
##  [4,]  0.0708379765
##  [5,] -0.0517187716
##  [6,]  0.0023142774
##  [7,]  0.0191543704
##  [8,] -0.0121049375
##  [9,] -0.0005477376
## 
## $dlext
##              dlsec
##  [1,]  0.000000000
##  [2,]  0.042087608
##  [3,]  0.058595248
##  [4,] -0.069293506
##  [5,]  0.017986027
##  [6,]  0.017531151
##  [7,] -0.017519217
##  [8,]  0.003267705
##  [9,]  0.005063262
## 
## 
## Lower Band, CI= 0.95 
## $dlsec
##              dlsec
##  [1,]  0.348313806
##  [2,] -0.295158611
##  [3,] -0.057791278
##  [4,] -0.003032406
##  [5,] -0.094987596
##  [6,] -0.030514810
##  [7,] -0.003567377
##  [8,] -0.034364419
##  [9,] -0.018029357
## 
## $dlext
##              dlsec
##  [1,]  0.000000000
##  [2,] -0.009331157
##  [3,] -0.026994121
##  [4,] -0.121936733
##  [5,] -0.006352337
##  [6,] -0.007476225
##  [7,] -0.040257795
##  [8,] -0.010228309
##  [9,] -0.001820637
## 
## 
## Upper Band, CI= 0.95 
## $dlsec
##               dlsec
##  [1,]  4.692090e-01
##  [2,] -1.435833e-01
##  [3,]  1.042369e-01
##  [4,]  1.424173e-01
##  [5,] -6.793743e-03
##  [6,]  3.115384e-02
##  [7,]  5.595407e-02
##  [8,] -6.616617e-05
##  [9,]  1.161184e-02
## 
## $dlext
##               dlsec
##  [1,]  0.0000000000
##  [2,]  0.1159087148
##  [3,]  0.1246677514
##  [4,] -0.0035156096
##  [5,]  0.0505351149
##  [6,]  0.0440309434
##  [7,]  0.0005592739
##  [8,]  0.0172465720
##  [9,]  0.0164505272
#Para el impulso respuesta de extorsión
var1_irflext <- irf(var2, response = "dlext", n.ahead = 8, boot = TRUE)
var1_irflext
## 
## Impulse response coefficients
## $dlsec
##              dlext
##  [1,]  0.061505924
##  [2,]  0.007244918
##  [3,]  0.010378900
##  [4,] -0.018367471
##  [5,]  0.007150496
##  [6,]  0.003346308
##  [7,] -0.004862145
##  [8,]  0.001514049
##  [9,]  0.001050995
## 
## $dlext
##               dlext
##  [1,]  0.2846596317
##  [2,] -0.0505533520
##  [3,] -0.0192881569
##  [4,]  0.0142931594
##  [5,]  0.0005465130
##  [6,] -0.0056587664
##  [7,]  0.0029751734
##  [8,]  0.0005241249
##  [9,] -0.0014879835
## 
## 
## Lower Band, CI= 0.95 
## $dlsec
##              dlext
##  [1,] -0.002693123
##  [2,] -0.031876169
##  [3,] -0.049144301
##  [4,] -0.055844365
##  [5,] -0.006585070
##  [6,] -0.012144077
##  [7,] -0.016441780
##  [8,] -0.006206665
##  [9,] -0.002972845
## 
## $dlext
##              dlext
##  [1,]  0.188213965
##  [2,] -0.098535147
##  [3,] -0.067704058
##  [4,] -0.007487232
##  [5,] -0.010020413
##  [6,] -0.030001100
##  [7,] -0.002025475
##  [8,] -0.003832258
##  [9,] -0.009833309
## 
## 
## Upper Band, CI= 0.95 
## $dlsec
##             dlext
##  [1,] 0.149676237
##  [2,] 0.048061941
##  [3,] 0.060320732
##  [4,] 0.016845991
##  [5,] 0.027027609
##  [6,] 0.020102172
##  [7,] 0.005026258
##  [8,] 0.006201661
##  [9,] 0.008789562
## 
## $dlext
##              dlext
##  [1,]  0.348809863
##  [2,] -0.009028190
##  [3,]  0.031836505
##  [4,]  0.048118097
##  [5,]  0.015978971
##  [6,]  0.004408882
##  [7,]  0.013878364
##  [8,]  0.010450443
##  [9,]  0.001686238
#Para graficar el impulso respuesta de secuestro
plot(var1_irflsec)

