url<- 'https://raw.githubusercontent.com/ankita1112/House-Prices-Advanced-Regression/master/train.csv'
Datos_u <- read.csv(url)
Este conjunto de datos es una alternativa al conocido conjunto de datos de Boston y contiene 79 variables explicativas que describen casi todos los aspectos de las viviendas residenciales en Ames,Iowa. Es ampliamente utilizado para técnicas avanzadas de regresión. OverallQual: Calidad general del material y acabado (numérica, ordinal).En donde las variables representan
Realizar estadística descriptiva de la anterior base de datos:
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
glimpse(Datos_u)
## Rows: 1,460
## Columns: 81
## $ Id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ MSSubClass <int> 60, 20, 60, 70, 60, 50, 20, 60, 50, 190, 20, 60, 20, 20,…
## $ MSZoning <chr> "RL", "RL", "RL", "RL", "RL", "RL", "RL", "RL", "RM", "R…
## $ LotFrontage <int> 65, 80, 68, 60, 84, 85, 75, NA, 51, 50, 70, 85, NA, 91, …
## $ LotArea <int> 8450, 9600, 11250, 9550, 14260, 14115, 10084, 10382, 612…
## $ Street <chr> "Pave", "Pave", "Pave", "Pave", "Pave", "Pave", "Pave", …
## $ Alley <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ LotShape <chr> "Reg", "Reg", "IR1", "IR1", "IR1", "IR1", "Reg", "IR1", …
## $ LandContour <chr> "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", …
## $ Utilities <chr> "AllPub", "AllPub", "AllPub", "AllPub", "AllPub", "AllPu…
## $ LotConfig <chr> "Inside", "FR2", "Inside", "Corner", "FR2", "Inside", "I…
## $ LandSlope <chr> "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", …
## $ Neighborhood <chr> "CollgCr", "Veenker", "CollgCr", "Crawfor", "NoRidge", "…
## $ Condition1 <chr> "Norm", "Feedr", "Norm", "Norm", "Norm", "Norm", "Norm",…
## $ Condition2 <chr> "Norm", "Norm", "Norm", "Norm", "Norm", "Norm", "Norm", …
## $ BldgType <chr> "1Fam", "1Fam", "1Fam", "1Fam", "1Fam", "1Fam", "1Fam", …
## $ HouseStyle <chr> "2Story", "1Story", "2Story", "2Story", "2Story", "1.5Fi…
## $ OverallQual <int> 7, 6, 7, 7, 8, 5, 8, 7, 7, 5, 5, 9, 5, 7, 6, 7, 6, 4, 5,…
## $ OverallCond <int> 5, 8, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 8, 7, 5, 5,…
## $ YearBuilt <int> 2003, 1976, 2001, 1915, 2000, 1993, 2004, 1973, 1931, 19…
## $ YearRemodAdd <int> 2003, 1976, 2002, 1970, 2000, 1995, 2005, 1973, 1950, 19…
## $ RoofStyle <chr> "Gable", "Gable", "Gable", "Gable", "Gable", "Gable", "G…
## $ RoofMatl <chr> "CompShg", "CompShg", "CompShg", "CompShg", "CompShg", "…
## $ Exterior1st <chr> "VinylSd", "MetalSd", "VinylSd", "Wd Sdng", "VinylSd", "…
## $ Exterior2nd <chr> "VinylSd", "MetalSd", "VinylSd", "Wd Shng", "VinylSd", "…
## $ MasVnrType <chr> "BrkFace", "None", "BrkFace", "None", "BrkFace", "None",…
## $ MasVnrArea <int> 196, 0, 162, 0, 350, 0, 186, 240, 0, 0, 0, 286, 0, 306, …
## $ ExterQual <chr> "Gd", "TA", "Gd", "TA", "Gd", "TA", "Gd", "TA", "TA", "T…
## $ ExterCond <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "T…
## $ Foundation <chr> "PConc", "CBlock", "PConc", "BrkTil", "PConc", "Wood", "…
## $ BsmtQual <chr> "Gd", "Gd", "Gd", "TA", "Gd", "Gd", "Ex", "Gd", "TA", "T…
## $ BsmtCond <chr> "TA", "TA", "TA", "Gd", "TA", "TA", "TA", "TA", "TA", "T…
## $ BsmtExposure <chr> "No", "Gd", "Mn", "No", "Av", "No", "Av", "Mn", "No", "N…
## $ BsmtFinType1 <chr> "GLQ", "ALQ", "GLQ", "ALQ", "GLQ", "GLQ", "GLQ", "ALQ", …
## $ BsmtFinSF1 <int> 706, 978, 486, 216, 655, 732, 1369, 859, 0, 851, 906, 99…
## $ BsmtFinType2 <chr> "Unf", "Unf", "Unf", "Unf", "Unf", "Unf", "Unf", "BLQ", …
## $ BsmtFinSF2 <int> 