# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock Choose your stocks.
symbols <- c("BRK-B", "NVDA", "LLY", "XPEV", "RTX", "CVLG", "JNJ", "JPM")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2020-04-01",
to = "2025-05-20")
prices
## # A tibble: 10,217 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 BRK-B 2020-04-01 176. 179. 174. 176. 8682700 176.
## 2 BRK-B 2020-04-02 175 180. 174. 180. 7271900 180.
## 3 BRK-B 2020-04-03 179. 180. 175. 178. 6643700 178.
## 4 BRK-B 2020-04-06 185. 186. 180. 185. 9935500 185.
## 5 BRK-B 2020-04-07 192. 192 185. 185. 8148200 185.
## 6 BRK-B 2020-04-08 188. 191. 185. 191. 6109900 191.
## 7 BRK-B 2020-04-09 194 197. 191. 194. 10519600 194.
## 8 BRK-B 2020-04-13 194. 194. 186. 189. 7888600 189.
## 9 BRK-B 2020-04-14 193. 194. 191. 193. 7032000 193.
## 10 BRK-B 2020-04-15 189. 190. 187. 189. 6138300 189.
## # ℹ 10,207 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BRK-B" "CVLG" "JNJ" "JPM" "LLY" "NVDA" "RTX" "XPEV"
weights <- c(0.15, 0.20, 0.175, 0.075, 0.10, 0.075, 0.075, 0.15)
weights
## [1] 0.150 0.200 0.175 0.075 0.100 0.075 0.075 0.150
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 8 × 2
## symbols weights
## <chr> <dbl>
## 1 BRK-B 0.15
## 2 CVLG 0.2
## 3 JNJ 0.175
## 4 JPM 0.075
## 5 LLY 0.1
## 6 NVDA 0.075
## 7 RTX 0.075
## 8 XPEV 0.15
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2020-09-30 0.0906
## 2 2020-12-31 0.154
## 3 2021-03-31 0.0977
## 4 2021-06-30 0.106
## 5 2021-09-30 0.0284
## 6 2021-12-31 0.111
## 7 2022-03-31 -0.100
## 8 2022-06-30 -0.0324
## 9 2022-09-30 -0.169
## 10 2022-12-30 0.108
## 11 2023-03-31 0.0386
## 12 2023-06-30 0.172
## 13 2023-09-29 0.0358
## 14 2023-12-29 0.0239
## 15 2024-03-28 0.0312
## 16 2024-06-28 0.0309
## 17 2024-09-30 0.143
## 18 2024-12-31 -0.0181
## 19 2025-03-31 0.0968
## 20 2025-05-19 0.00105
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
Looking at the graph we can see that most of the returns are just below 5% or around 10%. There are some negative exceptions and a few quarters with returns around 15%. The average return based on this graph should be right under 10%.