#Para graficar el impulso respuesta de la extosión
plot(var1_irflext)

### Pronóstico
var1.prd <- predict(var2,n.ahead = 12, ci=0.95) #predicción para los 5 periodos siguientes
var1.prd 
## $dlsec
##                fcst      lower     upper        CI
##  [1,]  0.2138176776 -0.5953185 1.0229539 0.8091362
##  [2,] -0.0098801423 -0.9518153 0.9320550 0.9419351
##  [3,] -0.0582027649 -1.0085613 0.8921557 0.9503585
##  [4,]  0.0483267969 -0.9216747 1.0183283 0.9700015
##  [5,]  0.0053201967 -0.9706003 0.9812407 0.9759205
##  [6,] -0.0115656419 -0.9881014 0.9649701 0.9765357
##  [7,]  0.0153308193 -0.9625293 0.9931910 0.9778601
##  [8,]  0.0063401515 -0.9718287 0.9845090 0.9781689
##  [9,]  0.0008939933 -0.9773258 0.9791138 0.9782198
## [10,]  0.0076512461 -0.9706559 0.9859584 0.9783072
## [11,]  0.0058708790 -0.9724519 0.9841937 0.9783228
## [12,]  0.0042226771 -0.9741044 0.9825498 0.9783271
## 
## $dlext
##                fcst      lower     upper        CI
##  [1,]  0.0072579169 -0.5635396 0.5780554 0.5707975
##  [2,] -0.0039787454 -0.5834862 0.5755287 0.5795074
##  [3,]  0.0221878865 -0.5589075 0.6032832 0.5810953
##  [4,]  0.0009753024 -0.5819077 0.5838583 0.5828830
##  [5,]  0.0032861980 -0.5797662 0.5863386 0.5830524
##  [6,]  0.0106698847 -0.5725249 0.5938647 0.5831948
##  [7,]  0.0053664726 -0.5779353 0.5886682 0.5833018
##  [8,]  0.0055310766 -0.5777791 0.5888413 0.5833102
##  [9,]  0.0075463390 -0.5757748 0.5908675 0.5833212
## [10,]  0.0063032509 -0.5770242 0.5896307 0.5833275
## [11,]  0.0062276854 -0.5771002 0.5895556 0.5833279
## [12,]  0.0067663520 -0.5765623 0.5900950 0.5833287
fanchart(var1.prd)

fanchart(var1.prd, names = "dlsec",
         main = "Fanchart para la var dlsec",
         xlab="horizonte", ylab = "d3im",
         xlim=c(40,100))

fanchart(var1.prd, names = "dlext",
         main = "Fanchart para la var dlext",
         xlab="horizonte", ylab = "d3im",
         xlim=c(40,100))

Retorno Logarítmico de los pronósticos

# Script para el modelo VAR(2): Pronósticos en valores reales e Intervalos de Confianza

# Paso 1: Obtener los últimos valores conocidos de las series transformadas en logaritmo
last_lsec <- as.numeric(tail(lsec, 1))  # Convertir a numérico: último valor de log(sec)
last_lext <- as.numeric(tail(lext, 1))  # Convertir a numérico: último valor de log(ext)

# Paso 2: Extraer los pronósticos de dlsec y dlext del modelo VAR(2)
pred_var2 <- predict(var2, n.ahead = 12, ci = 0.95)
dlsec_pred_var2 <- pred_var2$fcst$dlsec[, "fcst"]
dlext_pred_var2 <- pred_var2$fcst$dlext[, "fcst"]
dlsec_lower_var2 <- pred_var2$fcst$dlsec[, "lower"]
dlsec_upper_var2 <- pred_var2$fcst$dlsec[, "upper"]
dlext_lower_var2 <- pred_var2$fcst$dlext[, "lower"]
dlext_upper_var2 <- pred_var2$fcst$dlext[, "upper"]

# Paso 3: Revertir la diferenciación para obtener lsec y lext pronosticados
lsec_pred_var2 <- numeric(12)
lext_pred_var2 <- numeric(12)
lsec_lower_var2 <- numeric(12)
lsec_upper_var2 <- numeric(12)
lext_lower_var2 <- numeric(12)
lext_upper_var2 <- numeric(12)