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ BsmtUnfSF <int> 150, 284, 434, 540, 490, 64, 317, 216, 952, 140, 134, 17…
## $ TotalBsmtSF <int> 856, 1262, 920, 756, 1145, 796, 1686, 1107, 952, 991, 10…
## $ Heating <chr> "GasA", "GasA", "GasA", "GasA", "GasA", "GasA", "GasA", …
## $ HeatingQC <chr> "Ex", "Ex", "Ex", "Gd", "Ex", "Ex", "Ex", "Ex", "Gd", "E…
## $ CentralAir <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "…
## $ Electrical <chr> "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr", "S…
## $ X1stFlrSF <int> 856, 1262, 920, 961, 1145, 796, 1694, 1107, 1022, 1077, …
## $ X2ndFlrSF <int> 854, 0, 866, 756, 1053, 566, 0, 983, 752, 0, 0, 1142, 0,…
## $ LowQualFinSF <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ GrLivArea <int> 1710, 1262, 1786, 1717, 2198, 1362, 1694, 2090, 1774, 10…
## $ BsmtFullBath <int> 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,…
## $ BsmtHalfBath <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ FullBath <int> 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1,…
## $ HalfBath <int> 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,…
## $ BedroomAbvGr <int> 3, 3, 3, 3, 4, 1, 3, 3, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 3,…
## $ KitchenAbvGr <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1,…
## $ KitchenQual <chr> "Gd", "TA", "Gd", "Gd", "Gd", "TA", "Gd", "TA", "TA", "T…
## $ TotRmsAbvGrd <int> 8, 6, 6, 7, 9, 5, 7, 7, 8, 5, 5, 11, 4, 7, 5, 5, 5, 6, 6…
## $ Functional <chr> "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", …
## $ Fireplaces <int> 0, 1, 1, 1, 1, 0, 1, 2, 2, 2, 0, 2, 0, 1, 1, 0, 1, 0, 0,…
## $ FireplaceQu <chr> NA, "TA", "TA", "Gd", "TA", NA, "Gd", "TA", "TA", "TA", …
## $ GarageType <chr> "Attchd", "Attchd", "Attchd", "Detchd", "Attchd", "Attch…
## $ GarageYrBlt <int> 2003, 1976, 2001, 1998, 2000, 1993, 2004, 1973, 1931, 19…
## $ GarageFinish <chr> "RFn", "RFn", "RFn", "Unf", "RFn", "Unf", "RFn", "RFn", …
## $ GarageCars <int> 2, 2, 2, 3, 3, 2, 2, 2, 2, 1, 1, 3, 1, 3, 1, 2, 2, 2, 2,…
## $ GarageArea <int> 548, 460, 608, 642, 836, 480, 636, 484, 468, 205, 384, 7…
## $ GarageQual <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "Fa", "G…
## $ GarageCond <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "T…
## $ PavedDrive <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "…
## $ WoodDeckSF <int> 0, 298, 0, 0, 192, 40, 255, 235, 90, 0, 0, 147, 140, 160…
## $ OpenPorchSF <int> 61, 0, 42, 35, 84, 30, 57, 204, 0, 4, 0, 21, 0, 33, 213,…
## $ EnclosedPorch <int> 0, 0, 0, 272, 0, 0, 0, 228, 205, 0, 0, 0, 0, 0, 176, 0, …
## $ X3SsnPorch <int> 0, 0, 0, 0, 0, 320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ ScreenPorch <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 176, 0, 0, 0, 0, 0, …
## $ PoolArea <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ PoolQC <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ Fence <chr> NA, NA, NA, NA, NA, "MnPrv", NA, NA, NA, NA, NA, NA, NA,…
## $ MiscFeature <chr> NA, NA, NA, NA, NA, "Shed", NA, "Shed", NA, NA, NA, NA, …
## $ MiscVal <int> 0, 0, 0, 0, 0, 700, 0, 350, 0, 0, 0, 0, 0, 0, 0, 0, 700,…
## $ MoSold <int> 2, 5, 9, 2, 12, 10, 8, 11, 4, 1, 2, 7, 9, 8, 5, 7, 3, 10…
## $ YrSold <int> 2008, 2007, 2008, 2006, 2008, 2009, 2007, 2009, 2008, 20…
## $ SaleType <chr> "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD", "W…
## $ SaleCondition <chr> "Normal", "Normal", "Normal", "Abnorml", "Normal", "Norm…
## $ SalePrice <int> 208500, 181500, 223500, 140000, 250000, 143000, 307000, …
(SalePrice).
