library(readxl)
## Warning: package 'readxl' was built under R version 4.4.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(caret)
## Warning: package 'caret' was built under R version 4.4.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.3
## Loading required package: lattice
library(e1071)
## Warning: package 'e1071' was built under R version 4.4.3
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.4.3
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
## The following object is masked from 'package:dplyr':
## 
##     combine
library(rpart)
## Warning: package 'rpart' was built under R version 4.4.3
library(writexl)
## Warning: package 'writexl' was built under R version 4.4.3
data_train <- read_excel("C:/Users/HP/OneDrive/Documents/KULIAH S1/KULIAH SEMESTER 6/DATA MINING/UAS/datatraining.xlsx")
data_test <- read_excel("C:/Users/HP/OneDrive/Documents/KULIAH S1/KULIAH SEMESTER 6/DATA MINING/UAS/datatesting.xlsx")
str(data_train)
## tibble [200 × 11] (S3: tbl_df/tbl/data.frame)
##  $ usia                : num [1:200] 15 19 15 15 16 18 16 16 15 21 ...
##  $ jenis_kelamin       : chr [1:200] "0" "0" "0" "1" ...
##  $ nilai_rata_rata     : num [1:200] 85.2 60.9 60.5 78.6 66.2 85.9 45.2 91.6 74.1 88.2 ...
##  $ dukungan_orang_tua  : chr [1:200] "1" "2" "2" "3" ...
##  $ fasilitas_belajar   : chr [1:200] "2" "3" "1" "2" ...
##  $ jam_belajar_per_hari: num [1:200] 4.1 3.8 6.1 5.1 5.5 3.7 2.8 6.2 4.6 3 ...
##  $ kehadiran_persen    : num [1:200] 79.7 89.8 86.7 78.5 81 85.4 78.9 78.1 96.8 82.1 ...
##  $ minat_pada_pelajaran: chr [1:200] "2" "2" "1" "3" ...
##  $ kesulitan_ekonomi   : chr [1:200] "0" "1" "1" "1" ...
##  $ jarak_rumah_sekolah : num [1:200] 11.5 6.3 15.9 9.8 3.5 1 6.4 4.9 6.5 9.5 ...
##  $ motivasi_belajar    : chr [1:200] "1" "2" "1" "2" ...
str(data_test)
## tibble [15 × 10] (S3: tbl_df/tbl/data.frame)
##  $ usia                : num [1:15] 15 19 17 20 16 21 21 19 17 18 ...
##  $ jenis_kelamin       : chr [1:15] "1" "0" "0" "1" ...
##  $ nilai_rata_rata     : num [1:15] 90.2 79.6 66.9 85.6 65.9 70.8 86.3 84.3 79.5 74.4 ...
##  $ dukungan_orang_tua  : chr [1:15] "2" "1" "2" "3" ...
##  $ fasilitas_belajar   : chr [1:15] "2" "1" "3" "1" ...
##  $ jam_belajar_per_hari: num [1:15] 5.4 4.6 2.9 3.9 5.3 1.9 4.4 1.5 2 5.5 ...
##  $ kehadiran_persen    : num [1:15] 78.3 88.2 76.3 89.4 74 100 100 92.1 84.5 90.3 ...
##  $ minat_pada_pelajaran: chr [1:15] "2" "3" "1" "1" ...
##  $ kesulitan_ekonomi   : chr [1:15] "1" "0" "0" "0" ...
##  $ jarak_rumah_sekolah : num [1:15] 4.7 10.8 11.8 5.7 3.1 7.1 8.2 5.4 4.2 10.7 ...
# Ubah tipe kolom yang sesuai
factor_cols <- c("jenis_kelamin", "dukungan_orang_tua", "fasilitas_belajar", 
                 "minat_pada_pelajaran", "kesulitan_ekonomi", "motivasi_belajar")

data_train[factor_cols] <- lapply(data_train[factor_cols], as.factor)

# Untuk data testing, tanpa motivasi_belajar
factor_cols_test <- setdiff(factor_cols, "motivasi_belajar")
data_test[factor_cols_test] <- lapply(data_test[factor_cols_test], as.factor)

