Based on conflicting previous evidence and student interviews, it is unclear if TA support would affect student outcomes regardless of the type of support issued, or if particular types of support would affect certain outcomes more than other types (Federici & Skaalvik, 2014; Malecki & Demaray, 2003; Perna et al., 2009; Sandstrom, 2023; Thompson, 2008; van Gijn-Grosvenor & Huisman, 2020; Zeldin & Pajares, 2000). Because of this, I had two competing hypotheses:
4a) Global support effects:
There will be no difference in relationships between type of support and outcomes, where any type of support will affect each outcome to the same degree. Given findings in my own and others’ research indicating that types of supportive behaviors are either highly correlated (Federici & Skaalvik, 2014) or all load onto the same global construct (Malecki & Demaray, 2003), we expected that the presence of any support will generalize to all outcomes, regardless of its type. However, given that women tend to be more vigilant to environmental cues than men in STEM courses (Canning et al., 2022; Murphy et al., 2007), I expected that women will experience stronger effects of support on all student outcomes, regardless of support type.
4b) Differential support type effects:
Effects of support on certain outcomes will depend the support type. Based on student interviews, I expected the following:
Nurturant support: because this support is social in nature and conveys to the student that they are worthy and esteemed, social outcomes like sense of belonging and ability-evaluative outcomes like sense of self-efficacy will be affected, while actual performance will not. Further, based on one of very few studies exploring TA behaviors where interviewed students indicated that course interest in part results from nurturant support via encouragement (O’Neal et al., 2007), I expected that nurturant support would also impact interest and identification.
Practical support: because this type of support is action-facilitative towards achieving academic goals, I predicted that it would only impact performance-evaluative and performance-based outcomes, such as self-efficacy, anticipated grade, and actual performance.
Supplemental support: because this type of support conveys that a student is worthy of attention and resources, and is action-facilitative towards achieving academic goals, I predicted that it would have an impact on all student outcomes: social, performance-evaluative, performance, and interest and identification.
suppressPackageStartupMessages({
source('https://raw.githubusercontent.com/joshuacorrell/teachR/main/mcSummaryLm.R')
library(car)
library(carData)
library(reshape2)
library(tidyr)
library(ggplot2)
library(tidyverse)
library(readxl)
library(psych)
library(writexl)
library(sjPlot)
library(lme4)
library(lmerTest)
library(psychTools)
library(vtable)
library(corrplot)
library(lavaan)
library(semTools)
library(likert)
library(modelsummary)
library(see)
library(paletteer)
library(viridis)
})
d <- readxl::read_excel("Study2_Wrangled_N496.xlsx")
names<-as.data.frame(colnames(d))
d$Condition<- as.factor(d$Condition)
levels(d$Condition)
## [1] "ALLsupp" "NOsupp" "NURTURANT" "PRACTICAL" "SUPPLEMENTAL"
d$Condition.ordered<- factor(d$Condition, levels = c('NOsupp', 'ALLsupp', 'NURTURANT','PRACTICAL','SUPPLEMENTAL'))
d[1:10, c("Condition.ordered", "Condition")]
## # A tibble: 10 × 2
## Condition.ordered Condition
## <fct> <fct>
## 1 NURTURANT NURTURANT
## 2 NOsupp NOsupp
## 3 SUPPLEMENTAL SUPPLEMENTAL
## 4 PRACTICAL PRACTICAL
## 5 PRACTICAL PRACTICAL
## 6 ALLsupp ALLsupp
## 7 NOsupp NOsupp
## 8 PRACTICAL PRACTICAL
## 9 NURTURANT NURTURANT
## 10 NOsupp NOsupp
d$TAsup.av_c <-d$TAsup.av-mean(d$TAsup.av,na.rm=T)
d$TTAcomm.av_c <-d$TAcomm.av-mean(d$TAcomm.av,na.rm=T)
Practical vs Supplemental
d$NOvSupport <- -(4/5)*(d$Condition == "NOsupp") + (1/5)*(d$Condition == "ALLsupp") + (1/5)*(d$Condition == "NURTURANT") + (1/5)*(d$Condition == "PRACTICAL")+ (1/5)*(d$Condition == "SUPPLEMENTAL")
d$ALLvOther <- 0*(d$Condition == "NOsupp") -(3/4)*(d$Condition == "ALLsupp") + (1/4)*(d$Condition == "NURTURANT") + (1/4)*(d$Condition == "PRACTICAL")+ (1/4)*(d$Condition == "SUPPLEMENTAL")
d$NURTvPrSu <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") -(2/3)*(d$Condition == "NURTURANT") + (1/3)*(d$Condition == "PRACTICAL")+ (1/3)*(d$Condition == "SUPPLEMENTAL")
d$PRACTvSUPP <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") + 0*(d$Condition == "NURTURANT") - (.5)*(d$Condition == "PRACTICAL")+ (.5)*(d$Condition == "SUPPLEMENTAL")
d[1:10,c("Condition", "NOvSupport","ALLvOther","NURTvPrSu","PRACTvSUPP")]
## # A tibble: 10 × 5
## Condition NOvSupport ALLvOther NURTvPrSu PRACTvSUPP
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 NURTURANT 0.2 0.25 -0.667 0
## 2 NOsupp -0.8 0 0 0
## 3 SUPPLEMENTAL 0.2 0.25 0.333 0.5
## 4 PRACTICAL 0.2 0.25 0.333 -0.5
## 5 PRACTICAL 0.2 0.25 0.333 -0.5
## 6 ALLsupp 0.2 -0.75 0 0
## 7 NOsupp -0.8 0 0 0
## 8 PRACTICAL 0.2 0.25 0.333 -0.5
## 9 NURTURANT 0.2 0.25 -0.667 0
## 10 NOsupp -0.8 0 0 0
Practical vs Nurturant
d$SUPvPrNu <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") + (1/3)*(d$Condition == "NURTURANT") + (1/3)*(d$Condition == "PRACTICAL")+ -(2/3)*(d$Condition == "SUPPLEMENTAL")
d$PRACTvNURT <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") + .5*(d$Condition == "NURTURANT") - (.5)*(d$Condition == "PRACTICAL")+ 0*(d$Condition == "SUPPLEMENTAL")
d[1:10,c("Condition", "NOvSupport","ALLvOther","SUPvPrNu","PRACTvNURT")]
## # A tibble: 10 × 5
## Condition NOvSupport ALLvOther SUPvPrNu PRACTvNURT
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 NURTURANT 0.2 0.25 0.333 0.5
## 2 NOsupp -0.8 0 0 0
## 3 SUPPLEMENTAL 0.2 0.25 -0.667 0
## 4 PRACTICAL 0.2 0.25 0.333 -0.5
## 5 PRACTICAL 0.2 0.25 0.333 -0.5
## 6 ALLsupp 0.2 -0.75 0 0
## 7 NOsupp -0.8 0 0 0
## 8 PRACTICAL 0.2 0.25 0.333 -0.5
## 9 NURTURANT 0.2 0.25 0.333 0.5
## 10 NOsupp -0.8 0 0 0
Supplemental vs Nurturant
d$PRAvSuNu <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") + (1/3)*(d$Condition == "NURTURANT") - (2/3)*(d$Condition == "PRACTICAL")+ (1/3)*(d$Condition == "SUPPLEMENTAL")
d$SUPPvNURT <- 0*(d$Condition == "NOsupp") + 0*(d$Condition == "ALLsupp") + .5*(d$Condition == "NURTURANT") +0*(d$Condition == "PRACTICAL")+ -.5*(d$Condition == "SUPPLEMENTAL")
d[1:10,c("Condition", "NOvSupport","ALLvOther","PRAvSuNu","SUPPvNURT")]
## # A tibble: 10 × 5
## Condition NOvSupport ALLvOther PRAvSuNu SUPPvNURT
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 NURTURANT 0.2 0.25 0.333 0.5
## 2 NOsupp -0.8 0 0 0
## 3 SUPPLEMENTAL 0.2 0.25 0.333 -0.5
## 4 PRACTICAL 0.2 0.25 -0.667 0
## 5 PRACTICAL 0.2 0.25 -0.667 0
## 6 ALLsupp 0.2 -0.75 0 0
## 7 NOsupp -0.8 0 0 0
## 8 PRACTICAL 0.2 0.25 -0.667 0
## 9 NURTURANT 0.2 0.25 0.333 0.5
## 10 NOsupp -0.8 0 0 0
already in data set
Quiz 1
table(d$Q1allCORRECT.dummy);table(d$Q1retry.CATS)
##
## 0 1
## 314 182
##
## ALLcorrect NOretry retry
## 314 108 74
Quiz1.retry<-d[d$Q1allCORRECT.dummy == 1,]
table(Quiz1.retry$Q1retry.CATS)
##
## NOretry retry
## 108 74
Quiz1.retry <- Quiz1.retry %>%
mutate( Q1noretry.d = if_else(Q1retry.CATS == "NOretry", 0, 1))
#Quiz1.retry[1:20, c("Q1retry.CATS", "Q1noretry.d")]
Quiz 2
table(d$Q2allCORRECT.dummy);table(d$Q2retry.CATS)
##
## 0 1
## 123 373
##
## ALLcorrect NOretry retry
## 123 197 176
Quiz2.retry<-d[d$Q2allCORRECT.dummy == 1,]
table(Quiz2.retry$Q2retry.CATS)
##
## NOretry retry
## 197 176
Quiz2.retry <- Quiz2.retry %>%
mutate( Q2noretry.d = if_else(Q2retry.CATS == "NOretry", 0, 1))
#Quiz2.retry[1:20, c("Q2retry.CATS", "Q2noretry.d")]
Quiz 3
table(d$Q3allCORRECT.dummy);table(d$Q3retry.CATS)
##
## 0 1
## 153 343
##
## ALLcorrect NOretry retry
## 153 234 109
Quiz3.retry<-d[d$Q3allCORRECT.dummy == 1,]
table(Quiz3.retry$Q3retry.CATS)
##
## NOretry retry
## 234 109
Quiz3.retry <- Quiz3.retry %>%
mutate( Q3noretry.d = if_else(Q3retry.CATS == "NOretry", 0, 1))
Quiz3.retry[3:20, c("Q3retry.CATS", "Q3noretry.d")]
## # A tibble: 18 × 2
## Q3retry.CATS Q3noretry.d
## <chr> <dbl>
## 1 retry 1
## 2 NOretry 0
## 3 retry 1
## 4 NOretry 0
## 5 NOretry 0
## 6 retry 1
## 7 retry 1
## 8 retry 1
## 9 NOretry 0
## 10 retry 1
## 11 NOretry 0
## 12 retry 1
## 13 retry 1
## 14 retry 1
## 15 NOretry 0
## 16 NOretry 0
## 17 NOretry 0
## 18 NOretry 0
Look at Mahalanobis distance and univariate outliers
Get descriptives & Correlations of ASPS, performance, and persistence
Calcuate reliabilities & belonging EFA/CFA
From pre-reg:To determine if some types of support may have stronger effects than others overall on each outcome variable and if these effects are stronger for women, each outcome variable will be tested separately with linear regressions in which the outcome is regressed on TA support conditions (contrast coded), participant gender (contrast coded), and the interaction of TA support condition and participant gender. In the event that interactions are found for any outcome variable, simple effects will be examined.
