#######Question 2 : Moyennes de toutes les variables
# Charger les données
df <- read_excel("C:/Users/Alioune/Desktop/Projet_statistique/data_mauristartups.xlsx")
# Calculer les moyennes
mean_values <- sapply(df[, c("design", "fonctionnalité", "problèmes_techniques", "prix", "recommandation", "employés")], mean)
print(mean_values)
## design fonctionnalité problèmes_techniques
## 7.460833 5.586667 7.283333
## prix recommandation employés
## 5.768333 6.815000 14.383333
## design fonctionnalité problèmes_techniques prix recommandation
## moy 7.460833 5.586667 7.283333 5.768333 6.815000
## ecart_type 1.984278 1.978198 1.629937 1.986466 1.860318
## var 3.937361 3.913266 2.656695 3.946048 3.460782
## IQR 2.450000 2.925000 2.200000 2.650000 2.600000
## employés
## moy 14.383333
## ecart_type 8.165498
## var 66.675350
## IQR 12.000000
## recommandation employés design
## 1.0000000 -0.1512397 0.6952829
## fonctionnalité problèmes_techniques prix
## 0.2613528 0.6787372 0.7388743
## Warning in cor.test.default(df$recommandation, df$satisfaction, method =
## "spearman"): Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: df$recommandation and df$satisfaction
## S = 154797, p-value = 1.05e-07
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.4624725
## X-squared
## 0.003812575
## X-squared
## 0.2083265
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.