# Load library
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(e1071)
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:dplyr':
##
## combine
##
## The following object is masked from 'package:ggplot2':
##
## margin
library(rpart)
data_train <- read.csv("C:/Users/LENOVO D330/Downloads/data_train.csv")
data_test <- read.csv("C:/Users/LENOVO D330/Downloads/data_test.csv")
kategorik_vars <- c("jenis_kelamin", "dukungan_orang_tua", "fasilitas_belajar",
"minat_pada_pelajaran", "kesulitan_ekonomi", "motivasi_belajar")
data_train[kategorik_vars] <- lapply(data_train[kategorik_vars], as.factor)
data_test[kategorik_vars[-length(kategorik_vars)]] <- lapply(data_test[kategorik_vars[-length(kategorik_vars)]], as.factor)
model_svm <- svm(motivasi_belajar ~ ., data = data_train)
pred_svm <- predict(model_svm, newdata = data_test)
model_rf <- randomForest(motivasi_belajar ~ ., data = data_train, ntree = 100)
pred_rf <- predict(model_rf, newdata = data_test)
model_dt <- rpart(motivasi_belajar ~ ., data = data_train, method = "class")
pred_dt <- predict(model_dt, newdata = data_test, type = "class")
hasil <- data.frame(
id = 1:nrow(data_test),
prediksi_SVM = pred_svm,
prediksi_RF = pred_rf,
prediksi_DT = pred_dt
)
write.csv(hasil, "hasil_prediksi_uas.csv", row.names = FALSE)
print(hasil)
## id prediksi_SVM prediksi_RF prediksi_DT
## 1 1 2 2 2
## 2 2 2 2 2
## 3 3 1 1 1
## 4 4 2 2 2
## 5 5 1 1 1
## 6 6 2 2 2
## 7 7 2 2 2
## 8 8 2 2 3
## 9 9 2 2 1
## 10 10 2 2 2
## 11 11 1 1 2
## 12 12 1 1 1
## 13 13 2 2 1
## 14 14 1 2 2
## 15 15 1 1 1