d$SBz <- (d$SB.av - mean(d$SB.av, na.rm = T))/sd(d$SB.av, na.rm = T)
d$ABz <- (d$AB.av - mean(d$AB.av, na.rm = T))/sd(d$AB.av, na.rm = T)
d$SEz <- (d$SE.av - mean(d$SE.av, na.rm = T))/sd(d$SE.av, na.rm = T)
d$Quiz1.totalz <- (d$Quiz1.total - mean(d$Quiz1.total, na.rm = T))/sd(d$Quiz1.total, na.rm = T)
d$Quiz2.totalz <- (d$Quiz2.total - mean(d$Quiz2.total, na.rm = T))/sd(d$Quiz2.total, na.rm = T)
d$Quiz3.totalz <- (d$Quiz3.total - mean(d$Quiz3.total, na.rm = T))/sd(d$Quiz3.total, na.rm = T)
d$Exam.totalz <- (d$Exam.total - mean(d$Exam.total, na.rm = T))/sd(d$Exam.total, na.rm = T)
d$GRADEz <- (d$Ant.grade - mean(d$Ant.grade, na.rm = T))/sd(d$Ant.grade, na.rm = T)
d$SUPz <- (d$TAsup.av - mean(d$TAsup.av, na.rm = T))/sd(d$TAsup.av, na.rm = T)
d$COMz <- (d$TAcomm.av - mean(d$TAcomm.av, na.rm = T))/sd(d$TAcomm.av, na.rm = T)
boop<- data.frame(id = d$id, gender = d$Gen.name,SUPz = d$SUPz, COMz = d$COMz,
SBz = d$SBz,ABz = d$ABz, SEz = d$SEz, GRADEz = d$GRADEz,Quiz1z = d$Quiz1.totalz, Quiz2z = d$Quiz2.totalz,Quiz3z = d$Quiz3.totalz,Examz = d$Exam.totalz,
TAsup = d$TAsup.av, TAcom = d$TAcomm.av, SB = d$SB.av, AB = d$AB.av, SE= d$SE.av, Quiz1 = d$Quiz1.total, Quiz2 = d$Quiz2.total, Quiz3 = d$Quiz3.total, Exam = d$Exam.total, Grade = d$Ant.grade)
Outliers<- boop[boop$SBz >= 3.29| boop$SBz <= -3.29 |boop$ABz >= 3.29| boop$ABz <= -3.29 |boop$SEz >= 3.29| boop$SEz <= -3.29 |boop$Quiz1z >= 3.29| boop$Quiz1z <= -3.29 | boop$Quiz2 >= 3.29| boop$Quiz2z <= -3.29 |boop$Quiz3z >= 3.29| boop$Quiz3z <= -3.29 | boop$Examz >= 3.29| boop$Examz <= -3.29 |boop$GRADEz >= 3.29| boop$GRADEz <= -3.29 |boop$SUPz >= 3.29| boop$SUPz <= -3.29 |boop$COMz >= 3.29| boop$COMz <= -3.29 ,]
Outliers<- Outliers[order(Outliers$SUPz, decreasing = F),]
writexl::write_xlsx(Outliers, "Study2_outliers.xlsx")
summary(d$SUPz);summary(d$TAsup.av)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -5.06002 -0.61867 0.01581 0.00000 0.65029 1.70775 1
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.000 4.625 5.000 4.991 5.375 6.000 1
Outliers[Outliers$SUPz <= -3.59, c("id","SUPz", "TAsup")]
## id SUPz TAsup
## 351 450 -5.06002 2
## NA NA NA NA
## NA.1 NA NA NA
## NA.2 NA NA NA
Mahalanobis distance (Mahalanobis, 1930) is often used for multivariate outliers detection as this distance takes into account the shape of the observations. The default threshold is often arbitrarily set to some deviation (in terms of SD or MAD) from the mean (or median) of the Mahalanobis distance. However, as the Mahalanobis distance can be approximated by a Chi squared distribution (Rousseeuw & Van Zomeren, 1990), we can use the alpha quantile of the chi-square distribution with k degrees of freedom (k being the number of columns). By default, the alpha threshold is set to 0.025 (corresponding to the 2.5 Cabana, 2019). This criterion is a natural extension of the median plus or minus a coefficient times the MAD method (Leys et al., 2013).
https://easystats.github.io/performance/reference/check_outliers.html
d[is.na(d$SB.av) | is.na(d$AB.av) | is.na(d$SE.av) | is.na(d$Quiz1.total) | is.na(d$Quiz2.total) | is.na(d$Quiz3.total) | is.na(d$Exam.total) | is.na(d$Ant.grade) ,c("id", "SB.av","AB.av","SE.av", "Quiz1.total","Quiz2.total","Quiz3.total","Exam.total","Ant.grade") ]
## # A tibble: 3 × 9
## id SB.av AB.av SE.av Quiz1.total Quiz2.total Quiz3.total Exam.total
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 168 6 NA 5 4 2 2 7
## 2 314 4.4 2.75 4.4 3 2 3 8
## 3 450 NA 4 3.5 4 3 3 5
## # ℹ 1 more variable: Ant.grade <dbl>
DD <-d[d$id != 168 &
d$id !=314 &
d$id !=450,]
Mahal.SM<- DD[ ,c("SB.av","AB.av","SE.av", "Quiz1.total","Quiz2.total","Quiz3.total","Exam.total","Ant.grade")]
performance::check_outliers(Mahal.SM, method = "mahalanobis")