Media_s<-mean(Datos_u$SalePrice)
Desviación<- sd(Datos_u$SalePrice)
print(Media_s)
## [1] 180921.2
print (Desviación)
## [1] 79442.5
El precio final promedio de las viviendas es de 180.921 al vender las casas
Hace refencia a la variacion que pueden tener los precios ,como la media del precio final de venta es de 180,921.2, mientras que la desviación estándar es de 79,442 dado que la media es mayor sugiere que propiedades con precios muy altos que elevan el promedio general. Además, el valor elevado de la desviación estándar indica que los precios de venta presentan una alta variabilidad, con diferencias significativas entre los precios más bajos y más altos.
Media_a<-mean(Datos_u$GrLivArea)
print(Media_a)
## [1] 1515.464
La media del área habitable es La media del área habitable 1515.464 pies cuadrados esto indica que, en promedio, las casas tienen un tamaño moderado. Al compararla con la media del precio final de venta 180,921.2 , podemos concluir que a mayor área habitable suele corresponder un mayor precio de venta, lo que sugiere una relación positiva entre el tamaño de la casa y su valor en el mercado.
vari <-var(Datos_u$GarageArea)
rango <- max(Datos_u$GarageArea)-min(Datos_u$GarageArea)
print(vari)
## [1] 45712.51
print(rango)
## [1] 1418
Heterogénea. La alta varianza y el amplio rango indican una dispersión considerable en los tamaños de los garajes.
summary(Datos_u)
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 Length:1460 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 Class :character 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 Mode :character Median : 69.00
## Mean : 730.5 Mean : 56.9 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape
## Min. : 1300 Length:1460 Length:1460 Length:1460
## 1st Qu.: 7554 Class :character Class :character Class :character
## Median : 9478 Mode :character Mode :character Mode :character
## Mean : 10517
## 3rd Qu.: 11602
## Max. :215245
##
## LandContour Utilities LotConfig LandSlope
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Neighborhood Condition1 Condition2 BldgType
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HouseStyle OverallQual OverallCond YearBuilt
## Length:1460 Min. : 1.000 Min. :1.000 Min. :1872
## Class :character 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Mode :character Median : 6.000 Median :5.000 Median :1973
## Mean : 6.099 Mean :5.575 Mean :1971
## 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## Max. :10.000 Max. :9.000 Max. :2010
##
## YearRemodAdd RoofStyle RoofMatl Exterior1st
## Min. :1950 Length:1460 Length:1460 Length:1460
## 1st Qu.:1967 Class :character Class :character Class :character
## Median :1994 Mode :character Mode :character Mode :character
## Mean :1985
## 3rd Qu.:2004
## Max. :2010
##
## Exterior2nd MasVnrType MasVnrArea ExterQual
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 0.0 Mode :character
## Mean : 103.7
## 3rd Qu.: 166.0
## Max. :1600.0
## NA's :8
## ExterCond Foundation BsmtQual BsmtCond
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 383.5 Mode :character
## Mean : 443.6
## 3rd Qu.: 712.2
## Max. :5644.0
##
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Length:1460
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 Class :character
## Median : 0.00 Median : 477.5 Median : 991.5 Mode :character
## Mean : 46.55 Mean : 567.2 Mean :1057.4
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2
## Max. :1474.00 Max. :2336.0 Max. :6110.0
##
## HeatingQC CentralAir Electrical X1stFlrSF
## Length:1460 Length:1460 Length:1460 Min. : 334
## Class :character Class :character Class :character 1st Qu.: 882
## Mode :character Mode :character Mode :character Median :1087
## Mean :1163
## 3rd Qu.:1391
## Max. :4692
##
## X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath
## Min. : 0 Min. : 0.000 Min. : 334 Min. :0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.:1130 1st Qu.:0.0000
## Median : 0 Median : 0.000 Median :1464 Median :0.0000
## Mean : 347 Mean : 5.845 Mean :1515 Mean :0.4253
## 3rd Qu.: 728 3rd Qu.: 0.000 3rd Qu.:1777 3rd Qu.:1.0000
## Max. :2065 Max. :572.000 Max. :5642 Max. :3.0000
##
## BsmtHalfBath