Correlacion Spearman
# Filtrar la tabla final y seleccionar solo las columnas específicas
tabla_filtrada <- tabla_final %>%
select(Pais, ISO_code, year, `Geographical Particularity`, `ECONOMIC FREEDOM`,
access_sea_bin, trade_usd, `3_sound_money`, `5c_business_reg`, `2_property_rights`, `4_trade`)
# Convertir las columnas a numéricas
tabla_filtrada <- tabla_filtrada %>%
mutate(
trade_usd = as.numeric(trade_usd),
`ECONOMIC FREEDOM` = as.numeric(`ECONOMIC FREEDOM`),
`3_sound_money` = as.numeric(`3_sound_money`),
`5c_business_reg` = as.numeric(`5c_business_reg`),
`2_property_rights` = as.numeric(`2_property_rights`),
`4_trade` = as.numeric(`4_trade`)
)
# Filtrar tabla a solo las columnas necesarias
tabla_cor <- tabla_filtrada %>%
select(`2_property_rights`, `4_trade`, `3_sound_money`, `5c_business_reg`, trade_usd)
# Calcular la matriz de correlación de Spearman
cor_matrix <- cor(tabla_cor, use = "complete.obs", method = "spearman")
# Mostrar la matriz de correlación
print(cor_matrix)
## 2_property_rights 4_trade 3_sound_money 5c_business_reg
## 2_property_rights 1.0000000 0.6964299 0.6867933 0.7570379
## 4_trade 0.6964299 1.0000000 0.6918219 0.6386557
## 3_sound_money 0.6867933 0.6918219 1.0000000 0.5114182
## 5c_business_reg 0.7570379 0.6386557 0.5114182 1.0000000
## trade_usd 0.3885797 0.1758924 0.3612481 0.3002451
## trade_usd
## 2_property_rights 0.3885797
## 4_trade 0.1758924
## 3_sound_money 0.3612481
## 5c_business_reg 0.3002451
## trade_usd 1.0000000
# Visualizar la matriz con colores
corrplot(cor_matrix, method = "color",
col = colorRampPalette(c("red", "white", "blue"))(200),
type = "full", addCoef.col = "black",
number.cex = 0.8, tl.cex = 1, tl.col = "black")