## 4 outliers detected: cases 294, 401, 464, 478.
## - Based on the following method and threshold: mahalanobis (30).
## - For variables: SB.av, AB.av, SE.av, Quiz1.total, Quiz2.total,
## Quiz3.total, Exam.total, Ant.grade.
DD[c(294,401,464, 478), c("id","SBz","ABz","SEz","Quiz1.totalz","Quiz2.totalz","Quiz3.totalz", "Exam.totalz","GRADEz")]
## # A tibble: 4 × 9
## id SBz ABz SEz Quiz1.totalz Quiz2.totalz Quiz3.totalz Exam.totalz
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 383 -0.928 -1.72 -3.24 -1.77 -2.60 -1.48 -2.85
## 2 513 0.326 0.661 -2.04 -0.554 1.26 -0.591 -1.79
## 3 583 -0.928 -1.25 -1.25 -2.98 1.26 0.294 0.327
## 4 605 -1.68 -0.293 -2.24 -2.98 0.293 -2.36 0.856
## # ℹ 1 more variable: GRADEz <dbl>
4 multivariate outliers removed: id = c(383,513,583,605)
N = 492
dat<- d[d$id != 383 &
d$id !=513 &
d$id !=583&
d$id !=605,]
remove(DD)
remove(d)
remove(boop)
remove(Mahal.SM)
dat<- dplyr::rename(dat,
Quiz1.time = `Quiz1.timing_Page Submit`,
Quiz2.time = `Quiz2.timing_Page Submit`,
Quiz3.time = `Quiz3.timing_Page Submit`,
Quiz1retry.time =` Quiz1retry.timing _Page Submit`,
Quiz2retry.time =`Quiz2.retry_Page Submit`,
Quiz3retry.time =`Quiz3retry.timing_Page Submit`,
Exam.time = `Exam_time_spent_Page Submit` ) #new name = old name (new name first)
descripts<- dat[,c("TAsup.av","TAcomm.av", "SB.av", "AB.av","SE.av", "Quiz1.total","Quiz1.time","Quiz1.retry.total","Quiz1retry.time", "Quiz2.total","Quiz2.time", "Quiz2.retry.total","Quiz2retry.time","Quiz3.total","Quiz3.time","Quiz3.retry.total","Quiz3retry.time", "Exam.total","Exam.time","Ant.grade","Gen.name", "Condition","Condition.ordered")]
modelsummary::datasummary_skim(descripts)
| Unique | Missing Pct. | Mean | SD | Min | Median | Max | Histogram | |
|---|---|---|---|---|---|---|---|---|
| TAsup.av | 24 | 0 | 5.0 | 0.6 | 2.0 | 5.0 | 6.0 | |
| TAcomm.av | 31 | 0 | 5.3 | 0.6 | 1.0 | 5.3 | 6.0 | |
| SB.av | 25 | 0 | 3.9 | 0.8 | 1.4 | 4.0 | 6.0 | |
| AB.av | 22 | 0 | 3.8 | 1.0 | 1.2 | 3.8 | 6.0 | |
| SE.av | 25 | 0 | 4.5 | 1.0 | 1.2 | 4.6 | 6.0 | |
| Quiz1.total | 5 | 0 | 3.5 | 0.8 | 0.0 | 4.0 | 4.0 | |
| Quiz1.time | 491 | 0 | 97.6 | 33.0 | 5.3 | 91.4 | 180.1 | |
| Quiz1.retry.total | 5 | 85 | 3.1 | 1.0 | 1.0 | 3.0 | 4.0 | |
| Quiz1retry.time | 75 | 85 | 63.8 | 33.8 | 10.0 | 56.3 | 161.9 | |
| Quiz2.total | 5 | 0 | 2.7 | 1.0 | 0.0 | 3.0 | 4.0 | |
| Quiz2.time | 492 | 0 | 74.2 | 32.8 | 7.1 | 66.9 | 180.1 | |
| Quiz2.retry.total | 6 | 64 | 2.9 | 1.0 | 0.0 | 3.0 | 4.0 | |
| Quiz2retry.time | 176 | 64 | 31.5 | 26.2 | 6.1 | 22.1 | 153.8 | |
| Quiz3.total | 5 | 0 | 2.7 | 1.1 | 0.0 | 3.0 | 4.0 | |
| Quiz3.time | 492 | 0 | 84.0 | 37.9 | 5.2 | 79.0 | 180.1 | |
| Quiz3.retry.total | 5 | 78 | 2.6 | 1.0 | 1.0 | 3.0 | 4.0 | |
| Quiz3retry.time | 110 | 78 | 52.3 | 30.9 | 7.3 | 48.0 | 160.2 | |
| Exam.total | 10 | 0 | 7.4 | 1.9 | 1.0 | 8.0 | 10.0 | |
| Exam.time | 492 | 0 | 140.5 | 64.2 | 12.9 | 125.4 | 478.7 | |
| Ant.grade | 11 | 0 | 3.3 | 0.6 | 1.0 | 3.3 | 4.0 | |
| N | % | |||||||
| Gen.name | Man | 114 | 23.2 | |||||
| Woman | 378 | 76.8 | ||||||
| Condition | ALLsupp | 102 | 20.7 | |||||
| NOsupp | 106 | 21.5 | ||||||
| NURTURANT | 91 | 18.5 | ||||||
| PRACTICAL | 97 | 19.7 | ||||||
| SUPPLEMENTAL | 96 | 19.5 | ||||||
| Condition.ordered | NOsupp | 106 | 21.5 | |||||
| ALLsupp | 102 | 20.7 | ||||||
| NURTURANT | 91 | 18.5 | ||||||
| PRACTICAL | 97 | 19.7 | ||||||
| SUPPLEMENTAL | 96 | 19.5 |
sumtable(descripts, digits = 3)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| TAsup.av | 491 | 5 | 0.584 | 2 | 4.62 | 5.38 | 6 |
| TAcomm.av | 492 | 5.26 | 0.649 | 1 | 4.9 | 5.8 | 6 |
| SB.av | 491 | 3.95 | 0.796 | 1.4 | 3.4 | 4.4 | 6 |
| AB.av | 491 | 3.81 | 1.05 | 1.25 | 3 | 4.5 | 6 |
| SE.av | 492 | 4.47 | 0.988 | 1.2 | 4 | 5.2 | 6 |
| Quiz1.total | 492 | 3.47 | 0.808 | 0 | 3 | 4 | 4 |
| Quiz1.time | 492 | 97.6 | 33 | 5.34 | 74.8 | 119 | 180 |
| Quiz1.retry.total | 74 | 3.11 | 1.01 | 1 | 2 | 4 | 4 |
| Quiz1retry.time | 74 | 63.8 | 33.8 | 9.98 | 36.4 | 88.7 | 162 |
| Quiz2.total | 492 | 2.7 | 1.03 | 0 | 2 | 3 | 4 |
| Quiz2.time | 492 | 74.2 | 32.8 | 7.13 | 50.6 | 91 | 180 |
| Quiz2.retry.total | 176 | 2.9 | 0.99 | 0 | 2 | 4 | 4 |
| Quiz2retry.time | 176 | 31.5 | 26.2 | 6.06 | 14.1 | 39.8 | 154 |
| Quiz3.total | 492 | 2.68 | 1.13 | 0 | 2 | 4 | 4 |
| Quiz3.time | 492 | 84 | 37.9 | 5.17 | 57.4 | 109 | 180 |
| Quiz3.retry.total | 109 | 2.57 | 1.05 | 1 | 2 | 3 | 4 |
| Quiz3retry.time | 109 | 52.3 | 30.9 | 7.31 | 31.9 | 66.5 | 160 |
| Exam.total | 492 | 7.4 | 1.87 | 1 | 6 | 9 | 10 |
| Exam.time | 492 | 140 | 64.2 | 13 | 98.7 | 163 | 479 |
| Ant.grade | 491 | 3.25 | 0.648 | 1 | 3 | 3.7 | 4 |
| Gen.name | 492 | ||||||
| … Man | 114 | 23.2% | |||||
| … Woman | 378 | 76.8% | |||||
| Condition | 492 | ||||||
| … ALLsupp | 102 | 20.7% | |||||
| … NOsupp | 106 | 21.5% | |||||
| … NURTURANT | 91 | 18.5% | |||||
| … PRACTICAL | 97 | 19.7% | |||||
| … SUPPLEMENTAL | 96 | 19.5% | |||||
| Condition.ordered | 492 | ||||||
| … NOsupp | 106 | 21.5% | |||||
| … ALLsupp | 102 | 20.7% | |||||
| … NURTURANT | 91 | 18.5% | |||||
| … PRACTICAL | 97 | 19.7% | |||||
| … SUPPLEMENTAL | 96 | 19.5% |
sumtable(descripts,group = c("Gen.name"), digits = 3)
| Variable | N | Mean | SD | N | Mean | SD |
|---|---|---|---|---|---|---|
| TAsup.av | 114 | 4.92 | 0.525 | 377 | 5.02 | 0.6 |
| TAcomm.av | 114 | 5.16 | 0.65 | 378 | 5.28 | 0.646 |
| SB.av | 114 | 4.15 | 0.742 | 377 | 3.88 | 0.803 |
| AB.av | 114 | 4.18 | 0.977 | 377 | 3.7 | 1.04 |
| SE.av | 114 | 4.84 | 0.885 | 378 | 4.36 | 0.992 |
| Quiz1.total | 114 | 3.57 | 0.752 | 378 | 3.44 | 0.823 |
| Quiz1.time | 114 | 99.7 | 33.2 | 378 | 97 | 32.9 |
| Quiz1.retry.total | 17 | 3.06 | 0.966 | 57 | 3.12 | 1.04 |
| Quiz1retry.time | 17 | 61.5 | 30.4 | 57 | 64.4 | 35 |
| Quiz2.total | 114 | 2.89 | 0.906 | 378 | 2.63 | 1.06 |
| Quiz2.time | 114 | 71.5 | 30.3 | 378 | 75 | 33.4 |
| Quiz2.retry.total | 41 | 3 | 0.949 | 135 | 2.87 | 1 |
| Quiz2retry.time | 41 | 34.2 | 28.7 | 135 | 30.7 | 25.5 |
| Quiz3.total | 114 | 2.86 | 1.12 | 378 | 2.62 | 1.12 |
| Quiz3.time | 114 | 84.2 | 40.5 | 378 | 83.9 | 37.1 |
| Quiz3.retry.total | 27 | 2.59 | 0.888 | 82 | 2.56 | 1.1 |
| Quiz3retry.time | 27 | 53.3 | 29.9 | 82 | 51.9 | 31.4 |
| Exam.total | 114 | 7.62 | 1.82 | 378 | 7.33 | 1.89 |
| Exam.time | 114 | 134 | 55.1 | 378 | 142 | 66.7 |
| Ant.grade | 114 | 3.4 | 0.59 | 377 | 3.21 | 0.659 |