# Primer período
lsec_pred_var2[1] <- last_lsec + dlsec_pred_var2[1]
lext_pred_var2[1] <- last_lext + dlext_pred_var2[1]
lsec_lower_var2[1] <- last_lsec + dlsec_lower_var2[1]
lsec_upper_var2[1] <- last_lsec + dlsec_upper_var2[1]
lext_lower_var2[1] <- last_lext + dlext_lower_var2[1]
lext_upper_var2[1] <- last_lext + dlext_upper_var2[1]

# Acumulación para los períodos siguientes
for (i in 2:12) {
  lsec_pred_var2[i] <- lsec_pred_var2[i-1] + dlsec_pred_var2[i]
  lext_pred_var2[i] <- lext_pred_var2[i-1] + dlext_pred_var2[i]
  lsec_lower_var2[i] <- lsec_lower_var2[i-1] + dlsec_lower_var2[i]
  lsec_upper_var2[i] <- lsec_upper_var2[i-1] + dlsec_upper_var2[i]
  lext_lower_var2[i] <- lext_lower_var2[i-1] + dlext_lower_var2[i]
  lext_upper_var2[i] <- lext_upper_var2[i-1] + dlext_upper_var2[i]
}

# Paso 4: Revertir la transformación logarítmica para obtener sec y ext
sec_pred_var2 <- exp(lsec_pred_var2)
ext_pred_var2 <- exp(lext_pred_var2)
sec_lower_var2 <- exp(lsec_lower_var2)
sec_upper_var2 <- exp(lsec_upper_var2)
ext_lower_var2 <- exp(lext_lower_var2)
ext_upper_var2 <- exp(lext_upper_var2)

# Paso 5: Crear un data frame con los resultados (solo valores reales)
forecast_results_var2 <- data.frame(
  Periodo = 1:12,
  Sec_Pronostico_VAR2 = sec_pred_var2,
  Sec_Limite_Inferior_VAR2 = sec_lower_var2,
  Sec_Limite_Superior_VAR2 = sec_upper_var2,
  Ext_Pronostico_VAR2 = ext_pred_var2,
  Ext_Limite_Inferior_VAR2 = ext_lower_var2,
  Ext_Limite_Superior_VAR2 = ext_upper_var2
)

# Paso 6: Imprimir resultados
cat("Pronósticos para VAR(2) en valores reales con Intervalos de Confianza:\n")
## Pronósticos para VAR(2) en valores reales con Intervalos de Confianza:
print(forecast_results_var2)
##    Periodo Sec_Pronostico_VAR2 Sec_Limite_Inferior_VAR2
## 1        1            33.43671             1.488745e+01
## 2        2            33.10798             5.747144e+00
## 3        3            31.23601             2.096233e+00
## 4        4            32.78262             8.339909e-01
## 5        5            32.95749             3.159621e-01
## 6        6            32.57851             1.176273e-01
## 7        7            33.08182             4.492486e-02
## 8        8            33.29223             1.699914e-02
## 9        9            33.32200             6.397049e-03
## 10      10            33.57794             2.423423e-03
## 11      11            33.77565             9.164287e-04
## 12      12            33.91857             3.459796e-04
##    Sec_Limite_Superior_VAR2 Ext_Pronostico_VAR2 Ext_Limite_Inferior_VAR2
## 1              7.509776e+01            1269.178               717.180386
## 2              1.907275e+02            1264.139               400.150705
## 3              4.654485e+02            1292.501               228.819569
## 4              1.288623e+03            1293.762               127.871534
## 5              3.437743e+03            1298.020                71.611803
## 6              9.023075e+03            1311.944                40.396172
## 7              2.436082e+04            1319.004                22.664498
## 8              6.520168e+04            1326.319                12.718029
## 9              1.735731e+05            1336.366                 7.150954
## 10             4.652419e+05            1344.816                 4.015740
## 11             1.244826e+06            1353.217                 2.254935
## 12             3.325253e+06            1362.405                 1.266882
##    Ext_Limite_Superior_VAR2
## 1                  2246.037
## 2                  3993.611
## 3                  7300.764
## 4                 13089.853
## 5                 23527.641
## 6                 42607.939
## 7                 76761.931
## 8                138317.274
## 9                249739.312
## 10               450360.481
## 11               812084.094
## 12              1465129.538

Conclusiones