# Konfirmasi perubahan
str(data_train)
## tibble [200 × 11] (S3: tbl_df/tbl/data.frame)
##  $ usia                : num [1:200] 15 19 15 15 16 18 16 16 15 21 ...
##  $ jenis_kelamin       : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 2 2 ...
##  $ nilai_rata_rata     : num [1:200] 85.2 60.9 60.5 78.6 66.2 85.9 45.2 91.6 74.1 88.2 ...
##  $ dukungan_orang_tua  : Factor w/ 3 levels "1","2","3": 1 2 2 3 2 2 1 2 2 3 ...
##  $ fasilitas_belajar   : Factor w/ 3 levels "1","2","3": 2 3 1 2 1 1 3 2 1 3 ...
##  $ jam_belajar_per_hari: num [1:200] 4.1 3.8 6.1 5.1 5.5 3.7 2.8 6.2 4.6 3 ...
##  $ kehadiran_persen    : num [1:200] 79.7 89.8 86.7 78.5 81 85.4 78.9 78.1 96.8 82.1 ...
##  $ minat_pada_pelajaran: Factor w/ 3 levels "1","2","3": 2 2 1 3 1 2 1 2 2 3 ...
##  $ kesulitan_ekonomi   : Factor w/ 2 levels "0","1": 1 2 2 2 2 2 1 1 1 2 ...
##  $ jarak_rumah_sekolah : num [1:200] 11.5 6.3 15.9 9.8 3.5 1 6.4 4.9 6.5 9.5 ...
##  $ motivasi_belajar    : Factor w/ 3 levels "1","2","3": 1 2 1 2 1 1 1 2 1 3 ...
str(data_test)
## tibble [15 × 10] (S3: tbl_df/tbl/data.frame)
##  $ usia                : num [1:15] 15 19 17 20 16 21 21 19 17 18 ...
##  $ jenis_kelamin       : Factor w/ 2 levels "0","1": 2 1 1 2 2 1 1 2 1 1 ...
##  $ nilai_rata_rata     : num [1:15] 90.2 79.6 66.9 85.6 65.9 70.8 86.3 84.3 79.5 74.4 ...
##  $ dukungan_orang_tua  : Factor w/ 3 levels "1","2","3": 2 1 2 3 3 2 3 3 2 1 ...
##  $ fasilitas_belajar   : Factor w/ 3 levels "1","2","3": 2 1 3 1 1 3 2 3 2 2 ...
##  $ jam_belajar_per_hari: num [1:15] 5.4 4.6 2.9 3.9 5.3 1.9 4.4 1.5 2 5.5 ...
##  $ kehadiran_persen    : num [1:15] 78.3 88.2 76.3 89.4 74 100 100 92.1 84.5 90.3 ...
##  $ minat_pada_pelajaran: Factor w/ 3 levels "1","2","3": 2 3 1 1 1 1 1 1 3 3 ...
##  $ kesulitan_ekonomi   : Factor w/ 2 levels "0","1": 2 1 1 1 2 2 1 1 1 1 ...
##  $ jarak_rumah_sekolah : num [1:15] 4.7 10.8 11.8 5.7 3.1 7.1 8.2 5.4 4.2 10.7 ...
colSums(is.na(data_train))
##                 usia        jenis_kelamin      nilai_rata_rata 
##                    0                    0                    0 
##   dukungan_orang_tua    fasilitas_belajar jam_belajar_per_hari 
##                    0                    0                    0 
##     kehadiran_persen minat_pada_pelajaran    kesulitan_ekonomi 
##                    0                    0                    0 
##  jarak_rumah_sekolah     motivasi_belajar 
##                    0                    0
colSums(is.na(data_test))
##                 usia        jenis_kelamin      nilai_rata_rata 
##                    0                    0                    0 
##   dukungan_orang_tua    fasilitas_belajar jam_belajar_per_hari 
##                    0                    0                    0 
##     kehadiran_persen minat_pada_pelajaran    kesulitan_ekonomi 
##                    0                    0                    0 
##  jarak_rumah_sekolah 
##                    0
sum(duplicated(data_train))
## [1] 0
sum(duplicated(data_test))
## [1] 0
data_train <- data_train[!duplicated(data_train), ]
data_test <- data_test[!duplicated(data_test), ]
str(data_train)
## tibble [200 × 11] (S3: tbl_df/tbl/data.frame)
##  $ usia                : num [1:200] 15 19 15 15 16 18 16 16 15 21 ...
##  $ jenis_kelamin       : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 2 2 ...
##  $ nilai_rata_rata     : num [1:200] 85.2 60.9 60.5 78.6 66.2 85.9 45.2 91.6 74.1 88.2 ...
##  $ dukungan_orang_tua  : Factor w/ 3 levels "1","2","3": 1 2 2 3 2 2 1 2 2 3 ...
##  $ fasilitas_belajar   : Factor w/ 3 levels "1","2","3": 2 3 1 2 1 1 3 2 1 3 ...
##  $ jam_belajar_per_hari: num [1:200] 4.1 3.8 6.1 5.1 5.5 3.7 2.8 6.2 4.6 3 ...
##  $ kehadiran_persen    : num [1:200] 79.7 89.8 86.7 78.5 81 85.4 78.9 78.1 96.8 82.1 ...
##  $ minat_pada_pelajaran: Factor w/ 3 levels "1","2","3": 2 2 1 3 1 2 1 2 2 3 ...
##  $ kesulitan_ekonomi   : Factor w/ 2 levels "0","1": 1 2 2 2 2 2 1 1 1 2 ...
##  $ jarak_rumah_sekolah : num [1:200] 11.5 6.3 15.9 9.8 3.5 1 6.4 4.9 6.5 9.5 ...
##  $ motivasi_belajar    : Factor w/ 3 levels "1","2","3": 1 2 1 2 1 1 1 2 1 3 ...
summary(data_train)
##       usia       jenis_kelamin nilai_rata_rata  dukungan_orang_tua
##  Min.   :15.00   0: 95         Min.   : 41.50   1: 39             
##  1st Qu.:16.00   1:105         1st Qu.: 66.95   2:111             
##  Median :18.00                 Median : 74.40   3: 50             
##  Mean   :17.78                 Mean   : 74.14                     
##  3rd Qu.:20.00                 3rd Qu.: 80.78                     
##  Max.   :21.00                 Max.   :100.00                     
##  fasilitas_belajar jam_belajar_per_hari kehadiran_persen minat_pada_pelajaran
##  1:52              Min.   :1.000        Min.   : 66.30   1:65                
##  2:88              1st Qu.:2.900        1st Qu.: 79.70   2:76                
##  3:60              Median :4.050        Median : 86.10   3:59                
##                    Mean   :4.095        Mean   : 85.53                       
##                    3rd Qu.:5.100        3rd Qu.: 90.80                       
##                    Max.   :8.800        Max.   :100.00                       
##  kesulitan_ekonomi jarak_rumah_sekolah motivasi_belajar
##  0:112             Min.   : 1.000      1: 81           
##  1: 88             1st Qu.: 5.475      2:105           
##                    Median : 8.300      3: 14           
##                    Mean   : 8.315                      
##                    3rd Qu.:11.300                      
##                    Max.   :20.500
library(e1071)
model_svm <- svm(motivasi_belajar ~ ., data = data_train, kernel = "radial", probability = TRUE)