| Condition | 114 | 378 | ||||
| … ALLsupp | 26 | 22.8% | 76 | 20.1% | ||
| … NOsupp | 25 | 21.9% | 81 | 21.4% | ||
| … NURTURANT | 17 | 14.9% | 74 | 19.6% | ||
| … PRACTICAL | 24 | 21.1% | 73 | 19.3% | ||
| … SUPPLEMENTAL | 22 | 19.3% | 74 | 19.6% | ||
| Condition.ordered | 114 | 378 | ||||
| … NOsupp | 25 | 21.9% | 81 | 21.4% | ||
| … ALLsupp | 26 | 22.8% | 76 | 20.1% | ||
| … NURTURANT | 17 | 14.9% | 74 | 19.6% | ||
| … PRACTICAL | 24 | 21.1% | 73 | 19.3% | ||
| … SUPPLEMENTAL | 22 | 19.3% | 74 | 19.6% |
t.test(dat$TAsup.av~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$TAsup.av by dat$Gen.name
## t = -1.6631, df = 489, p-value = 0.09693
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## -0.22618377 0.01881023
## sample estimates:
## mean in group Man mean in group Woman
## 4.918860 5.022546
t.test(dat$TAcomm.av~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$TAcomm.av by dat$Gen.name
## t = -1.7451, df = 490, p-value = 0.08159
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## -0.25660489 0.01519582
## sample estimates:
## mean in group Man mean in group Woman
## 5.163158 5.283862
t.test(dat$SB.av~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$SB.av by dat$Gen.name
## t = 3.096, df = 489, p-value = 0.002074
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## 0.09545432 0.42707348
## sample estimates:
## mean in group Man mean in group Woman
## 4.145614 3.884350
t.test(dat$AB.av~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$AB.av by dat$Gen.name
## t = 4.3144, df = 489, p-value = 1.938e-05
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## 0.2584850 0.6908069
## sample estimates:
## mean in group Man mean in group Woman
## 4.176901 3.702255
t.test(dat$SE.av~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$SE.av by dat$Gen.name
## t = 4.5821, df = 490, p-value = 5.847e-06
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## 0.2708308 0.6774566
## sample estimates:
## mean in group Man mean in group Woman
## 4.836842 4.362698
t.test(dat$Ant.grade~dat$Gen.name, var.equal = T)
##
## Two Sample t-test
##
## data: dat$Ant.grade by dat$Gen.name
## t = 2.7274, df = 489, p-value = 0.006612
## alternative hypothesis: true difference in means between group Man and group Woman is not equal to 0
## 95 percent confidence interval:
## 0.05249291 0.32298291
## sample estimates:
## mean in group Man mean in group Woman
## 3.396491 3.208753
sumtable(descripts,group = c("Condition"), digits = 3)
| Variable | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TAsup.av | 102 | 4.98 | 0.635 | 106 | 5 | 0.548 | 91 | 4.98 | 0.542 | 96 | 4.95 | 0.61 | 96 | 5.08 | 0.584 |
| TAcomm.av | 102 | 5.23 | 0.753 | 106 | 5.3 | 0.546 | 91 | 5.29 | 0.593 | 97 | 5.24 | 0.563 | 96 | 5.22 | 0.765 |
| SB.av | 101 | 3.96 | 0.732 | 106 | 3.86 | 0.805 | 91 | 3.89 | 0.797 | 97 | 3.93 | 0.819 | 96 | 4.09 | 0.823 |
| AB.av | 102 | 3.84 | 1.1 | 106 | 3.74 | 1 | 91 | 3.7 | 1.04 | 97 | 3.76 | 1.06 | 95 | 4.02 | 1.03 |
| SE.av | 102 | 4.4 | 1.1 | 106 | 4.46 | 0.947 | 91 | 4.3 | 0.997 | 97 | 4.56 | 0.936 | 96 | 4.65 | 0.936 |
| Quiz1.total | 102 | 3.47 | 0.817 | 106 | 3.46 | 0.83 | 91 | 3.4 | 0.893 | 97 | 3.61 | 0.67 | 96 | 3.41 | 0.815 |
| Quiz1.time | 102 | 96.6 | 33.8 | 106 | 102 | 33.5 | 91 | 98.1 | 33.5 | 97 | 98.9 | 32.3 | 96 | 92.3 | 31.4 |
| Quiz1.retry.total | 17 | 3.18 | 0.883 | 14 | 2.79 | 1.25 | 15 | 3.2 | 1.08 | 11 | 3.55 | 0.688 | 17 | 2.94 | 1.03 |
| Quiz1retry.time | 17 | 69.6 | 34.7 | 14 | 54.2 | 32.9 | 15 | 53.5 | 32.9 | 11 | 72 | 38.1 | 17 | 69.6 | 31.1 |
| Quiz2.total | 102 | 2.7 | 0.993 | 106 | 2.67 | 0.963 | 91 | 2.76 | 1.04 | 97 | 2.69 | 1 | 96 | 2.67 | 1.18 |
| Quiz2.time | 102 | 75.1 | 37.1 | 106 | 70 | 30.1 | 91 | 74.1 | 32.2 | 97 | 75.6 | 29.6 | 96 | 76.6 | 34.4 |
| Quiz2.retry.total | 37 | 2.89 | 0.875 | 35 | 2.8 | 0.964 | 40 | 2.6 | 1.17 | 32 | 3.22 | 0.751 | 32 | 3.09 | 1.03 |
| Quiz2retry.time | 37 | 31.6 | 20.6 | 35 | 25 | 28.4 | 40 | 35 | 31.9 | 32 | 35.8 | 26.6 | 32 | 30.2 | 20.8 |
| Quiz3.total | 102 | 2.71 | 1.17 | 106 | 2.74 | 1.12 | 91 | 2.51 | 1.15 | 97 | 2.84 | 1.03 | 96 | 2.58 | 1.15 |
| Quiz3.time | 102 | 82.9 | 41.6 | 106 | 86.1 | 39.9 | 91 | 83.4 | 34.7 | 97 | 85.5 | 36 | 96 | 81.7 | 37 |
| Quiz3.retry.total | 20 | 2.6 | 1.1 | 25 | 2.76 | 0.97 | 28 | 2.43 | 1.1 | 16 | 2.88 | 1.09 | 20 | 2.25 | 0.967 |
| Quiz3retry.time | 20 | 68.5 | 39.3 | 25 | 47.7 | 30.1 | 28 | 43.6 | 25.8 | 16 | 47.4 | 26.1 | 20 | 57.7 | 28.4 |
| Exam.total | 102 | 7.19 | 2.04 | 106 | 7.35 | 1.84 | 91 | 7.16 | 1.98 | 97 | 8.03 | 1.38 | 96 | 7.25 | 1.95 |
| Exam.time | 102 | 141 | 73 | 106 | 139 | 62.6 | 91 | 147 | 69.9 | 97 | 136 | 50.8 | 96 | 140 | 63.6 |
| Ant.grade | 102 | 3.27 | 0.641 | 106 | 3.25 | 0.668 | 90 | 3.13 | 0.715 | 97 | 3.27 | 0.63 | 96 | 3.33 | 0.578 |
| Gen.name | 102 | 106 | 91 | 97 | 96 | ||||||||||
| … Man | 26 | 25.5% | 25 | 23.6% | 17 | 18.7% | 24 | 24.7% | 22 | 22.9% | |||||
| … Woman | 76 | 74.5% | 81 | 76.4% | 74 | 81.3% | 73 | 75.3% | 74 | 77.1% | |||||
| Condition.ordered | 102 | 106 | 91 | 97 | 96 | ||||||||||
| … NOsupp | 0 | 0% | 106 | 100% | 0 | 0% | 0 | 0% | 0 | 0% | |||||
| … ALLsupp | 102 | 100% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |||||
| … NURTURANT | 0 | 0% | 0 | 0% | 91 | 100% | 0 | 0% | 0 | 0% | |||||
| … PRACTICAL | 0 | 0% | 0 | 0% | 0 | 0% | 97 | 100% | 0 | 0% | |||||
| … SUPPLEMENTAL | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 96 | 100% |
modelsummary::datasummary_correlation(descripts[,c("TAsup.av","TAcomm.av", "SB.av", "AB.av","SE.av","Ant.grade", "Quiz1.total", "Quiz2.total","Quiz3.total","Exam.total","Exam.time")])
| TAsup.av | TAcomm.av | SB.av | AB.av | SE.av | Ant.grade | Quiz1.total | Quiz2.total | Quiz3.total | Exam.total | Exam.time | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TAsup.av | 1 | . | . | . | . | . | . | . | . | . | . |
| TAcomm.av | .61 | 1 | . | . | . | . | . | . | . | . | . |
| SB.av | .30 | .23 | 1 | . | . | . | . | . | . | . | . |
| AB.av | .17 | .09 | .76 | 1 | . | . | . | . | . | . | . |
| SE.av | .24 | .19 | .74 | .81 | 1 | . | . | . | . | . | . |
| Ant.grade | .16 | .11 | .65 | .73 | .79 | 1 | . | . | . | . | . |
| Quiz1.total | .07 | .03 | .20 | .31 | .32 | .37 | 1 | . | . | . | . |
| Quiz2.total | .06 | .06 | .21 | .28 | .24 | .28 | .19 | 1 | . | . | . |
