第六章 样本相似性可视化课堂练习
1 案例数据
1.1 iris:鸢尾花数据集
- R语言内置的
iris数据集(鸢尾花数据集)是统计学和机器学习领域最经典的案例数据集之一,由英国统计学家 Ronald Fisher 在1936年首次提出。它包含了3种鸢尾花的测量数据,每个类别有50个样本,共150行数据。
| 变量名 | 数据类型 | 单位 | 说明 |
|---|---|---|---|
| Sepal.Length | numeric | cm | 花萼(萼片)长度,即花朵最外层绿色叶状结构的长度 |
| Sepal.Width | numeric | cm | 花萼(萼片)宽度 |
| Petal.Length | numeric | cm | 花瓣长度,即花朵内部彩色叶状结构的长度 |
| Petal.Width | numeric | cm | 花瓣宽度 |
| Species | factor | - | 鸢尾花种类(分类标签),包含3个水平: • setosa山鸢尾• versicolor变色鸢尾• virginica维吉尼亚鸢尾 |
setosa类的花通常较小,花瓣短而宽,与其他两类差异明显;versicolor和virginica在部分特征上有重叠,分类难度更高。
2 平行坐标图和雷达图
2.1 平行坐标图
ggplot(group=id)+geom_line+geom_point绘图Species映射为颜色
2.1.1 图形观察和代码编写的心得体会
setosa的花瓣尺寸(Petal)普遍较小
versicolor处于中间过渡状态
virginica表现出”大花瓣”特征
2.2 雷达图
- 采用
ggiraphExtra::ggRadar绘图
2.2.1 图形观察和代码编写的心得体会
形状特征:
setosa呈现小而紧凑的五边形,在Sepal.Width维度明显突出
versicolor形成相对对称的星形
virginica在Petal.Length和Petal.Width方向显著扩张,形成”瘦长”的星形
类别区分:
三个物种在Petal相关维度(Petal.Length/Petal.Width)差异最大
Sepal.Width是setosa的显著特征
virginica的花瓣特征(Petal)明显大于其他两类
数据模式:
setosa:Sepal.Width > Sepal.Length > Petal.Width ≈ Petal.Length
versicolor:各维度相对平衡
virginica:Petal维度显著大于Sepal维度
通过这次雷达图实践,我认识到这种可视化特别适合展示多维数据的”轮廓特征”。相比平行坐标图,雷达图更强调整体形状模式,但需要注意维度不宜过多(通常5-8个为宜),否则会降低可读性。
3 星图和脸谱图
3.1 星图
采用
stars函数,对标准化数据绘制圆弧星图需要先将四个数值变量转化为矩阵,并将
Species作为矩阵的行名;设置图例在合适位置,能完整显示;将图形分为10行。
3.1.1 图形观察和代码编写的心得体会
- key.loc的第一个值越大,图例会越靠右;inset的负值越大,图例也会越靠右。
3.2 脸谱图
- 采用
aplpack::faces函数,作Species三个类别的脸谱图 - 需要先将四个数值变量转化为矩阵,并将
Species作为矩阵的行名; - 设置图例在合适位置,能完整显示;将图形分为12列。
effect of variables:
modified item Var
"height of face " "Sepal.Length"
"width of face " "Sepal.Width"
"structure of face" "Petal.Length"
"height of mouth " "Petal.Width"
"width of mouth " "Sepal.Length"
"smiling " "Sepal.Width"
"height of eyes " "Petal.Length"
"width of eyes " "Petal.Width"
"height of hair " "Sepal.Length"
"width of hair " "Sepal.Width"
"style of hair " "Petal.Length"
"height of nose " "Petal.Width"
"width of nose " "Sepal.Length"
"width of ear " "Sepal.Width"
"height of ear " "Petal.Length"
3.2.1 图形观察和代码编写的心得体会
- 原始数据只有 3 个类别(setosa, versicolor, virginica),分 12 列会导致大量空白
4 聚类图和热图
4.1 系统聚类树状图
- 采用
factoextra::fviz_dend函数,对标准化后数据作图; - 需要先将四个数值变量转化为矩阵,并将
Species作为矩阵的行名; - 要求分为3类,观察分类结果和
Species的差异;树状图的外观为圆形。
4.1.1 图形观察和代码编写的心得体会
- 圆形布局(circular)比传统矩形布局更节省空间,颜色区分明显,但k=3与4种颜色的设置不一致需要注意 聚类效果:ward.D2方法通常能产生平衡的聚类结果,矩形框和颜色填充直观展示了聚类分组 标签处理:cex=0.6适当缩小了标签大小,避免重叠color_labels_by_k=TRUE使标签颜色与聚类一致
4.2 K-menas聚类主成分图
采用
factoextra::fviz_cluster函数,对标准化后数据作图;需要先将四个数值变量转化为矩阵,并将
1:150作为矩阵的行名;要求分为3类,类别轮廓为正态分布,观察哪些观察值比较异常。
4.2.1 图形观察和代码编写的心得体会
- 图形直观展示了3个聚类在降维空间(可能是PCA)中的分布,置信椭圆帮助判断每个聚类的紧密程度和重叠情况 标签处理:repel=TRUE有效避免了标签重叠,提高可读性,标签大小(labelsize)和点大小(pointsize)的调整使图形更平衡
4.3 热图
采用
gplots::heatmap.2函数,对原始数据绘制热力图需要先将四个数值变量转化为矩阵,并将
Species作为矩阵的行名;要求横轴和纵轴均添加聚类树状图
4.3.1 图形观察和代码编写的心得体会
- 调整标签角度(srtCol)和位置(adjCol)确实能改善长标签的可读性,标签大小调整(cex)对于大量行/列的数据特别重要