summary(model_svm)
## 
## Call:
## svm(formula = motivasi_belajar ~ ., data = data_train, kernel = "radial", 
##     probability = TRUE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  177
## 
##  ( 69 94 14 )
## 
## 
## Number of Classes:  3 
## 
## Levels: 
##  1 2 3
model_rf <- randomForest(motivasi_belajar ~ ., data = data_train, ntree = 100, mtry = 3, importance = TRUE)
print(model_rf)
## 
## Call:
##  randomForest(formula = motivasi_belajar ~ ., data = data_train,      ntree = 100, mtry = 3, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 100
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 30.5%
## Confusion matrix:
##    1  2 3 class.error
## 1 54 27 0   0.3333333
## 2 20 85 0   0.1904762
## 3  0 14 0   1.0000000
library(rpart)
model_dt <- rpart(motivasi_belajar ~ ., data = data_train, method = "class")
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.4.3
rpart.plot(model_dt)

#SVM
pred_svm <- predict(model_svm, newdata = data_test)
data_test$pred_svm <- pred_svm
#Random Forest
pred_rf <- predict(model_rf, newdata = data_test)
data_test$pred_rf <- pred_rf
#Decision Tree
pred_dt <- predict(model_dt, newdata = data_test, type = "class")
data_test$pred_dt <- pred_dt
hasil_prediksi <- data_test %>%
  select(pred_svm, pred_rf, pred_dt)

print(hasil_prediksi)
## # A tibble: 15 × 3
##    pred_svm pred_rf pred_dt
##    <fct>    <fct>   <fct>  
##  1 2        2       2      
##  2 2        2       2      
##  3 1        1       1      
##  4 2        2       2      
##  5 1        1       1      
##  6 2        2       2      
##  7 2        2       2      
##  8 2        2       3      
##  9 2        2       1      
## 10 2        2       2      
## 11 1        1       2      
## 12 1        1       1      
## 13 2        2       1      
## 14 1        2       2      
## 15 1        1       1