| Quiz3.total | .07 | .07 | .29 | .36 | .33 | .38 | .23 | .31 | 1 | . | . |
| Exam.total | .10 | .09 | .26 | .39 | .40 | .43 | .43 | .36 | .49 | 1 | . |
| Exam.time | .01 | -.01 | -.07 | -.13 | -.10 | -.09 | -.12 | .04 | .00 | -.03 | 1 |
Hmisc::rcorr(as.matrix(descripts[,c("TAsup.av","TAcomm.av", "SB.av", "AB.av","SE.av","Ant.grade", "Quiz1.total", "Quiz2.total","Quiz3.total","Exam.total","Exam.time")]),type="pearson")
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 1.00 0.61 0.30 0.17 0.24 0.16 0.07
## TAcomm.av 0.61 1.00 0.23 0.09 0.19 0.11 0.03
## SB.av 0.30 0.23 1.00 0.76 0.74 0.65 0.20
## AB.av 0.17 0.09 0.76 1.00 0.81 0.73 0.31
## SE.av 0.24 0.19 0.74 0.81 1.00 0.79 0.32
## Ant.grade 0.16 0.11 0.65 0.73 0.79 1.00 0.37
## Quiz1.total 0.07 0.03 0.20 0.31 0.32 0.37 1.00
## Quiz2.total 0.06 0.06 0.21 0.28 0.24 0.28 0.19
## Quiz3.total 0.07 0.07 0.29 0.36 0.33 0.38 0.23
## Exam.total 0.10 0.09 0.26 0.39 0.40 0.43 0.43
## Exam.time 0.01 -0.01 -0.07 -0.13 -0.10 -0.09 -0.12
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 0.06 0.07 0.10 0.01
## TAcomm.av 0.06 0.07 0.09 -0.01
## SB.av 0.21 0.29 0.26 -0.07
## AB.av 0.28 0.36 0.39 -0.13
## SE.av 0.24 0.33 0.40 -0.10
## Ant.grade 0.28 0.38 0.43 -0.09
## Quiz1.total 0.19 0.23 0.43 -0.12
## Quiz2.total 1.00 0.31 0.36 0.04
## Quiz3.total 0.31 1.00 0.49 0.00
## Exam.total 0.36 0.49 1.00 -0.03
## Exam.time 0.04 0.00 -0.03 1.00
##
## n
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 491 491 490 490 491 490 491
## TAcomm.av 491 492 491 491 492 491 492
## SB.av 490 491 491 490 491 490 491
## AB.av 490 491 490 491 491 490 491
## SE.av 491 492 491 491 492 491 492
## Ant.grade 490 491 490 490 491 491 491
## Quiz1.total 491 492 491 491 492 491 492
## Quiz2.total 491 492 491 491 492 491 492
## Quiz3.total 491 492 491 491 492 491 492
## Exam.total 491 492 491 491 492 491 492
## Exam.time 491 492 491 491 492 491 492
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 491 491 491 491
## TAcomm.av 492 492 492 492
## SB.av 491 491 491 491
## AB.av 491 491 491 491
## SE.av 492 492 492 492
## Ant.grade 491 491 491 491
## Quiz1.total 492 492 492 492
## Quiz2.total 492 492 492 492
## Quiz3.total 492 492 492 492
## Exam.total 492 492 492 492
## Exam.time 492 492 492 492
##
## P
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 0.0000 0.0000 0.0001 0.0000 0.0004 0.1359
## TAcomm.av 0.0000 0.0000 0.0412 0.0000 0.0178 0.4446
## SB.av 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## AB.av 0.0001 0.0412 0.0000 0.0000 0.0000 0.0000
## SE.av 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## Ant.grade 0.0004 0.0178 0.0000 0.0000 0.0000 0.0000
## Quiz1.total 0.1359 0.4446 0.0000 0.0000 0.0000 0.0000
## Quiz2.total 0.1897 0.2178 0.0000 0.0000 0.0000 0.0000 0.0000
## Quiz3.total 0.1105 0.1210 0.0000 0.0000 0.0000 0.0000 0.0000
## Exam.total 0.0346 0.0402 0.0000 0.0000 0.0000 0.0000 0.0000
## Exam.time 0.8482 0.7501 0.1184 0.0046 0.0324 0.0416 0.0061
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 0.1897 0.1105 0.0346 0.8482
## TAcomm.av 0.2178 0.1210 0.0402 0.7501
## SB.av 0.0000 0.0000 0.0000 0.1184
## AB.av 0.0000 0.0000 0.0000 0.0046
## SE.av 0.0000 0.0000 0.0000 0.0324
## Ant.grade 0.0000 0.0000 0.0000 0.0416
## Quiz1.total 0.0000 0.0000 0.0000 0.0061
## Quiz2.total 0.0000 0.0000 0.3656
## Quiz3.total 0.0000 0.0000 0.9343
## Exam.total 0.0000 0.0000 0.4753
## Exam.time 0.3656 0.9343 0.4753
modelsummary::datasummary_correlation(descripts[descripts$Gen.name=="Woman",c("TAsup.av","TAcomm.av", "SB.av", "AB.av","SE.av","Ant.grade", "Quiz1.total", "Quiz2.total","Quiz3.total","Exam.total","Exam.time")])
| TAsup.av | TAcomm.av | SB.av | AB.av | SE.av | Ant.grade | Quiz1.total | Quiz2.total | Quiz3.total | Exam.total | Exam.time | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TAsup.av | 1 | . | . | . | . | . | . | . | . | . | . |
| TAcomm.av | .60 | 1 | . | . | . | . | . | . | . | . | . |
| SB.av | .30 | .23 | 1 | . | . | . | . | . | . | . | . |
| AB.av | .18 | .08 | .76 | 1 | . | . | . | . | . | . | . |
| SE.av | .26 | .21 | .75 | .80 | 1 | . | . | . | . | . | . |
| Ant.grade | .16 | .10 | .66 | .74 | .80 | 1 | . | . | . | . | . |
| Quiz1.total | .04 | .00 | .21 | .32 | .33 | .39 | 1 | . | . | . | . |
| Quiz2.total | .05 | .03 | .18 | .25 | .21 | .28 | .20 | 1 | . | . | . |
| Quiz3.total | .04 | .05 | .27 | .32 | .31 | .39 | .22 | .28 | 1 | . | . |
| Exam.total | .09 | .07 | .24 | .37 | .38 | .45 | .40 | .38 | .50 | 1 | . |
| Exam.time | -.01 | -.05 | -.10 | -.13 | -.11 | -.08 | -.10 | .05 | .01 | -.02 | 1 |
Hmisc::rcorr(as.matrix(descripts[descripts$Gen.name=="Woman",c("TAsup.av","TAcomm.av", "SB.av", "AB.av","SE.av","Ant.grade", "Quiz1.total", "Quiz2.total","Quiz3.total","Exam.total","Exam.time")]),type="pearson")
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 1.00 0.60 0.30 0.18 0.26 0.16 0.04
## TAcomm.av 0.60 1.00 0.23 0.08 0.21 0.10 0.00
## SB.av 0.30 0.23 1.00 0.76 0.75 0.66 0.21
## AB.av 0.18 0.08 0.76 1.00 0.80 0.74 0.32
## SE.av 0.26 0.21 0.75 0.80 1.00 0.80 0.33
## Ant.grade 0.16 0.10 0.66 0.74 0.80 1.00 0.39
## Quiz1.total 0.04 0.00 0.21 0.32 0.33 0.39 1.00
## Quiz2.total 0.05 0.03 0.18 0.25 0.21 0.28 0.20
## Quiz3.total 0.04 0.05 0.27 0.32 0.31 0.39 0.22
## Exam.total 0.09 0.07 0.24 0.37 0.38 0.45 0.40
## Exam.time -0.01 -0.05 -0.10 -0.13 -0.11 -0.08 -0.10
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 0.05 0.04 0.09 -0.01
## TAcomm.av 0.03 0.05 0.07 -0.05
## SB.av 0.18 0.27 0.24 -0.10
## AB.av 0.25 0.32 0.37 -0.13
## SE.av 0.21 0.31 0.38 -0.11
## Ant.grade 0.28 0.39 0.45 -0.08
## Quiz1.total 0.20 0.22 0.40 -0.10
## Quiz2.total 1.00 0.28 0.38 0.05
## Quiz3.total 0.28 1.00 0.50 0.01
## Exam.total 0.38 0.50 1.00 -0.02
## Exam.time 0.05 0.01 -0.02 1.00
##
## n
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 377 377 376 376 377 376 377
## TAcomm.av 377 378 377 377 378 377 378
## SB.av 376 377 377 376 377 376 377
## AB.av 376 377 376 377 377 376 377
## SE.av 377 378 377 377 378 377 378
## Ant.grade 376 377 376 376 377 377 377
## Quiz1.total 377 378 377 377 378 377 378
## Quiz2.total 377 378 377 377 378 377 378
## Quiz3.total 377 378 377 377 378 377 378
## Exam.total 377 378 377 377 378 377 378
## Exam.time 377 378 377 377 378 377 378
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 377 377 377 377