FullBath HalfBath BedroomAbvGr
## Min. :0.00000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:2.000
## Median :0.00000 Median :2.000 Median :0.0000 Median :3.000
## Mean :0.05753 Mean :1.565 Mean :0.3829 Mean :2.866
## 3rd Qu.:0.00000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :2.00000 Max. :3.000 Max. :2.0000 Max. :8.000
##
## KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## Min. :0.000 Length:1460 Min. : 2.000 Length:1460
## 1st Qu.:1.000 Class :character 1st Qu.: 5.000 Class :character
## Median :1.000 Mode :character Median : 6.000 Mode :character
## Mean :1.047 Mean : 6.518
## 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :3.000 Max. :14.000
##
## Fireplaces FireplaceQu GarageType GarageYrBlt
## Min. :0.000 Length:1460 Length:1460 Min. :1900
## 1st Qu.:0.000 Class :character Class :character 1st Qu.:1961
## Median :1.000 Mode :character Mode :character Median :1980
## Mean :0.613 Mean :1979
## 3rd Qu.:1.000 3rd Qu.:2002
## Max. :3.000 Max. :2010
## NA's :81
## GarageFinish GarageCars GarageArea GarageQual
## Length:1460 Min. :0.000 Min. : 0.0 Length:1460
## Class :character 1st Qu.:1.000 1st Qu.: 334.5 Class :character
## Mode :character Median :2.000 Median : 480.0 Mode :character
## Mean :1.767 Mean : 473.0
## 3rd Qu.:2.000 3rd Qu.: 576.0
## Max. :4.000 Max. :1418.0
##
## GarageCond PavedDrive WoodDeckSF OpenPorchSF
## Length:1460 Length:1460 Min. : 0.00 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.00 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.00 Median : 25.00
## Mean : 94.24 Mean : 46.66
## 3rd Qu.:168.00 3rd Qu.: 68.00
## Max. :857.00 Max. :547.00
##
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 21.95 Mean : 3.41 Mean : 15.06 Mean : 2.759
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :552.00 Max. :508.00 Max. :480.00 Max. :738.000
##
## PoolQC Fence MiscFeature MiscVal
## Length:1460 Length:1460 Length:1460 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 0.00
## Mode :character Mode :character Mode :character Median : 0.00
## Mean : 43.49
## 3rd Qu.: 0.00
## Max. :15500.00
##
## MoSold YrSold SaleType SaleCondition
## Min. : 1.000 Min. :2006 Length:1460 Length:1460
## 1st Qu.: 5.000 1st Qu.:2007 Class :character Class :character
## Median : 6.000 Median :2008 Mode :character Mode :character
## Mean : 6.322 Mean :2008
## 3rd Qu.: 8.000 3rd Qu.:2009
## Max. :12.000 Max. :2010
##
## SalePrice
## Min. : 34900
## 1st Qu.:129975
## Median :163000
## Mean :180921
## 3rd Qu.:214000
## Max. :755000
##
library(ggplot2)
ggplot(Datos_u,aes(x = SalePrice))+geom_histogram(fill="red",binwidth = 10000)+
ggtitle("Distribucion Precio de venta") +
xlab("Precio de ventas") +
ylab("Frecuencia")
la distribución de los precios de las casas es asimétrica a la derecha,
en su mayoría de las viviendas estan en rangos de precios bajos y son
pocas las viviendas con precios altos altos. los cuales serian los
valores atipicos.
ggplot(Datos_u,aes(x = SalePrice,y=OverallQual))+
geom_boxplot(fill="skyblue")+
ggtitle("Precio de venta según calidad general") +
xlab("Precio de ventas") +
ylab("Calidad")
## Warning: Continuous x aesthetic
## ℹ did you forget `aes(group = ...)`?
En el box plot podemos observar que las viviendas que estan por debajo del precio promedio de venta cuentan con una calidad “buena” sin embargo hay casas que superan el valor medio y tambien cuentan con mejor calidad ,podemos observar que hay casas que no estan dentro de la mediana del precio de venta y su calidad no es muy buena es decir que la calidad si influye en el valor final de las viviendas
Datos_a <- aggregate(SalePrice ~ Neighborhood, data = Datos_u, FUN = mean)
Datos_a <- as.data.frame(Datos_a)
ggplot(Datos_a,aes(x = SalePrice,y=Neighborhood))+
geom_bar(stat = "identity",fill="red")+
ggtitle("Precio promedio por Barrio") +
xlab("Precio de ventas") +
ylab("Barrio")
¿Qué barrios presentan los precios más altos y más bajos en promedio?
Haga un gráfico de dispersión (plot) entre GrLivArea y SalePrice.
ggplot(Datos_u,aes(x=GrLivArea,y=SalePrice))+
geom_point(color='blue')+
ggtitle("Precio por area habitable") +
ylab("Precio de ventas") +
xlab("area habitable")