## TAcomm.av 378 378 378 378
## SB.av 377 377 377 377
## AB.av 377 377 377 377
## SE.av 378 378 378 378
## Ant.grade 377 377 377 377
## Quiz1.total 378 378 378 378
## Quiz2.total 378 378 378 378
## Quiz3.total 378 378 378 378
## Exam.total 378 378 378 378
## Exam.time 378 378 378 378
##
## P
## TAsup.av TAcomm.av SB.av AB.av SE.av Ant.grade Quiz1.total
## TAsup.av 0.0000 0.0000 0.0005 0.0000 0.0024 0.4171
## TAcomm.av 0.0000 0.0000 0.1058 0.0000 0.0460 0.9521
## SB.av 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## AB.av 0.0005 0.1058 0.0000 0.0000 0.0000 0.0000
## SE.av 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## Ant.grade 0.0024 0.0460 0.0000 0.0000 0.0000 0.0000
## Quiz1.total 0.4171 0.9521 0.0000 0.0000 0.0000 0.0000
## Quiz2.total 0.3013 0.5398 0.0003 0.0000 0.0000 0.0000 0.0000
## Quiz3.total 0.4633 0.3076 0.0000 0.0000 0.0000 0.0000 0.0000
## Exam.total 0.0829 0.1769 0.0000 0.0000 0.0000 0.0000 0.0000
## Exam.time 0.9060 0.3792 0.0545 0.0117 0.0327 0.1256 0.0468
## Quiz2.total Quiz3.total Exam.total Exam.time
## TAsup.av 0.3013 0.4633 0.0829 0.9060
## TAcomm.av 0.5398 0.3076 0.1769 0.3792
## SB.av 0.0003 0.0000 0.0000 0.0545
## AB.av 0.0000 0.0000 0.0000 0.0117
## SE.av 0.0000 0.0000 0.0000 0.0327
## Ant.grade 0.0000 0.0000 0.0000 0.1256
## Quiz1.total 0.0000 0.0000 0.0000 0.0468
## Quiz2.total 0.0000 0.0000 0.3224
## Quiz3.total 0.0000 0.0000 0.9215
## Exam.total 0.0000 0.0000 0.6522
## Exam.time 0.3224 0.9215 0.6522
exog<-cor(dat[,c("TA1", "TA2", "TA3","TA4","TA5","TA6","TA_facil1", "TA_facil3", "TAcomm1","TAcomm2","TAcomm3","TAcomm4","TAcomm5","TAcomm6","TAcomm7","TAcomm8","TAcomm9","TAcomm10")],use="pairwise.complete.obs")
cormat<-round(exog,2) #rounding this to the hundredth place
corrplot::corrplot(exog) #This function comes from the package by the same name
upper<-cormat
upper[upper.tri(cormat)] <-""
upper<-as.data.frame(upper)
upper
## TA1 TA2 TA3 TA4 TA5 TA6 TA_facil1 TA_facil3 TAcomm1 TAcomm2
## TA1 1
## TA2 0.5 1
## TA3 0.4 0.42 1
## TA4 0.39 0.4 0.36 1
## TA5 0.49 0.57 0.45 0.44 1
## TA6 0.32 0.33 0.27 0.35 0.36 1
## TA_facil1 0.27 0.28 0.21 0.18 0.21 0.23 1
## TA_facil3 0.44 0.56 0.45 0.43 0.48 0.35 0.27 1
## TAcomm1 0.43 0.43 0.34 0.32 0.36 0.36 0.22 0.43 1
## TAcomm2 0.35 0.35 0.25 0.32 0.34 0.33 0.13 0.4 0.68 1
## TAcomm3 0.43 0.45 0.31 0.28 0.4 0.33 0.29 0.43 0.68 0.58
## TAcomm4 0.43 0.37 0.31 0.43 0.41 0.38 0.18 0.41 0.64 0.67
## TAcomm5 0.36 0.38 0.26 0.33 0.32 0.35 0.2 0.44 0.69 0.77
## TAcomm6 0.37 0.38 0.32 0.39 0.31 0.39 0.2 0.43 0.62 0.74
## TAcomm7 0.42 0.51 0.35 0.28 0.47 0.35 0.26 0.43 0.7 0.62
## TAcomm8 0.39 0.43 0.35 0.31 0.38 0.35 0.24 0.45 0.68 0.68
## TAcomm9 0.38 0.42 0.36 0.33 0.4 0.33 0.19 0.46 0.67 0.72
## TAcomm10 0.35 0.38 0.3 0.32 0.33 0.32 0.21 0.39 0.62 0.7
## TAcomm3 TAcomm4 TAcomm5 TAcomm6 TAcomm7 TAcomm8 TAcomm9 TAcomm10
## TA1
## TA2
## TA3
## TA4
## TA5
## TA6
## TA_facil1
## TA_facil3
## TAcomm1
## TAcomm2
## TAcomm3 1
## TAcomm4 0.62 1
## TAcomm5 0.6 0.69 1
## TAcomm6 0.55 0.63 0.74 1
## TAcomm7 0.73 0.64 0.66 0.61 1
## TAcomm8 0.66 0.61 0.68 0.73 0.73 1
## TAcomm9 0.64 0.71 0.71 0.68 0.68 0.72 1
## TAcomm10 0.54 0.62 0.71 0.71 0.6 0.67 0.68 1
Hmisc::rcorr(as.matrix(dat[,c("TA1", "TA2", "TA3","TA4","TA5","TA6","TA_facil1", "TA_facil3", "TAcomm1","TAcomm2","TAcomm3","TAcomm4","TAcomm5","TAcomm6","TAcomm7","TAcomm8","TAcomm9","TAcomm10")]),type="pearson")
## TA1 TA2 TA3 TA4 TA5 TA6 TA_facil1 TA_facil3 TAcomm1 TAcomm2
## TA1 1.00 0.50 0.40 0.39 0.49 0.32 0.27 0.44 0.43 0.35
## TA2 0.50 1.00 0.42 0.40 0.57 0.33 0.28 0.56 0.43 0.35
## TA3 0.40 0.42 1.00 0.36 0.45 0.27 0.21 0.45 0.34 0.25
## TA4 0.39 0.40 0.36 1.00 0.44 0.35 0.18 0.43 0.32 0.32
## TA5 0.49 0.57 0.45 0.44 1.00 0.36 0.21 0.48 0.36 0.34
## TA6 0.32 0.33 0.27 0.35 0.36 1.00 0.23 0.35 0.36 0.33
## TA_facil1 0.27 0.28 0.21 0.18 0.21 0.23 1.00 0.27 0.22 0.13
## TA_facil3 0.44 0.56 0.45 0.43 0.48 0.35 0.27 1.00 0.43 0.40
## TAcomm1 0.43 0.43 0.34 0.32 0.36 0.36 0.22 0.43 1.00 0.68
## TAcomm2 0.35 0.35 0.25 0.32 0.34 0.33 0.13 0.40 0.68 1.00
## TAcomm3 0.43 0.45 0.31 0.28 0.40 0.33 0.29 0.43 0.68 0.58
## TAcomm4 0.43 0.37 0.31 0.43 0.41 0.38 0.18 0.41 0.64 0.67
## TAcomm5 0.36 0.38 0.26 0.33 0.32 0.35 0.20 0.44 0.69 0.77
## TAcomm6 0.37 0.38 0.32 0.39 0.31 0.39 0.20 0.43 0.62 0.74
## TAcomm7 0.42 0.51 0.35 0.28 0.47 0.35 0.26 0.43 0.70 0.62
## TAcomm8 0.39 0.43 0.35 0.31 0.38 0.35 0.24 0.45 0.68 0.68
## TAcomm9 0.38 0.42 0.36 0.33 0.40 0.33 0.19 0.46 0.67 0.72
## TAcomm10 0.35 0.38 0.30 0.32 0.33 0.32 0.21 0.39 0.62 0.70
## TAcomm3 TAcomm4 TAcomm5 TAcomm6 TAcomm7 TAcomm8 TAcomm9 TAcomm10
## TA1 0.43 0.43 0.36 0.37 0.42 0.39 0.38 0.35
## TA2 0.45 0.37 0.38 0.38 0.51 0.43 0.42 0.38
## TA3 0.31 0.31 0.26 0.32 0.35 0.35 0.36 0.30
## TA4 0.28 0.43 0.33 0.39 0.28 0.31 0.33 0.32
## TA5 0.40 0.41 0.32 0.31 0.47 0.38 0.40 0.33
## TA6 0.33 0.38 0.35 0.39 0.35 0.35 0.33 0.32
## TA_facil1 0.29 0.18 0.20 0.20 0.26 0.24 0.19 0.21
## TA_facil3 0.43 0.41 0.44 0.43 0.43 0.45 0.46 0.39
## TAcomm1 0.68 0.64 0.69 0.62 0.70 0.68 0.67 0.62
## TAcomm2 0.58 0.67 0.77 0.74 0.62 0.68 0.72 0.70
## TAcomm3 1.00 0.62 0.60 0.55 0.73 0.66 0.64 0.54
## TAcomm4 0.62 1.00 0.69 0.63 0.64 0.61 0.71 0.62
## TAcomm5 0.60 0.69 1.00 0.74 0.66 0.68 0.71 0.71
## TAcomm6 0.55 0.63 0.74 1.00 0.61 0.73 0.68 0.71
## TAcomm7 0.73 0.64 0.66 0.61 1.00 0.73 0.68 0.60
## TAcomm8 0.66 0.61 0.68 0.73 0.73 1.00 0.72 0.67
## TAcomm9 0.64 0.71 0.71 0.68 0.68 0.72 1.00 0.68
## TAcomm10 0.54 0.62 0.71 0.71 0.60 0.67 0.68 1.00
##
## n
## TA1 TA2 TA3 TA4 TA5 TA6 TA_facil1 TA_facil3 TAcomm1 TAcomm2 TAcomm3
## TA1 488 488 487 488 488 487 487 488 488 488 488
## TA2 488 488 487 488 488 487 487 488 488 488 488
## TA3 487 487 488 487 488 487 487 487 488 488 488
## TA4 488 488 487 490 488 487 487 488 490 490 490
## TA5 488 488 488 488 489 487 487 488 489 489 489
## TA6 487 487 487 487 487 487 487 487 487 487 487
## TA_facil1 487 487 487 487 487 487 487 487 487 487 487
## TA_facil3 488 488 487 488 488 487 487 488 488 488 488
## TAcomm1 488 488 488 490 489 487 487 488 492 492 492
## TAcomm2 488 488 488 490 489 487 487 488 492 492 492
## TAcomm3 488 488 488 490 489 487 487 488 492 492 492
## TAcomm4 488 488 488 490 489 487 487 488 492 492 492
## TAcomm5 488 488 488 490 489 487 487 488 492 492 492
## TAcomm6 488 488 488 490 489 487 487 488 492 492 492
## TAcomm7 488 488 488 490 489 487 487 488 492 492 492
## TAcomm8 488 488 488 490 489 487 487 488 492 492 492
## TAcomm9 488 488 488 490 489 487 487 488 492 492 492
## TAcomm10 488 488 488 490 489 487 487 488 492 492 492
## TAcomm4 TAcomm5 TAcomm6 TAcomm7 TAcomm8 TAcomm9 TAcomm10
## TA1 488 488 488 488 488 488 488
## TA2 488 488 488 488 488 488 488
## TA3 488 488 488 488 488 488 488
## TA4 490 490 490 490 490 490 490
## TA5 489 489 489 489 489 489 489
## TA6 487 487 487 487 487 487 487
## TA_facil1 487 487 487 487 487 487 487
## TA_facil3 488 488 488 488 488 488 488
## TAcomm1 492 492 492 492 492 492 492
## TAcomm2 492 492 492 492 492 492 492
## TAcomm3 492 492 492 492 492 492 492
## TAcomm4 492 492 492 492 492 492 492
## TAcomm5 492 492 492 492 492 492 492
## TAcomm6 492 492 492 492 492 492 492
## TAcomm7 492 492 492 492 492 492 492
## TAcomm8 492 492 492 492 492 492 492
## TAcomm9 492 492 492 492 492 492 492
## TAcomm10 492 492 492 492 492 492 492
##
## P
## TA1 TA2 TA3 TA4 TA5 TA6 TA_facil1 TA_facil3 TAcomm1
## TA1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA_facil1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA_facil3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0044 0.0000 0.0000
## TAcomm3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm2 TAcomm3 TAcomm4 TAcomm5 TAcomm6 TAcomm7 TAcomm8 TAcomm9
## TA1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA_facil1 0.0044 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TA_facil3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## TAcomm10
## TA1 0.0000
## TA2 0.0000
## TA3 0.0000
## TA4 0.0000
## TA5 0.0000
## TA6 0.0000
## TA_facil1 0.0000
## TA_facil3 0.0000
## TAcomm1 0.0000
## TAcomm2 0.0000
## TAcomm3 0.0000
## TAcomm4 0.0000
## TAcomm5 0.0000
## TAcomm6 0.0000
## TAcomm7 0.0000
## TAcomm8 0.0000
## TAcomm9 0.0000
## TAcomm10
#The number of objects in the last line of the output is a rough estimate of how many factors there might be. Look for number of values ≥ 1.00
ev<-eigen(exog) #Where the object "exog" is the correlation matrix we computed earlier
round(ev$values,2)
## [1] 8.93 1.80 0.94 0.83 0.68 0.63 0.58 0.53 0.49 0.43 0.36 0.33 0.30 0.27 0.26
## [16] 0.23 0.21 0.19
ev$values[ev$values>1]
## [1] 8.931096 1.800936
#Look for the largest "elbow", as well as amount of obvious elbows
plot(ev$values, type = "b", las = 1)
xx<-fa(exog,nfactors=2, fm = "pa", rotate="Promax", SMC=TRUE, scores="regression",use="pairwise",cor="poly")
print(xx$loadings,cut=.25)
##
## Loadings:
## PA1 PA2
## TA1 0.657
## TA2 0.777
## TA3 0.651
## TA4 0.572
## TA5 0.806
## TA6 0.397
## TA_facil1 0.367
## TA_facil3 0.664
## TAcomm1 0.735
## TAcomm2 0.928
## TAcomm3 0.610
## TAcomm4 0.709
## TAcomm5 0.918
## TAcomm6 0.835
## TAcomm7 0.659
## TAcomm8 0.788
## TAcomm9 0.810
## TAcomm10 0.815
##
## PA1 PA2
## SS loadings 6.240 3.302
## Proportion Var 0.347 0.183
## Cumulative Var 0.347 0.530
round(xx$Phi,2)
## PA1 PA2
## PA1 1.00 0.67
## PA2 0.67 1.00
cor.test(dat$TAcomm.av,dat$TAsup.av)
##
## Pearson's product-moment correlation
##
## data: dat$TAcomm.av and dat$TAsup.av
## t = 16.924, df = 489, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5487792 0.6607139
## sample estimates:
## cor
## 0.6077565
table(dat$Q2retry.CATS)
##
## ALLcorrect NOretry retry
## 121 195 176
table(dat$Gen.name)
##
## Man Woman
## 114 378
table(Quiz2.retry$Q2retry.CATS, Quiz2.retry$Gen.name)
##
## Man Woman
## NOretry 41 156
## retry 41 135
table(Quiz2.retry$Q2retry.CATS, Quiz2.retry$Condition.ordered)
##
## NOsupp ALLsupp NURTURANT PRACTICAL SUPPLEMENTAL
## NOretry 47 43 29 43 35
## retry 35 37 40 32 32
table(Quiz2.retry$Q2retry.CATS, Quiz2.retry$Condition,Quiz2.retry$Gen.name)
## , , = Man
##
##
## ALLsupp NOsupp NURTURANT PRACTICAL SUPPLEMENTAL
## NOretry 11 11 1 9 9
## retry 9 7 11 7 7
##
## , , = Woman
##
##
## ALLsupp NOsupp NURTURANT PRACTICAL SUPPLEMENTAL
## NOretry 32 36 28 34 26
## retry 28 28 29 25 25
table(Quiz2.retry$Q2retry.CATS); table(Quiz2.retry$Q2retry.CATS, Quiz2.retry$Condition.ordered, Quiz2.retry$Gen.name)
##
## NOretry retry
## 197 176
## , , = Man
##
##
## NOsupp ALLsupp NURTURANT PRACTICAL SUPPLEMENTAL
## NOretry 11 11 1 9 9
## retry 7 9 11 7 7
##
## , , = Woman
##
##
## NOsupp ALLsupp NURTURANT PRACTICAL SUPPLEMENTAL
## NOretry 36 32 28 34 26
## retry 28 28 29 25 25
m0CC <- glm(Q2noretry.d ~Gen.con*(NOvSupport + ALLvOther + NURTvPrSu + PRACTvSUPP),
family = binomial("logit"), data = Quiz2.retry)
summary(m0CC)
##
## Call:
## glm(formula = Q2noretry.d ~ Gen.con * (NOvSupport + ALLvOther +
## NURTvPrSu + PRACTvSUPP), family = binomial("logit"), data = Quiz2.retry)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.05462 0.15435 0.354 0.7235
## Gen.con -0.38781 0.30869 -1.256 0.2090
## NOvSupport 0.50783 0.32694 1.553 0.1204
## ALLvOther 0.43104 0.34306 1.256 0.2089
## NURTvPrSu -1.42883 0.57536 -2.483 0.0130 *
## PRACTvSUPP 0.13413 0.40491 0.331 0.7404
## Gen.con:NOvSupport -0.73561 0.65389 -1.125 0.2606
## Gen.con:ALLvOther -0.80277 0.68612 -1.170 0.2420
## Gen.con:NURTvPrSu 2.44077 1.15072 2.121 0.0339 *
## Gen.con:PRACTvSUPP 0.26826 0.80982 0.331 0.7404
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 515.90 on 372 degrees of freedom
## Residual deviance: 503.05 on 363 degrees of freedom
## AIC: 523.05
##
## Number of Fisher Scoring iterations: 4
tab_model(m0CC, title = "P v S", show.ci = F, show.se = T) #output in Odds Ratios so you dont have to convert
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | std. Error | p |
| (Intercept) | 1.06 | 0.16 | 0.723 |
| Gen con | 0.68 | 0.21 | 0.209 |
| NOvSupport | 1.66 | 0.54 | 0.120 |
| ALLvOther | 1.54 | 0.53 | 0.209 |
| NURTvPrSu | 0.24 | 0.14 | 0.013 |
| PRACTvSUPP | 1.14 | 0.46 | 0.740 |
| Gen con × NOvSupport | 0.48 | 0.31 | 0.261 |
| Gen con × ALLvOther | 0.45 | 0.31 | 0.242 |
| Gen con × NURTvPrSu | 11.48 | 13.21 | 0.034 |
| Gen con × PRACTvSUPP | 1.31 | 1.06 | 0.740 |
| Observations | 373 | ||
| R2 Tjur | 0.031 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*(NOvSupport + ALLvOther + SUPvPrNu + PRACTvNURT),
family = binomial("logit"), data = Quiz2.retry)
summary(m0CC)
##
## Call:
## glm(formula = Q2noretry.d ~ Gen.con * (NOvSupport + ALLvOther +
## SUPvPrNu + PRACTvNURT), family = binomial("logit"), data = Quiz2.retry)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.05462 0.15435 0.354 0.7235
## Gen.con -0.38781 0.30869 -1.256 0.2090
## NOvSupport 0.50783 0.32694 1.553 0.1204
## ALLvOther 0.43104 0.34306 1.256 0.2089
## SUPvPrNu 0.61381 0.41932 1.464 0.1432
## PRACTvNURT 1.49589 0.60901 2.456 0.0140 *
## Gen.con:NOvSupport -0.73561 0.65389 -1.125 0.2606
## Gen.con:ALLvOther -0.80277 0.68612 -1.170 0.2420
## Gen.con:SUPvPrNu -1.42158 0.83864 -1.695 0.0901 .
## Gen.con:PRACTvNURT -2.30663 1.21802 -1.894 0.0583 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 515.90 on 372 degrees of freedom
## Residual deviance: 503.05 on 363 degrees of freedom
## AIC: 523.05
##
## Number of Fisher Scoring iterations: 4
tab_model(m0CC, title = "P v N", show.ci = F, show.se = T) #output in Odds Ratios so you dont have to convert
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | std. Error | p |
| (Intercept) | 1.06 | 0.16 | 0.723 |
| Gen con | 0.68 | 0.21 | 0.209 |
| NOvSupport | 1.66 | 0.54 | 0.120 |
| ALLvOther | 1.54 | 0.53 | 0.209 |
| SUPvPrNu | 1.85 | 0.77 | 0.143 |
| PRACTvNURT | 4.46 | 2.72 | 0.014 |
| Gen con × NOvSupport | 0.48 | 0.31 | 0.261 |
| Gen con × ALLvOther | 0.45 | 0.31 | 0.242 |
| Gen con × SUPvPrNu | 0.24 | 0.20 | 0.090 |
| Gen con × PRACTvNURT | 0.10 | 0.12 | 0.058 |
| Observations | 373 | ||
| R2 Tjur | 0.031 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*(NOvSupport + ALLvOther + PRAvSuNu + SUPPvNURT),
family = binomial("logit"), data = Quiz2.retry)
summary(m0CC)
##
## Call:
## glm(formula = Q2noretry.d ~ Gen.con * (NOvSupport + ALLvOther +
## PRAvSuNu + SUPPvNURT), family = binomial("logit"), data = Quiz2.retry)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.05462 0.15435 0.354 0.7235
## Gen.con -0.38781 0.30869 -1.256 0.2090
## NOvSupport 0.50783 0.32694 1.553 0.1204
## ALLvOther 0.43104 0.34306 1.256 0.2089
## PRAvSuNu 0.81501 0.41729 1.953 0.0508 .
## SUPPvNURT 1.36176 0.61087 2.229 0.0258 *
## Gen.con:NOvSupport -0.73561 0.65389 -1.125 0.2606
## Gen.con:ALLvOther -0.80277 0.68612 -1.170 0.2420
## Gen.con:PRAvSuNu -1.01918 0.83459 -1.221 0.2220
## Gen.con:SUPPvNURT -2.57490 1.22173 -2.108 0.0351 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 515.90 on 372 degrees of freedom
## Residual deviance: 503.05 on 363 degrees of freedom
## AIC: 523.05
##
## Number of Fisher Scoring iterations: 4
tab_model(m0CC, title = "S v N", show.ci = F, show.se = T) #output in Odds Ratios so you dont have to convert
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | std. Error | p |
| (Intercept) | 1.06 | 0.16 | 0.723 |
| Gen con | 0.68 | 0.21 | 0.209 |
| NOvSupport | 1.66 | 0.54 | 0.120 |
| ALLvOther | 1.54 | 0.53 | 0.209 |
| PRAvSuNu | 2.26 | 0.94 | 0.051 |
| SUPPvNURT | 3.90 | 2.38 | 0.026 |
| Gen con × NOvSupport | 0.48 | 0.31 | 0.261 |
| Gen con × ALLvOther | 0.45 | 0.31 | 0.242 |
| Gen con × PRAvSuNu | 0.36 | 0.30 | 0.222 |
| Gen con × SUPPvNURT | 0.08 | 0.09 | 0.035 |
| Observations | 373 | ||
| R2 Tjur | 0.031 | ||
ggplot(Quiz2.retry, aes(fill=Q2retry.CATS, y=nrow(Quiz2.retry), x=Condition)) +
geom_bar(position="stack", stat="identity")
library(viridis)
ggplot(Quiz2.retry, aes(fill=Q2retry.CATS, y=nrow(Quiz2.retry), x=Condition)) +
geom_bar(position="stack", stat="identity") +
facet_wrap("Gen.name") +
scale_fill_viridis(discrete = TRUE, alpha=0.6)
library(viridis)
ggplot(Quiz2.retry, aes(fill=Q2retry.CATS, y=nrow(Quiz2.retry), x=Gen.name)) +
geom_bar(position="stack", stat="identity") +
facet_wrap("Condition") +
scale_fill_viridis(discrete = TRUE, alpha=0.6)
#### Nurt v others
table(Quiz2.retry$Q2noretry.d, Quiz2.retry$Gen.name, Quiz2.retry$Condition)
## , , = ALLsupp
##
##
## Man Woman
## 0 11 32
## 1 9 28
##
## , , = NOsupp
##
##
## Man Woman
## 0 11 36
## 1 7 28
##
## , , = NURTURANT
##
##
## Man Woman
## 0 1 28
## 1 11 29
##
## , , = PRACTICAL
##
##
## Man Woman
## 0 9 34
## 1 7 25
##
## , , = SUPPLEMENTAL
##
##
## Man Woman
## 0 9 26
## 1 7 25
m0CC <- glm(Q2noretry.d ~Gen.con*NOsup_dummy,
family = binomial("logit"), data = Quiz2.retry)
tab_model(m0CC,title = "No Support.d")
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 0.70 | 0.40 – 1.19 | 0.197 |
| Gen con | 1.22 | 0.43 – 3.70 | 0.713 |
| NOsup dummy | 1.43 | 0.79 – 2.65 | 0.245 |
| Gen con × NOsup dummy | 0.64 | 0.19 – 2.12 | 0.473 |
| Observations | 373 | ||
| R2 Tjur | 0.005 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*NURT_dummy,
family = binomial("logit"), data = Quiz2.retry)
summary(m0CC)
##
## Call:
## glm(formula = Q2noretry.d ~ Gen.con * NURT_dummy, family = binomial("logit"),
## data = Quiz2.retry)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.2165 0.5386 2.259 0.02390 *
## Gen.con -2.3628 1.0771 -2.194 0.02826 *
## NURT_dummy -1.4546 0.5558 -2.617 0.00887 **
## Gen.con:NURT_dummy 2.4619 1.1117 2.215 0.02679 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 515.90 on 372 degrees of freedom
## Residual deviance: 503.81 on 369 degrees of freedom
## AIC: 511.81
##
## Number of Fisher Scoring iterations: 4
tab_model(m0CC,title = "NURTURANT.d")
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 3.38 | 1.42 – 14.67 | 0.024 |
| Gen con | 0.09 | 0.00 – 0.53 | 0.028 |
| NURT dummy | 0.23 | 0.05 – 0.58 | 0.009 |
| Gen con × NURT dummy | 11.73 | 1.89 – 229.59 | 0.027 |
| Observations | 373 | ||
| R2 Tjur | 0.029 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*PRAC_dummy,
family = binomial("logit"), data = Quiz2.retry)
tab_model(m0CC,title = "PRACTICAL.d")
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 0.76 | 0.43 – 1.32 | 0.326 |
| Gen con | 0.95 | 0.31 – 2.97 | 0.921 |
| PRAC dummy | 1.29 | 0.70 – 2.44 | 0.415 |
| Gen con × PRAC dummy | 0.90 | 0.25 – 3.10 | 0.865 |
| Observations | 373 | ||
| R2 Tjur | 0.003 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*SUPP_dummy,
family = binomial("logit"), data = Quiz2.retry)
tab_model(m0CC, title = "SUPPLEMENTAL.d")
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 0.86 | 0.48 – 1.52 | 0.614 |
| Gen con | 1.24 | 0.40 – 3.94 | 0.713 |
| SUPP dummy | 1.10 | 0.59 – 2.08 | 0.774 |
| Gen con × SUPP dummy | 0.64 | 0.18 – 2.25 | 0.492 |
| Observations | 373 | ||
| R2 Tjur | 0.002 | ||
m0CC <- glm(Q2noretry.d ~Gen.con*ALL_dummy,
family = binomial("logit"), data = Quiz2.retry)
tab_model(m0CC,title = "All Support.d")
| Q2noretry.d | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 0.85 | 0.50 – 1.41 | 0.519 |
| Gen con | 1.07 | 0.39 – 3.01 | 0.897 |
| ALL dummy | 1.13 | 0.63 – 2.04 | 0.671 |
| Gen con × ALL dummy | 0.76 | 0.23 – 2.41 | 0.638 |
| Observations | 373 | ||
| R2 Tjur | 0.002 | ||
Social Belonging
Pracical v. Supplemental Support (marginal)
Practical v. Nurturant (n.s.)
Supplemental v. Nurturant (n.s.)
Tukey’s (sig gender diff in NURT)
Differences within condition:
Sig Gender within Nurturant
+ Communality
Graphs
Condition main effect
Violin condition x gender
Gender main effect
Violin gender x condition